Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 51 entries in the algebraic variable array.
   There are a total of 23 entries in each of the rate and state variable arrays.
   There are a total of 69 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * CONSTANTS[0] is R in component cell_parameters (millijoule_per_mole_kelvin).
 * CONSTANTS[1] is T in component cell_parameters (kelvin).
 * CONSTANTS[2] is F in component cell_parameters (coulomb_per_mole).
 * CONSTANTS[3] is Cm in component cell_parameters (microF).
 * CONSTANTS[4] is v_i in component cell_parameters (microlitre).
 * CONSTANTS[5] is v_SR in component cell_parameters (microlitre).
 * CONSTANTS[6] is Na_o in component cell_parameters (millimolar).
 * CONSTANTS[7] is K_o in component cell_parameters (millimolar).
 * CONSTANTS[8] is Ca_o in component cell_parameters (millimolar).
 * STATES[0] is V in component membrane_potential (millivolt).
 * ALGEBRAIC[5] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[14] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[15] is i_to in component transient_outward_current (nanoA).
 * ALGEBRAIC[11] is i_K in component time_dependent_rectifier_potassium_current (nanoA).
 * ALGEBRAIC[21] is i_Ca_L in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[29] is i_NaK in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[28] is i_NaCa in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[32] is i_b_Na in component sodium_background_current (nanoA).
 * ALGEBRAIC[31] is i_b_K in component potassium_background_current (nanoA).
 * ALGEBRAIC[30] is i_b_Ca in component calcium_background_current (nanoA).
 * ALGEBRAIC[0] is i_Stim in component membrane_potential (nanoA).
 * CONSTANTS[9] is stim_start in component membrane_potential (second).
 * CONSTANTS[10] is stim_end in component membrane_potential (second).
 * CONSTANTS[11] is stim_period in component membrane_potential (second).
 * CONSTANTS[12] is stim_duration in component membrane_potential (second).
 * CONSTANTS[13] is stim_amplitude in component membrane_potential (nanoA).
 * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ca in component reversal_potentials (millivolt).
 * ALGEBRAIC[4] is E_mh in component reversal_potentials (millivolt).
 * STATES[1] is K_i in component intracellular_potassium_concentration (millimolar).
 * STATES[2] is Na_i in component intracellular_sodium_concentration (millimolar).
 * STATES[3] is Ca_i in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[14] is g_Na in component fast_sodium_current (microS).
 * STATES[4] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[5] is h in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[7] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[8] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[15] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[6] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[9] is alpha_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[10] is beta_h in component fast_sodium_current_h_gate (per_second).
 * CONSTANTS[16] is shift_h in component fast_sodium_current_h_gate (millivolt).
 * CONSTANTS[17] is i_Kmax in component time_dependent_rectifier_potassium_current (nanoA).
 * STATES[6] is x in component time_dependent_rectifier_potassium_current_x_gate (dimensionless).
 * ALGEBRAIC[12] is alpha_x in component time_dependent_rectifier_potassium_current_x_gate (per_second).
 * ALGEBRAIC[13] is beta_x in component time_dependent_rectifier_potassium_current_x_gate (per_second).
 * CONSTANTS[18] is K_mk1 in component time_independent_potassium_current (millimolar).
 * CONSTANTS[19] is g_K1 in component time_independent_potassium_current (microS).
 * CONSTANTS[20] is g_to in component transient_outward_current (microS).
 * STATES[7] is s in component transient_outward_current_s_gate (dimensionless).
 * STATES[8] is r in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[16] is alpha_s in component transient_outward_current_s_gate (per_second).
 * ALGEBRAIC[17] is beta_s in component transient_outward_current_s_gate (per_second).
 * ALGEBRAIC[20] is i_Ca_L_Na in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[19] is i_Ca_L_K in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[18] is i_Ca_L_Ca in component L_type_Ca_channel (nanoA).
 * CONSTANTS[21] is P_Ca_L_Ca in component L_type_Ca_channel (nanoA_per_millimolar).
 * STATES[9] is d in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[10] is f in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[23] is alpha_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[24] is beta_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[22] is E0_d in component L_type_Ca_channel_d_gate (millivolt).
 * CONSTANTS[22] is speed_d in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[26] is alpha_f in component L_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[27] is beta_f in component L_type_Ca_channel_f_gate (per_second).
 * CONSTANTS[23] is speed_f in component L_type_Ca_channel_f_gate (dimensionless).
 * ALGEBRAIC[25] is E0_f in component L_type_Ca_channel_f_gate (millivolt).
 * CONSTANTS[24] is i_NaCa_max in component sodium_calcium_exchanger (nanoA_per_millimolar4).
 * CONSTANTS[25] is gamma in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[26] is i_NaK_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[27] is K_mK in component sodium_potassium_pump (millimolar).
 * CONSTANTS[28] is K_mNa in component sodium_potassium_pump (millimolar).
 * CONSTANTS[29] is g_b_Ca in component calcium_background_current (microS).
 * CONSTANTS[30] is g_b_K in component potassium_background_current (microS).
 * CONSTANTS[31] is g_b_Na in component sodium_background_current (microS).
 * STATES[11] is F_CaMK in component CaMKII_factor (dimensionless).
 * ALGEBRAIC[33] is Inf_CaMK in component CaMKII_factor (dimensionless).
 * CONSTANTS[32] is Tau_CaMK in component CaMKII_factor (second).
 * STATES[12] is Cmdn_Ca in component calmodulin (millimolar).
 * ALGEBRAIC[41] is j_rel in component RyR (millimolar_per_second).
 * ALGEBRAIC[40] is K_rel in component RyR (per_second).
 * ALGEBRAIC[39] is F_rel in component RyR (dimensionless).
 * STATES[13] is Ca_SR in component SR_calcium_concentration (millimolar).
 * CONSTANTS[33] is K_rel_max in component RyR (per_second).
 * STATES[14] is F_SRCa_RyR in component RyR (millimolar).
 * CONSTANTS[34] is Tau_SRCa_RyR in component RyR (second).
 * ALGEBRAIC[34] is N_CaMK in component RyR (dimensionless).
 * CONSTANTS[35] is gain_k1 in component RyR (dimensionless).
 * CONSTANTS[36] is gain_k2 in component RyR (dimensionless).
 * CONSTANTS[37] is gain_k3 in component RyR (dimensionless).
 * CONSTANTS[38] is gain_k4 in component RyR (dimensionless).
 * ALGEBRAIC[35] is k_1 in component RyR (per_second).
 * ALGEBRAIC[36] is k_2 in component RyR (per_second).
 * ALGEBRAIC[37] is k_3 in component RyR (per_second).
 * CONSTANTS[53] is k_4 in component RyR (per_second).
 * STATES[15] is F_1 in component RyR (dimensionless).
 * STATES[16] is F_2 in component RyR (dimensionless).
 * ALGEBRAIC[38] is F_3 in component RyR (dimensionless).
 * CONSTANTS[39] is K_leak_rate in component RyR (per_second).
 * ALGEBRAIC[44] is j_up in component SERCA (millimolar_per_second).
 * CONSTANTS[40] is V_max_f in component SERCA (millimolar_per_second).
 * CONSTANTS[41] is V_max_r in component SERCA (millimolar_per_second).
 * ALGEBRAIC[42] is f_b in component SERCA (dimensionless).
 * ALGEBRAIC[43] is r_b in component SERCA (dimensionless).
 * CONSTANTS[42] is Cmdn_tot in component calmodulin (millimolar).
 * CONSTANTS[43] is alpha_cmdn in component calmodulin (per_millimolar_per_second).
 * CONSTANTS[44] is beta_cmdn in component calmodulin (per_second).
 * ALGEBRAIC[45] is dCmdn_Ca_dtime in component calmodulin (millimolar_per_second).
 * STATES[17] is Trpn_Ca in component troponin (millimolar).
 * CONSTANTS[45] is Trpn_tot in component troponin (millimolar).
 * CONSTANTS[46] is alpha_trpn in component troponin (per_millimolar_per_second).
 * CONSTANTS[47] is beta_trpn in component troponin (per_second).
 * ALGEBRAIC[48] is Force_norm in component Force (dimensionless).
 * ALGEBRAIC[50] is dTrpn_Ca_dtime in component troponin (millimolar_per_second).
 * ALGEBRAIC[49] is Force in component Force (N_per_mm2).
 * CONSTANTS[48] is zeta in component Force (N_per_mm2).
 * CONSTANTS[68] is Force_max in component Force (dimensionless).
 * CONSTANTS[54] is phi_SL in component Force (dimensionless).
 * CONSTANTS[65] is P_1_max in component Force (dimensionless).
 * CONSTANTS[66] is P_2_max in component Force (dimensionless).
 * CONSTANTS[67] is P_3_max in component Force (dimensionless).
 * CONSTANTS[64] is sigma_paths in component Force (dimensionless).
 * STATES[18] is N_0 in component Force (dimensionless).
 * STATES[19] is P_0 in component Force (dimensionless).
 * STATES[20] is P_1 in component Force (dimensionless).
 * STATES[21] is P_2 in component Force (dimensionless).
 * STATES[22] is P_3 in component Force (dimensionless).
 * ALGEBRAIC[47] is N_1 in component Force (dimensionless).
 * ALGEBRAIC[46] is alpha_tm in component Force (per_second).
 * CONSTANTS[49] is beta_tm in component Force (per_second).
 * CONSTANTS[57] is K_tm in component Force (dimensionless).
 * CONSTANTS[58] is N_tm in component Force (dimensionless).
 * CONSTANTS[50] is SL in component Force (micrometre).
 * CONSTANTS[55] is SL_norm in component Force (dimensionless).
 * CONSTANTS[56] is f_01 in component Force (per_second).
 * CONSTANTS[59] is f_12 in component Force (per_second).
 * CONSTANTS[63] is f_23 in component Force (per_second).
 * CONSTANTS[60] is g_01 in component Force (per_second).
 * CONSTANTS[61] is g_12 in component Force (per_second).
 * CONSTANTS[62] is g_23 in component Force (per_second).
 * CONSTANTS[51] is f_XB in component Force (per_second).
 * CONSTANTS[52] is g_XB in component Force (per_second).
 * RATES[0] is d/dt V in component membrane_potential (millivolt).
 * RATES[4] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[5] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[6] is d/dt x in component time_dependent_rectifier_potassium_current_x_gate (dimensionless).
 * RATES[7] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[8] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[9] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[10] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless).
 * RATES[11] is d/dt F_CaMK in component CaMKII_factor (dimensionless).
 * RATES[15] is d/dt F_1 in component RyR (dimensionless).
 * RATES[16] is d/dt F_2 in component RyR (dimensionless).
 * RATES[14] is d/dt F_SRCa_RyR in component RyR (millimolar).
 * RATES[12] is d/dt Cmdn_Ca in component calmodulin (millimolar).
 * RATES[17] is d/dt Trpn_Ca in component troponin (millimolar).
 * RATES[3] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar).
 * RATES[13] is d/dt Ca_SR in component SR_calcium_concentration (millimolar).
 * RATES[2] is d/dt Na_i in component intracellular_sodium_concentration (millimolar).
 * RATES[1] is d/dt K_i in component intracellular_potassium_concentration (millimolar).
 * RATES[18] is d/dt N_0 in component Force (dimensionless).
 * RATES[19] is d/dt P_0 in component Force (dimensionless).
 * RATES[20] is d/dt P_1 in component Force (dimensionless).
 * RATES[21] is d/dt P_2 in component Force (dimensionless).
 * RATES[22] is d/dt P_3 in component Force (dimensionless).
 * There are a total of 7 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 9.5e-5;
CONSTANTS[4] = 1.6404e-5;
CONSTANTS[5] = 3.3477e-6;
CONSTANTS[6] = 140;
CONSTANTS[7] = 4;
CONSTANTS[8] = 2;
STATES[0] = -92.849333;
CONSTANTS[9] = 0;
CONSTANTS[10] = 1000;
CONSTANTS[11] = 0.5;
CONSTANTS[12] = 0.002;
CONSTANTS[13] = -4;
STATES[1] = 138.22;
STATES[2] = 5.8041;
STATES[3] = 9.91e-6;
CONSTANTS[14] = 2.5;
STATES[4] = 0.0013809;
STATES[5] = 0.99569;
CONSTANTS[15] = 1e-5;
CONSTANTS[16] = 0;
CONSTANTS[17] = 1;
STATES[6] = 5.1127e-2;
CONSTANTS[18] = 10;
CONSTANTS[19] = 1;
CONSTANTS[20] = 0.005;
STATES[7] = 0.95854;
STATES[8] = 1.5185e-8;
CONSTANTS[21] = 0.25;
STATES[9] = 1.7908e-8;
STATES[10] = 1;
CONSTANTS[22] = 3;
CONSTANTS[23] = 0.5;
CONSTANTS[24] = 0.0005;
CONSTANTS[25] = 0.5;
CONSTANTS[26] = 1.36;
CONSTANTS[27] = 1;
CONSTANTS[28] = 21.7;
CONSTANTS[29] = 0.00025;
CONSTANTS[30] = 0.0006;
CONSTANTS[31] = 0.0006;
STATES[11] = 1.028;
CONSTANTS[32] = 0.8;
STATES[12] = 3.9636e-6;
STATES[13] = 0.24886;
CONSTANTS[33] = 500;
STATES[14] = 0.25089;
CONSTANTS[34] = 0.05;
CONSTANTS[35] = 1;
CONSTANTS[36] = 1;
CONSTANTS[37] = 1;
CONSTANTS[38] = 1;
STATES[15] = 0.5268;
STATES[16] = 8.7508e-6;
CONSTANTS[39] = 0;
CONSTANTS[40] = 0.292;
CONSTANTS[41] = 0.391;
CONSTANTS[42] = 0.02;
CONSTANTS[43] = 10000;
CONSTANTS[44] = 500;
STATES[17] = 2.7661e-4;
CONSTANTS[45] = 0.07;
CONSTANTS[46] = 80000;
CONSTANTS[47] = 200;
CONSTANTS[48] = 0.1;
STATES[18] = 0.99917;
STATES[19] = 9.8593e-5;
STATES[20] = 1.3331e-4;
STATES[21] = 2.3505e-4;
STATES[22] = 1.5349e-4;
CONSTANTS[49] = 40;
CONSTANTS[50] = 2.15;
CONSTANTS[51] = 10;
CONSTANTS[52] = 30;
CONSTANTS[53] =  CONSTANTS[38]*1.80000;
CONSTANTS[54] = (CONSTANTS[50]>=1.70000&&CONSTANTS[50]<=2.00000 ? (CONSTANTS[50] - 0.600000)/1.40000 : CONSTANTS[50]>2.00000&&CONSTANTS[50]<=2.20000 ? 1.00000 : CONSTANTS[50]>2.20000&&CONSTANTS[50]<=2.30000 ? (3.60000 - CONSTANTS[50])/1.40000 : 0.0/0.0);
CONSTANTS[55] = (CONSTANTS[50] - 1.70000)/0.700000;
CONSTANTS[56] =  3.00000*CONSTANTS[51];
CONSTANTS[57] = 1.00000/(1.00000+(CONSTANTS[47]/CONSTANTS[46])/(0.00170000 -  0.000900000*CONSTANTS[55]));
CONSTANTS[58] = 3.50000+ 2.50000*CONSTANTS[55];
CONSTANTS[59] =  10.0000*CONSTANTS[51];
CONSTANTS[60] =  CONSTANTS[52]*(2.00000 - CONSTANTS[55]);
CONSTANTS[61] =  2.00000*CONSTANTS[52]*(2.00000 - CONSTANTS[55]);
CONSTANTS[62] =  3.00000*CONSTANTS[52]*(2.00000 - CONSTANTS[55]);
CONSTANTS[63] =  7.00000*CONSTANTS[51];
CONSTANTS[64] =  1.00000*CONSTANTS[52]*2.00000*CONSTANTS[52]*3.00000*CONSTANTS[52]+ 1.00000*CONSTANTS[56]*2.00000*CONSTANTS[52]*3.00000*CONSTANTS[52]+ 1.00000*CONSTANTS[56]*1.00000*CONSTANTS[59]*3.00000*CONSTANTS[52]+ 1.00000*CONSTANTS[56]*1.00000*CONSTANTS[59]*1.00000*CONSTANTS[63];
CONSTANTS[65] = ( 1.00000*CONSTANTS[56]*2.00000*CONSTANTS[52]*3.00000*CONSTANTS[52])/CONSTANTS[64];
CONSTANTS[66] = ( 1.00000*CONSTANTS[56]*1.00000*CONSTANTS[59]*3.00000*CONSTANTS[52])/CONSTANTS[64];
CONSTANTS[67] = ( 1.00000*CONSTANTS[56]*1.00000*CONSTANTS[59]*1.00000*CONSTANTS[63])/CONSTANTS[64];
CONSTANTS[68] = CONSTANTS[65]+ 2.00000*CONSTANTS[66]+ 3.00000*CONSTANTS[67];
RATES[0] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[14] = 0.1001;
RATES[12] = 0.1001;
RATES[17] = 0.1001;
RATES[3] = 0.1001;
RATES[13] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
RATES[18] = 0.1001;
RATES[19] = 0.1001;
RATES[20] = 0.1001;
RATES[21] = 0.1001;
RATES[22] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[5]+ALGEBRAIC[32]+ALGEBRAIC[14]+ALGEBRAIC[11]+ALGEBRAIC[15]+ALGEBRAIC[31]+ALGEBRAIC[21]+ALGEBRAIC[30]+ALGEBRAIC[28]+ALGEBRAIC[29]+ALGEBRAIC[0]);
resid[1] = RATES[4] -  ALGEBRAIC[7]*(1.00000 - STATES[4]) -  ALGEBRAIC[8]*STATES[4];
resid[2] = RATES[5] -  ALGEBRAIC[9]*(1.00000 - STATES[5]) -  ALGEBRAIC[10]*STATES[5];
resid[3] = RATES[6] -  ALGEBRAIC[12]*(1.00000 - STATES[6]) -  ALGEBRAIC[13]*STATES[6];
resid[4] = RATES[7] -  ALGEBRAIC[16]*(1.00000 - STATES[7]) -  ALGEBRAIC[17]*STATES[7];
resid[5] = RATES[8] -  333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[8]);
resid[6] = RATES[9] -  ALGEBRAIC[23]*(1.00000 - STATES[9]) -  ALGEBRAIC[24]*STATES[9];
resid[7] = RATES[10] -  ALGEBRAIC[26]*(1.00000 - STATES[10]) -  ALGEBRAIC[27]*STATES[10];
resid[8] = RATES[11] - (ALGEBRAIC[33] - STATES[11])/CONSTANTS[32];
resid[9] = RATES[15] - ( ALGEBRAIC[37]*ALGEBRAIC[38] -  CONSTANTS[53]*STATES[15]) -  ALGEBRAIC[35]*STATES[15];
resid[10] = RATES[16] -  ALGEBRAIC[35]*STATES[15] -  ALGEBRAIC[36]*STATES[16];
resid[11] = RATES[14] - (STATES[13] - STATES[14])/CONSTANTS[34];
resid[12] = RATES[12] -  CONSTANTS[43]*(CONSTANTS[42] - STATES[12])*STATES[3] -  CONSTANTS[44]*STATES[12];
resid[13] = RATES[17] -  CONSTANTS[46]*(CONSTANTS[45] - STATES[17])*STATES[3] -  (( CONSTANTS[47]*(1.00000+ 2.00000*(1.00000 - ALGEBRAIC[48])))/3.00000)*STATES[17];
resid[14] = RATES[3] - (((- ((ALGEBRAIC[18]+ALGEBRAIC[30]) -  2.00000*ALGEBRAIC[28])/( 2.00000*CONSTANTS[4]*CONSTANTS[2]) - ALGEBRAIC[44])+( ALGEBRAIC[41]*CONSTANTS[5])/CONSTANTS[4]) - ALGEBRAIC[45]) - ALGEBRAIC[50];
resid[15] = RATES[13] - ( ALGEBRAIC[44]*CONSTANTS[4])/CONSTANTS[5] - ALGEBRAIC[41];
resid[16] = RATES[2] - - (ALGEBRAIC[5]+ALGEBRAIC[32]+ALGEBRAIC[20]+ 3.00000*ALGEBRAIC[28]+ 3.00000*ALGEBRAIC[29])/( CONSTANTS[4]*CONSTANTS[2]);
resid[17] = RATES[1] - - ((ALGEBRAIC[14]+ALGEBRAIC[11]+ALGEBRAIC[15]+ALGEBRAIC[31]+ALGEBRAIC[19]) -  2.00000*ALGEBRAIC[29])/( CONSTANTS[4]*CONSTANTS[2]);
resid[18] = RATES[18] - ( CONSTANTS[49]*STATES[19] -  ALGEBRAIC[46]*STATES[18])+ CONSTANTS[60]*ALGEBRAIC[47];
resid[19] = RATES[19] -  - (CONSTANTS[49]+CONSTANTS[56])*STATES[19]+ ALGEBRAIC[46]*STATES[18]+ CONSTANTS[60]*STATES[20];
resid[20] = RATES[20] -  - (CONSTANTS[49]+CONSTANTS[59]+CONSTANTS[60])*STATES[20]+ ALGEBRAIC[46]*ALGEBRAIC[47]+ CONSTANTS[56]*STATES[19]+ CONSTANTS[61]*STATES[21];
resid[21] = RATES[21] -  - (CONSTANTS[63]+CONSTANTS[61])*STATES[21]+ CONSTANTS[59]*STATES[20]+ CONSTANTS[62]*STATES[22];
resid[22] = RATES[22] -  - CONSTANTS[62]*STATES[22]+ CONSTANTS[63]*STATES[21];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[49] =  CONSTANTS[48]*ALGEBRAIC[48];
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[13] : 0.00000);
ALGEBRAIC[4] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[6]+ 0.120000*CONSTANTS[7])/(STATES[2]+ 0.120000*STATES[1]));
ALGEBRAIC[5] =  CONSTANTS[14]*pow(STATES[4], 3.00000)*STATES[5]*(STATES[0] - ALGEBRAIC[4]);
ALGEBRAIC[6] = STATES[0]+41.0000;
ALGEBRAIC[7] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[6])/(1.00000 - exp( - 0.100000*ALGEBRAIC[6])));
ALGEBRAIC[8] =  8000.00*exp( - 0.0560000*(STATES[0]+66.0000));
ALGEBRAIC[9] =  20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[16]));
ALGEBRAIC[10] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[16])));
ALGEBRAIC[11] = ( CONSTANTS[17]*STATES[6]*(STATES[1] -  CONSTANTS[7]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/140.000;
ALGEBRAIC[12] = ( 0.500000*exp( 0.0826000*(STATES[0]+50.0000)))/(1.00000+exp( 0.0570000*(STATES[0]+50.0000)));
ALGEBRAIC[13] = ( 1.30000*exp( - 0.0600000*(STATES[0]+20.0000)))/(1.00000+exp( - 0.0400000*(STATES[0]+20.0000)));
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[7]/STATES[1]);
ALGEBRAIC[14] = ( (( CONSTANTS[19]*CONSTANTS[7])/(CONSTANTS[7]+CONSTANTS[18]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( 2.00000*CONSTANTS[2]*((STATES[0] - ALGEBRAIC[2]) - 10.0000))/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[15] =  CONSTANTS[20]*STATES[7]*STATES[8]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[16] =  0.0330000*exp(- STATES[0]/17.0000);
ALGEBRAIC[17] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000)));
ALGEBRAIC[18] =  (( 4.00000*STATES[9]*STATES[10]*CONSTANTS[21]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]*(1.00000 - exp(( - 2.00000*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[8]*exp(( - 2.00000*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[19] =  (( 0.00200000*STATES[9]*STATES[10]*CONSTANTS[21]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]*(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[7]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[20] =  (( 0.0100000*STATES[9]*STATES[10]*CONSTANTS[21]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]*(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[6]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[21] = ALGEBRAIC[18]+ALGEBRAIC[19]+ALGEBRAIC[20];
ALGEBRAIC[22] = (STATES[0]+24.0000) - 5.00000;
ALGEBRAIC[23] = (CONDVAR[4]<0.00000 ?  CONSTANTS[22]*120.000 : ( CONSTANTS[22]*30.0000*ALGEBRAIC[22])/(1.00000 - exp(- ALGEBRAIC[22]/4.00000)));
ALGEBRAIC[24] = (CONDVAR[5]<0.00000 ?  CONSTANTS[22]*120.000 : ( CONSTANTS[22]*- 12.0000*ALGEBRAIC[22])/(1.00000 - exp(ALGEBRAIC[22]/10.0000)));
ALGEBRAIC[25] = STATES[0]+34.0000;
ALGEBRAIC[26] = (CONDVAR[6]<0.00000 ?  CONSTANTS[23]*25.0000 : ( CONSTANTS[23]*6.25000*ALGEBRAIC[25])/(- 1.00000+exp(ALGEBRAIC[25]/4.00000)));
ALGEBRAIC[27] = ( CONSTANTS[23]*50.0000)/(1.00000+exp(- ALGEBRAIC[25]/4.00000));
ALGEBRAIC[28] = ( CONSTANTS[24]*( exp(( CONSTANTS[25]*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], 3.00000)*CONSTANTS[8] -  exp(( (CONSTANTS[25] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[6], 3.00000)*STATES[3]))/(1.00000+STATES[3]/0.00690000);
ALGEBRAIC[29] = ( (( (( CONSTANTS[26]*CONSTANTS[7])/(CONSTANTS[27]+CONSTANTS[7]))*STATES[2])/(CONSTANTS[28]+STATES[2]))*1.00000)/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0353000*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[3] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[8]/STATES[3]);
ALGEBRAIC[30] =  CONSTANTS[29]*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[31] =  CONSTANTS[30]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[6]/STATES[2]);
ALGEBRAIC[32] =  CONSTANTS[31]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[33] = STATES[12]/5.00000e-05;
ALGEBRAIC[35] =  CONSTANTS[35]*( 3.06250e+07*pow(STATES[3], 2.00000) -  245.000*ALGEBRAIC[21]);
ALGEBRAIC[36] = ( CONSTANTS[36]*450.000)/(1.00000+0.360000/STATES[13]);
ALGEBRAIC[34] = pow(STATES[11]/0.700000, 2.00000);
ALGEBRAIC[37] =  CONSTANTS[37]*1.88500*pow(STATES[14]/0.220000, ALGEBRAIC[34]);
ALGEBRAIC[38] = 1.00000 - (STATES[15]+STATES[16]);
ALGEBRAIC[40] = ( CONSTANTS[33]*STATES[14])/(STATES[14]+0.200000);
ALGEBRAIC[39] = pow(STATES[16]/(STATES[16]+0.250000), 2.00000);
ALGEBRAIC[41] =  ( ALGEBRAIC[40]*ALGEBRAIC[39]+CONSTANTS[39])*(STATES[13] - STATES[3]);
ALGEBRAIC[42] = pow(STATES[3]/0.000240000, 2.00000);
ALGEBRAIC[43] = pow(STATES[13]/1.64000, 2.00000);
ALGEBRAIC[44] = ( STATES[11]*CONSTANTS[40]*ALGEBRAIC[42] -  CONSTANTS[41]*ALGEBRAIC[43])/(1.00000+ALGEBRAIC[42]+ALGEBRAIC[43]);
ALGEBRAIC[45] =  CONSTANTS[43]*(CONSTANTS[42] - STATES[12])*STATES[3] -  CONSTANTS[44]*STATES[12];
ALGEBRAIC[46] =  CONSTANTS[49]*pow(STATES[17]/( CONSTANTS[45]*CONSTANTS[57]), CONSTANTS[58]);
ALGEBRAIC[47] = 1.00000 - (STATES[18]+STATES[19]+STATES[20]+STATES[21]+STATES[22]);
ALGEBRAIC[48] = ( CONSTANTS[54]*(STATES[20]+ALGEBRAIC[47]+ 2.00000*STATES[21]+ 3.00000*STATES[22]))/CONSTANTS[68];
ALGEBRAIC[50] =  CONSTANTS[46]*(CONSTANTS[45] - STATES[17])*STATES[3] -  (( CONSTANTS[47]*(1.00000+ 2.00000*(1.00000 - ALGEBRAIC[48])))/3.00000)*STATES[17];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[20] = 1.0;
SI[21] = 1.0;
SI[22] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[9];
CONDVAR[1] = VOI - CONSTANTS[10];
CONDVAR[2] = ((VOI - CONSTANTS[9]) -  floor((VOI - CONSTANTS[9])/CONSTANTS[11])*CONSTANTS[11]) - CONSTANTS[12];
CONDVAR[3] = fabs(ALGEBRAIC[6]) - CONSTANTS[15];
CONDVAR[4] = fabs(ALGEBRAIC[22]) - 1.00000e-05;
CONDVAR[5] = fabs(ALGEBRAIC[22]) - 1.00000e-05;
CONDVAR[6] = fabs(ALGEBRAIC[25]) - 1.00000e-05;
}