# Size of variable arrays: sizeAlgebraic = 3 sizeStates = 3 sizeConstants = 19 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (s)" legend_states[0] = "Z in component Ca (uM)" legend_states[1] = "Y in component Ca (uM)" legend_constants[0] = "v_0 in component Ca (uM_per_s)" legend_constants[1] = "v_1 in component Ca (uM_per_s)" legend_algebraic[0] = "v_2 in component v_2 (uM_per_s)" legend_algebraic[2] = "v_3 in component v_3 (uM_per_s)" legend_constants[2] = "k in component Ca (per_s)" legend_constants[3] = "k_f in component Ca (per_s)" legend_constants[4] = "beta in component Ca (dimensionless)" legend_constants[5] = "V_M2 in component v_2 (uM_per_s)" legend_constants[6] = "K_2 in component v_2 (uM)" legend_constants[7] = "n in component v_2 (dimensionless)" legend_constants[8] = "V_M3 in component v_3 (uM_per_s)" legend_constants[9] = "K_R in component v_3 (uM)" legend_constants[10] = "K_A in component v_3 (uM)" legend_constants[11] = "m in component v_3 (dimensionless)" legend_constants[12] = "p in component v_3 (dimensionless)" legend_states[2] = "W_star in component W_star (dimensionless)" legend_constants[13] = "W_T in component W_star (uM)" legend_constants[14] = "v_P in component W_star (uM_per_s)" legend_algebraic[1] = "v_K in component v_K (uM_per_s)" legend_constants[15] = "K_1 in component W_star (dimensionless)" legend_constants[16] = "K_2 in component W_star (dimensionless)" legend_constants[17] = "V_MK in component v_K (uM_per_s)" legend_constants[18] = "K_a in component v_K (uM)" legend_rates[0] = "d/dt Z in component Ca (uM)" legend_rates[1] = "d/dt Y in component Ca (uM)" legend_rates[2] = "d/dt W_star in component W_star (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 0.5 states[1] = 1.75 constants[0] = 1 constants[1] = 7.3 constants[2] = 10 constants[3] = 1 constants[4] = 0.301 constants[5] = 65 constants[6] = 1 constants[7] = 2 constants[8] = 500 constants[9] = 2 constants[10] = 0.9 constants[11] = 2 constants[12] = 4 states[2] = 0 constants[13] = 1 constants[14] = 5 constants[15] = 0.1 constants[16] = 0.1 constants[17] = 40 constants[18] = 2.5 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = constants[17]*(states[0]/(constants[18]+states[0])) rates[2] = (constants[14]/constants[13])*((algebraic[1]/constants[14])*((1.00000-states[2])/(constants[15]+1.00000+-states[2]))-states[2]/(constants[16]+states[2])) algebraic[0] = constants[5]*((power(states[0], constants[7]))/(power(constants[6], constants[7])+power(states[0], constants[7]))) algebraic[2] = constants[8]*((power(states[1], constants[11]))/(power(constants[9], constants[11])+power(states[1], constants[11])))*((power(states[0], constants[12]))/(power(constants[10], constants[12])+power(states[0], constants[12]))) rates[0] = constants[0]+constants[1]*constants[4]+-algebraic[0]+algebraic[2]+constants[3]*states[1]+-(constants[2]*states[0]) rates[1] = algebraic[0]+-algebraic[2]+-(constants[3]*states[1]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = constants[17]*(states[0]/(constants[18]+states[0])) algebraic[0] = constants[5]*((power(states[0], constants[7]))/(power(constants[6], constants[7])+power(states[0], constants[7]))) algebraic[2] = constants[8]*((power(states[1], constants[11]))/(power(constants[9], constants[11])+power(states[1], constants[11])))*((power(states[0], constants[12]))/(power(constants[10], constants[12])+power(states[0], constants[12]))) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)