/* There are a total of 69 entries in the algebraic variable array. There are a total of 46 entries in each of the rate and state variable arrays. There are a total of 97 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_millimole). * CONSTANTS[3] is C_sc in component membrane (microF_per_cm2). * ALGEBRAIC[0] is i_Stim in component membrane (microA_per_microF). * ALGEBRAIC[2] is i_Na in component fast_sodium_current (microA_per_microF). * ALGEBRAIC[65] is i_Ca in component L_type_Ca_current (microA_per_microF). * ALGEBRAIC[68] is i_Ca_K in component L_type_Ca_current (microA_per_microF). * ALGEBRAIC[12] is i_Kr in component rapid_activating_delayed_rectifiyer_K_current (microA_per_microF). * ALGEBRAIC[18] is i_Ks in component slow_activating_delayed_rectifiyer_K_current (microA_per_microF). * ALGEBRAIC[21] is i_to1 in component transient_outward_potassium_current (microA_per_microF). * ALGEBRAIC[61] is i_K1 in component time_independent_potassium_current (microA_per_microF). * ALGEBRAIC[62] is i_Kp in component plateau_potassium_current (microA_per_microF). * ALGEBRAIC[28] is i_NaCa in component Na_Ca_exchanger (microA_per_microF). * ALGEBRAIC[63] is i_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[64] is i_p_Ca in component sarcolemmal_calcium_pump (microA_per_microF). * ALGEBRAIC[33] is i_Ca_b in component calcium_background_current (microA_per_microF). * ALGEBRAIC[34] is i_Na_b in component sodium_background_current (microA_per_microF). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (second). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (microA_per_microF). * ALGEBRAIC[1] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[9] is g_Na in component fast_sodium_current (milliS_per_microF). * CONSTANTS[10] is Na_o in component extracellular_ion_concentrations (millimolar). * STATES[1] is Na_i in component intracellular_ion_concentrations (millimolar). * STATES[2] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[3] is h in component fast_sodium_current_h_gate (dimensionless). * STATES[4] is j in component fast_sodium_current_j_gate (dimensionless). * ALGEBRAIC[4] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[5] is beta_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[3] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[6] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[7] is beta_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[8] is alpha_j in component fast_sodium_current_j_gate (per_second). * ALGEBRAIC[9] is beta_j in component fast_sodium_current_j_gate (per_second). * ALGEBRAIC[10] is E_K in component rapid_activating_delayed_rectifiyer_K_current (millivolt). * CONSTANTS[11] is g_Kr in component rapid_activating_delayed_rectifiyer_K_current (milliS_per_microF). * CONSTANTS[95] is f_K_o in component rapid_activating_delayed_rectifiyer_K_current (dimensionless). * ALGEBRAIC[11] is R_V in component rapid_activating_delayed_rectifiyer_K_current (dimensionless). * CONSTANTS[12] is K_o in component extracellular_ion_concentrations (millimolar). * STATES[5] is K_i in component intracellular_ion_concentrations (millimolar). * STATES[6] is X_kr in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless). * ALGEBRAIC[13] is K12 in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless). * ALGEBRAIC[14] is K21 in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless). * ALGEBRAIC[15] is X_kr_inf in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless). * ALGEBRAIC[16] is tau_X_kr in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (second). * CONSTANTS[13] is tau_factor in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless). * CONSTANTS[14] is g_Ks in component slow_activating_delayed_rectifiyer_K_current (milliS_per_microF). * ALGEBRAIC[17] is E_Ks in component slow_activating_delayed_rectifiyer_K_current (millivolt). * STATES[7] is X_ks in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (dimensionless). * ALGEBRAIC[20] is tau_X_ks in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (second). * ALGEBRAIC[19] is X_ks_infinity in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (dimensionless). * CONSTANTS[15] is g_to1 in component transient_outward_potassium_current (milliS_per_microF). * STATES[8] is X_to1 in component transient_outward_potassium_current_X_to1_gate (dimensionless). * STATES[9] is Y_to1 in component transient_outward_potassium_current_Y_to1_gate (dimensionless). * ALGEBRAIC[22] is alpha_X_to1 in component transient_outward_potassium_current_X_to1_gate (per_second). * ALGEBRAIC[23] is beta_X_to1 in component transient_outward_potassium_current_X_to1_gate (per_second). * ALGEBRAIC[24] is alpha_Y_to1 in component transient_outward_potassium_current_Y_to1_gate (per_second). * ALGEBRAIC[25] is beta_Y_to1 in component transient_outward_potassium_current_Y_to1_gate (per_second). * CONSTANTS[16] is g_K1 in component time_independent_potassium_current (milliS_per_microF). * CONSTANTS[17] is K_mK1 in component time_independent_potassium_current (millimolar). * ALGEBRAIC[26] is K1_infinity_V in component time_independent_potassium_current_K1_gate (dimensionless). * CONSTANTS[18] is g_Kp in component plateau_potassium_current (milliS_per_microF). * ALGEBRAIC[27] is Kp_V in component plateau_potassium_current_Kp_gate (dimensionless). * CONSTANTS[19] is K_mCa in component Na_Ca_exchanger (millimolar). * CONSTANTS[20] is K_mNa in component Na_Ca_exchanger (millimolar). * CONSTANTS[21] is K_NaCa in component Na_Ca_exchanger (microA_per_microF). * CONSTANTS[22] is K_sat in component Na_Ca_exchanger (dimensionless). * CONSTANTS[23] is eta in component Na_Ca_exchanger (dimensionless). * STATES[10] is Ca_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[24] is Ca_o in component extracellular_ion_concentrations (millimolar). * ALGEBRAIC[30] is i_NaK_winslow in component sodium_potassium_pump (microA_per_microF). * CONSTANTS[25] is I_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[29] is f_NaK in component sodium_potassium_pump (dimensionless). * CONSTANTS[26] is K_mNa_i in component sodium_potassium_pump (millimolar). * CONSTANTS[27] is K_mK_o in component sodium_potassium_pump (millimolar). * CONSTANTS[96] is sigma in component sodium_potassium_pump (dimensionless). * STATES[11] is MgATP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * CONSTANTS[28] is MgATP_i0 in component Ca_and_Mg_buffering_by_ATP (millimolar). * ALGEBRAIC[31] is i_p_Ca_winslow in component sarcolemmal_calcium_pump (microA_per_microF). * CONSTANTS[29] is K_mpCa in component sarcolemmal_calcium_pump (millimolar). * CONSTANTS[30] is I_pCa in component sarcolemmal_calcium_pump (microA_per_microF). * CONSTANTS[31] is g_Cab in component calcium_background_current (milliS_per_microF). * ALGEBRAIC[32] is E_Ca in component calcium_background_current (millivolt). * CONSTANTS[32] is g_Nab in component sodium_background_current (milliS_per_microF). * CONSTANTS[33] is P_Ca in component L_type_Ca_current (cm_per_second). * CONSTANTS[34] is P_K in component L_type_Ca_current (cm_per_second). * ALGEBRAIC[66] is p_prime_k in component L_type_Ca_current (cm_per_second). * CONSTANTS[35] is i_Ca_half in component L_type_Ca_current (microA_per_microF). * ALGEBRAIC[35] is i_Ca_max in component L_type_Ca_current (microA_per_microF). * STATES[12] is O in component L_type_Ca_current (dimensionless). * STATES[13] is O_Ca in component L_type_Ca_current (dimensionless). * ALGEBRAIC[36] is alpha in component L_type_Ca_current (per_second). * ALGEBRAIC[37] is beta in component L_type_Ca_current (per_second). * ALGEBRAIC[40] is gamma in component L_type_Ca_current (per_second). * ALGEBRAIC[38] is alpha_a in component L_type_Ca_current (per_second). * ALGEBRAIC[39] is beta_b in component L_type_Ca_current (per_second). * CONSTANTS[36] is a in component L_type_Ca_current (dimensionless). * CONSTANTS[37] is b in component L_type_Ca_current (dimensionless). * CONSTANTS[38] is g in component L_type_Ca_current (per_second). * CONSTANTS[39] is f in component L_type_Ca_current (per_second). * CONSTANTS[40] is gprime in component L_type_Ca_current (per_second). * CONSTANTS[41] is fprime in component L_type_Ca_current (per_second). * CONSTANTS[42] is omega in component L_type_Ca_current (per_second). * STATES[14] is C0 in component L_type_Ca_current (dimensionless). * STATES[15] is C1 in component L_type_Ca_current (dimensionless). * STATES[16] is C2 in component L_type_Ca_current (dimensionless). * STATES[17] is C3 in component L_type_Ca_current (dimensionless). * STATES[18] is C4 in component L_type_Ca_current (dimensionless). * STATES[19] is C_Ca0 in component L_type_Ca_current (dimensionless). * STATES[20] is C_Ca1 in component L_type_Ca_current (dimensionless). * STATES[21] is C_Ca2 in component L_type_Ca_current (dimensionless). * STATES[22] is C_Ca3 in component L_type_Ca_current (dimensionless). * STATES[23] is C_Ca4 in component L_type_Ca_current (dimensionless). * STATES[24] is Ca_ss in component intracellular_ion_concentrations (millimolar). * STATES[25] is y in component L_type_Ca_current_y_gate (dimensionless). * ALGEBRAIC[41] is y_infinity in component L_type_Ca_current_y_gate (dimensionless). * ALGEBRAIC[42] is tau_y in component L_type_Ca_current_y_gate (second). * ALGEBRAIC[43] is J_rel in component RyR_channel (millimolar_per_second). * CONSTANTS[43] is v1 in component RyR_channel (per_second). * CONSTANTS[44] is k_a_plus in component RyR_channel (millimolar4_per_second). * CONSTANTS[45] is k_a_minus in component RyR_channel (per_second). * CONSTANTS[46] is k_b_plus in component RyR_channel (millimolar3_per_second). * CONSTANTS[47] is k_b_minus in component RyR_channel (per_second). * CONSTANTS[48] is k_c_plus in component RyR_channel (per_second). * CONSTANTS[49] is k_c_minus in component RyR_channel (per_second). * STATES[26] is P_O1 in component RyR_channel (dimensionless). * STATES[27] is P_O2 in component RyR_channel (dimensionless). * STATES[28] is P_C1 in component RyR_channel (dimensionless). * STATES[29] is P_C2 in component RyR_channel (dimensionless). * CONSTANTS[50] is n in component RyR_channel (dimensionless). * CONSTANTS[51] is m in component RyR_channel (dimensionless). * STATES[30] is Ca_JSR in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[67] is J_up in component SERCA2a_pump (millimolar_per_second). * ALGEBRAIC[46] is J_up_winslow in component SERCA2a_pump (millimolar_per_second). * CONSTANTS[52] is K_fb in component SERCA2a_pump (millimolar). * CONSTANTS[53] is K_rb in component SERCA2a_pump (millimolar). * ALGEBRAIC[44] is fb in component SERCA2a_pump (dimensionless). * ALGEBRAIC[45] is rb in component SERCA2a_pump (dimensionless). * CONSTANTS[54] is Vmaxf in component SERCA2a_pump (millimolar_per_second). * CONSTANTS[55] is Vmaxr in component SERCA2a_pump (millimolar_per_second). * CONSTANTS[56] is K_SR in component SERCA2a_pump (dimensionless). * CONSTANTS[57] is N_fb in component SERCA2a_pump (dimensionless). * CONSTANTS[58] is N_rb in component SERCA2a_pump (dimensionless). * STATES[31] is Ca_NSR in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[47] is J_tr in component intracellular_Ca_fluxes (millimolar_per_second). * ALGEBRAIC[48] is J_xfer in component intracellular_Ca_fluxes (millimolar_per_second). * STATES[43] is J_trpn in component intracellular_Ca_fluxes (millimolar_per_second). * CONSTANTS[59] is tau_tr in component intracellular_Ca_fluxes (second). * CONSTANTS[60] is tau_xfer in component intracellular_Ca_fluxes (second). * STATES[32] is HTRPNCa in component intracellular_Ca_fluxes (millimolar). * STATES[33] is LTRPNCa in component intracellular_Ca_fluxes (millimolar). * STATES[44] is J_HTRPNCa in component intracellular_Ca_fluxes (millimolar_per_second). * STATES[45] is J_LTRPNCa in component intracellular_Ca_fluxes (millimolar_per_second). * CONSTANTS[61] is HTRPN_tot in component intracellular_Ca_fluxes (dimensionless). * CONSTANTS[62] is LTRPN_tot in component intracellular_Ca_fluxes (dimensionless). * CONSTANTS[63] is k_htrpn_plus in component intracellular_Ca_fluxes (per_millimolar_second). * CONSTANTS[64] is k_htrpn_minus in component intracellular_Ca_fluxes (per_second). * CONSTANTS[65] is k_ltrpn_plus in component intracellular_Ca_fluxes (per_millimolar_second). * CONSTANTS[66] is k_ltrpn_minus in component intracellular_Ca_fluxes (per_second). * CONSTANTS[67] is A_cap in component intracellular_ion_concentrations (cm2). * CONSTANTS[68] is V_myo in component intracellular_ion_concentrations (microlitre). * CONSTANTS[69] is V_JSR in component intracellular_ion_concentrations (microlitre). * CONSTANTS[70] is V_NSR in component intracellular_ion_concentrations (microlitre). * CONSTANTS[71] is V_ss in component intracellular_ion_concentrations (microlitre). * CONSTANTS[72] is K_mCMDN in component intracellular_ion_concentrations (millimolar). * CONSTANTS[73] is K_mEGTA in component intracellular_ion_concentrations (millimolar). * CONSTANTS[74] is K_mCSQN in component intracellular_ion_concentrations (millimolar). * CONSTANTS[75] is CMDN_tot in component intracellular_ion_concentrations (millimolar). * CONSTANTS[76] is EGTA_tot in component intracellular_ion_concentrations (millimolar). * CONSTANTS[77] is CSQN_tot in component intracellular_ion_concentrations (millimolar). * ALGEBRAIC[49] is beta_i in component intracellular_ion_concentrations (dimensionless). * ALGEBRAIC[50] is beta_SS in component intracellular_ion_concentrations (dimensionless). * ALGEBRAIC[51] is beta_JSR in component intracellular_ion_concentrations (dimensionless). * CONSTANTS[78] is k_plus_CaATP in component Ca_and_Mg_buffering_by_ATP (per_millimolar_second). * CONSTANTS[79] is k_minus_CaATP in component Ca_and_Mg_buffering_by_ATP (per_second). * CONSTANTS[80] is k_plus_CaADP in component Ca_and_Mg_buffering_by_ATP (per_millimolar_second). * CONSTANTS[81] is k_minus_CaADP in component Ca_and_Mg_buffering_by_ATP (per_second). * STATES[34] is CaADP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[35] is CaADP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[36] is CaATP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * ALGEBRAIC[53] is ATP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * ALGEBRAIC[57] is ADP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * ALGEBRAIC[56] is ADP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * ALGEBRAIC[52] is ATP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[37] is CaATP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[38] is Mg_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[39] is Mg_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[40] is MgADP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[41] is MgADP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * STATES[42] is MgATP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * CONSTANTS[82] is ATP_tot in component Ca_and_Mg_buffering_by_ATP (millimolar). * CONSTANTS[83] is k_plus_MgATP in component Ca_and_Mg_buffering_by_ATP (per_millimolar_second). * CONSTANTS[84] is k_minus_MgATP in component Ca_and_Mg_buffering_by_ATP (per_second). * ALGEBRAIC[54] is Jxfer_CaATP in component Ca_and_Mg_buffering_by_ATP (millimolar_per_second). * ALGEBRAIC[55] is Jxfer_MgATP in component Ca_and_Mg_buffering_by_ATP (millimolar_per_second). * ALGEBRAIC[60] is Jxfer_Mg in component Ca_and_Mg_buffering_by_ATP (millimolar_per_second). * CONSTANTS[85] is tau_xfer_CaATP in component Ca_and_Mg_buffering_by_ATP (second). * CONSTANTS[86] is tau_xfer_MgATP in component Ca_and_Mg_buffering_by_ATP (second). * CONSTANTS[87] is tau_xfer_Mg in component Ca_and_Mg_buffering_by_ATP (second). * CONSTANTS[88] is ADP_tot in component Ca_and_Mg_buffering_by_ATP (millimolar). * CONSTANTS[89] is k_plus_MgADP in component Ca_and_Mg_buffering_by_ATP (per_millimolar_second). * CONSTANTS[90] is k_minus_MgADP in component Ca_and_Mg_buffering_by_ATP (per_second). * ALGEBRAIC[58] is Jxfer_CaADP in component Ca_and_Mg_buffering_by_ATP (millimolar_per_second). * ALGEBRAIC[59] is Jxfer_MgADP in component Ca_and_Mg_buffering_by_ATP (millimolar_per_second). * CONSTANTS[91] is tau_xfer_CaADP in component Ca_and_Mg_buffering_by_ATP (second). * CONSTANTS[92] is tau_xfer_MgADP in component Ca_and_Mg_buffering_by_ATP (second). * CONSTANTS[93] is V_myo in component model_parameters (microlitre). * CONSTANTS[94] is V_ss in component model_parameters (microlitre). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[2] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[4] is d/dt j in component fast_sodium_current_j_gate (dimensionless). * RATES[6] is d/dt X_kr in component rapid_activating_delayed_rectifiyer_K_current_X_kr_gate (dimensionless). * RATES[7] is d/dt X_ks in component slow_activating_delayed_rectifiyer_K_current_X_ks_gate (dimensionless). * RATES[8] is d/dt X_to1 in component transient_outward_potassium_current_X_to1_gate (dimensionless). * RATES[9] is d/dt Y_to1 in component transient_outward_potassium_current_Y_to1_gate (dimensionless). * RATES[14] is d/dt C0 in component L_type_Ca_current (dimensionless). * RATES[15] is d/dt C1 in component L_type_Ca_current (dimensionless). * RATES[16] is d/dt C2 in component L_type_Ca_current (dimensionless). * RATES[17] is d/dt C3 in component L_type_Ca_current (dimensionless). * RATES[18] is d/dt C4 in component L_type_Ca_current (dimensionless). * RATES[12] is d/dt O in component L_type_Ca_current (dimensionless). * RATES[19] is d/dt C_Ca0 in component L_type_Ca_current (dimensionless). * RATES[20] is d/dt C_Ca1 in component L_type_Ca_current (dimensionless). * RATES[21] is d/dt C_Ca2 in component L_type_Ca_current (dimensionless). * RATES[22] is d/dt C_Ca3 in component L_type_Ca_current (dimensionless). * RATES[23] is d/dt C_Ca4 in component L_type_Ca_current (dimensionless). * RATES[13] is d/dt O_Ca in component L_type_Ca_current (dimensionless). * RATES[25] is d/dt y in component L_type_Ca_current_y_gate (dimensionless). * RATES[28] is d/dt P_C1 in component RyR_channel (dimensionless). * RATES[26] is d/dt P_O1 in component RyR_channel (dimensionless). * RATES[27] is d/dt P_O2 in component RyR_channel (dimensionless). * RATES[29] is d/dt P_C2 in component RyR_channel (dimensionless). * RATES[32] is d/dt HTRPNCa in component intracellular_Ca_fluxes (millimolar). * RATES[33] is d/dt LTRPNCa in component intracellular_Ca_fluxes (millimolar). * RATES[10] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar). * RATES[1] is d/dt Na_i in component intracellular_ion_concentrations (millimolar). * RATES[5] is d/dt K_i in component intracellular_ion_concentrations (millimolar). * RATES[24] is d/dt Ca_ss in component intracellular_ion_concentrations (millimolar). * RATES[30] is d/dt Ca_JSR in component intracellular_ion_concentrations (millimolar). * RATES[31] is d/dt Ca_NSR in component intracellular_ion_concentrations (millimolar). * RATES[36] is d/dt CaATP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[42] is d/dt MgATP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[37] is d/dt CaATP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[11] is d/dt MgATP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[35] is d/dt CaADP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[41] is d/dt MgADP_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[34] is d/dt CaADP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[40] is d/dt MgADP_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[38] is d/dt Mg_ss in component Ca_and_Mg_buffering_by_ATP (millimolar). * RATES[39] is d/dt Mg_i in component Ca_and_Mg_buffering_by_ATP (millimolar). * There are a total of 9 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -96.1638; CONSTANTS[0] = 8.314472; CONSTANTS[1] = 310; CONSTANTS[2] = 96.4853415; CONSTANTS[3] = 0.001; CONSTANTS[4] = 0.1; CONSTANTS[5] = 100000000; CONSTANTS[6] = 1; CONSTANTS[7] = 0.0005; CONSTANTS[8] = -100.0; CONSTANTS[9] = 12.8; CONSTANTS[10] = 138; STATES[1] = 10; STATES[2] = 0.0328302; STATES[3] = 0.988354; STATES[4] = 0.99254; CONSTANTS[11] = 0.0034; CONSTANTS[12] = 4; STATES[5] = 159.48; STATES[6] = 0.51; CONSTANTS[13] = 1; CONSTANTS[14] = 0.0027134; STATES[7] = 0.264; CONSTANTS[15] = 0.23815; STATES[8] = 2.63; STATES[9] = 0.99; CONSTANTS[16] = 2.8; CONSTANTS[17] = 13; CONSTANTS[18] = 0.002216; CONSTANTS[19] = 1.38; CONSTANTS[20] = 87.5; CONSTANTS[21] = 0.3; CONSTANTS[22] = 0.2; CONSTANTS[23] = 0.35; STATES[10] = 8.464E-5; CONSTANTS[24] = 2; CONSTANTS[25] = 0.693; CONSTANTS[26] = 10; CONSTANTS[27] = 1.5; STATES[11] = 6.4395; CONSTANTS[28] = 2.888; CONSTANTS[29] = 0.00005; CONSTANTS[30] = 0.05; CONSTANTS[31] = 0.0003842; CONSTANTS[32] = 0.0031; CONSTANTS[33] = 3.125e-4; CONSTANTS[34] = 5.79e-7; CONSTANTS[35] = -0.265; STATES[12] = 9.84546e-21; STATES[13] = 0; CONSTANTS[36] = 2; CONSTANTS[37] = 2; CONSTANTS[38] = 2000; CONSTANTS[39] = 300; CONSTANTS[40] = 7000; CONSTANTS[41] = 7; CONSTANTS[42] = 10; STATES[14] = 0.997208; STATES[15] = 6.38897e-5; STATES[16] = 1.535e-9; STATES[17] = 1.63909e-14; STATES[18] = 6.56337e-20; STATES[19] = 0.00272826; STATES[20] = 6.99215e-7; STATES[21] = 6.71989e-11; STATES[22] = 2.87031e-15; STATES[23] = 4.59752e-20; STATES[24] = 1.315E-4; STATES[25] = 0.798; CONSTANTS[43] = 1800; CONSTANTS[44] = 1.215e13; CONSTANTS[45] = 576; CONSTANTS[46] = 4.05e9; CONSTANTS[47] = 1930; CONSTANTS[48] = 100; CONSTANTS[49] = 0.8; STATES[26] = 0; STATES[27] = 0; STATES[28] = 0.47; STATES[29] = 0.53; CONSTANTS[50] = 4; CONSTANTS[51] = 3; STATES[30] = 0.2616; CONSTANTS[52] = 0.000168; CONSTANTS[53] = 3.29; CONSTANTS[54] = 0.0813; CONSTANTS[55] = 0.318; CONSTANTS[56] = 1; CONSTANTS[57] = 1.2; CONSTANTS[58] = 1; STATES[31] = 0.2620; CONSTANTS[59] = 0.0005747; CONSTANTS[60] = 0.0267; STATES[32] = 0.98; STATES[33] = 0.078; CONSTANTS[61] = 0.14; CONSTANTS[62] = 0.07; CONSTANTS[63] = 20000; CONSTANTS[64] = 0.066; CONSTANTS[65] = 40000; CONSTANTS[66] = 40; CONSTANTS[67] = 0.0001534; CONSTANTS[68] = 0.00002584; CONSTANTS[69] = 0.00000016; CONSTANTS[70] = 0.0000021; CONSTANTS[71] = 0.0000000012; CONSTANTS[72] = 0.00238; CONSTANTS[73] = 0.00015; CONSTANTS[74] = 0.8; CONSTANTS[75] = 0.05; CONSTANTS[76] = 0; CONSTANTS[77] = 15; CONSTANTS[78] = 225000.0; CONSTANTS[79] = 45000.0; CONSTANTS[80] = 125000.0; CONSTANTS[81] = 193500; STATES[34] = 0.11E-6; STATES[35] = 0.13E-6; STATES[36] = 0.25E-3; STATES[37] = 0.237E-3; STATES[38] = 1.0; STATES[39] = 1.0; STATES[40] = 0.298E-2; STATES[41] = 0.298E-2; STATES[42] = 6.4395; CONSTANTS[82] = 7.0; CONSTANTS[83] = 125000.0; CONSTANTS[84] = 10875.0; CONSTANTS[85] = 0.0534; CONSTANTS[86] = 0.0534; CONSTANTS[87] = 0.0267; CONSTANTS[88] = 0.005; CONSTANTS[89] = 125000.0; CONSTANTS[90] = 84500.0; CONSTANTS[91] = 0.0534; CONSTANTS[92] = 0.0534; CONSTANTS[93] = 0.00002584; CONSTANTS[94] = 0.0000000012; CONSTANTS[95] = pow((CONSTANTS[12]/4.00000), 1.0 / 2); CONSTANTS[96] = (1.00000/7.00000)*(exp(CONSTANTS[10]/67.3000) - 1.00000); STATES[43] = 0.1001; STATES[44] = 0.1001; STATES[45] = 0.1001; RATES[0] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[16] = 0.1001; RATES[17] = 0.1001; RATES[18] = 0.1001; RATES[12] = 0.1001; RATES[19] = 0.1001; RATES[20] = 0.1001; RATES[21] = 0.1001; RATES[22] = 0.1001; RATES[23] = 0.1001; RATES[13] = 0.1001; RATES[25] = 0.1001; RATES[28] = 0.1001; RATES[26] = 0.1001; RATES[27] = 0.1001; RATES[29] = 0.1001; RATES[32] = 0.1001; RATES[33] = 0.1001; RATES[10] = 0.1001; RATES[1] = 0.1001; RATES[5] = 0.1001; RATES[24] = 0.1001; RATES[30] = 0.1001; RATES[31] = 0.1001; RATES[36] = 0.1001; RATES[42] = 0.1001; RATES[37] = 0.1001; RATES[11] = 0.1001; RATES[35] = 0.1001; RATES[41] = 0.1001; RATES[34] = 0.1001; RATES[40] = 0.1001; RATES[38] = 0.1001; RATES[39] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - ( - 1.00000*1.00000*(ALGEBRAIC[2]+ALGEBRAIC[65]+ALGEBRAIC[68]+ALGEBRAIC[12]+ALGEBRAIC[18]+ALGEBRAIC[21]+ALGEBRAIC[61]+ALGEBRAIC[62]+ALGEBRAIC[28]+ALGEBRAIC[63]+ALGEBRAIC[64]+ALGEBRAIC[34]+ALGEBRAIC[33]+ALGEBRAIC[0]))/CONSTANTS[3]; resid[1] = RATES[2] - (CONDVAR[4]>=0.00000 ? ALGEBRAIC[4]*(1.00000 - STATES[2]) - ALGEBRAIC[5]*STATES[2] : 0.00000); resid[2] = RATES[3] - ALGEBRAIC[6]*(1.00000 - STATES[3]) - ALGEBRAIC[7]*STATES[3]; resid[3] = RATES[4] - ALGEBRAIC[8]*(1.00000 - STATES[4]) - ALGEBRAIC[9]*STATES[4]; resid[4] = RATES[6] - (ALGEBRAIC[15] - STATES[6])/ALGEBRAIC[16]; resid[5] = RATES[7] - (ALGEBRAIC[19] - STATES[7])/ALGEBRAIC[20]; resid[6] = RATES[8] - ALGEBRAIC[22]*(1.00000 - STATES[8]) - ALGEBRAIC[23]*STATES[8]; resid[7] = RATES[9] - ALGEBRAIC[24]*(1.00000 - STATES[9]) - ALGEBRAIC[25]*STATES[9]; resid[8] = RATES[14] - ( ALGEBRAIC[37]*STATES[15]+ CONSTANTS[42]*STATES[19]) - ( 4.00000*ALGEBRAIC[36]+ALGEBRAIC[40])*STATES[14]; resid[9] = RATES[15] - ( 4.00000*ALGEBRAIC[36]*STATES[14]+ 2.00000*ALGEBRAIC[37]*STATES[16]+ (CONSTANTS[42]/CONSTANTS[37])*STATES[20]) - (ALGEBRAIC[37]+ 3.00000*ALGEBRAIC[36]+ ALGEBRAIC[40]*CONSTANTS[36])*STATES[15]; resid[10] = RATES[16] - ( 3.00000*ALGEBRAIC[36]*STATES[15]+ 3.00000*ALGEBRAIC[37]*STATES[17]+ (CONSTANTS[42]/pow(CONSTANTS[37], 2.00000))*STATES[21]) - ( ALGEBRAIC[37]*2.00000+ 2.00000*ALGEBRAIC[36]+ ALGEBRAIC[40]*pow(CONSTANTS[36], 2.00000))*STATES[16]; resid[11] = RATES[17] - ( 2.00000*ALGEBRAIC[36]*STATES[16]+ 4.00000*ALGEBRAIC[37]*STATES[18]+ (CONSTANTS[42]/pow(CONSTANTS[37], 3.00000))*STATES[22]) - ( ALGEBRAIC[37]*3.00000+ALGEBRAIC[36]+ ALGEBRAIC[40]*pow(CONSTANTS[36], 3.00000))*STATES[17]; resid[12] = RATES[18] - ( ALGEBRAIC[36]*STATES[17]+ CONSTANTS[38]*STATES[12]+ (CONSTANTS[42]/pow(CONSTANTS[37], 4.00000))*STATES[23]) - ( ALGEBRAIC[37]*4.00000+CONSTANTS[39]+ ALGEBRAIC[40]*pow(CONSTANTS[36], 4.00000))*STATES[18]; resid[13] = RATES[12] - CONSTANTS[39]*STATES[18] - CONSTANTS[38]*STATES[12]; resid[14] = RATES[19] - ( ALGEBRAIC[39]*STATES[20]+ ALGEBRAIC[40]*STATES[14]) - ( 4.00000*ALGEBRAIC[38]+CONSTANTS[42])*STATES[19]; resid[15] = RATES[20] - ( 4.00000*ALGEBRAIC[38]*STATES[19]+ 2.00000*ALGEBRAIC[39]*STATES[21]+ ALGEBRAIC[40]*CONSTANTS[36]*STATES[15]) - (ALGEBRAIC[39]+ 3.00000*ALGEBRAIC[38]+CONSTANTS[42]/CONSTANTS[37])*STATES[20]; resid[16] = RATES[21] - ( 3.00000*ALGEBRAIC[38]*STATES[20]+ 3.00000*ALGEBRAIC[39]*STATES[22]+ ALGEBRAIC[40]*pow(CONSTANTS[36], 2.00000)*STATES[16]) - ( ALGEBRAIC[39]*2.00000+ 2.00000*ALGEBRAIC[38]+CONSTANTS[42]/pow(CONSTANTS[37], 2.00000))*STATES[21]; resid[17] = RATES[22] - ( 2.00000*ALGEBRAIC[38]*STATES[21]+ 4.00000*ALGEBRAIC[39]*STATES[23]+ ALGEBRAIC[40]*pow(CONSTANTS[36], 3.00000)*STATES[17]) - ( ALGEBRAIC[39]*3.00000+ALGEBRAIC[38]+CONSTANTS[42]/pow(CONSTANTS[37], 3.00000))*STATES[22]; resid[18] = RATES[23] - ( ALGEBRAIC[38]*STATES[22]+ CONSTANTS[40]*STATES[13]+ ALGEBRAIC[40]*pow(CONSTANTS[36], 4.00000)*STATES[18]) - ( ALGEBRAIC[39]*4.00000+CONSTANTS[41]+CONSTANTS[42]/pow(CONSTANTS[37], 4.00000))*STATES[23]; resid[19] = RATES[13] - CONSTANTS[41]*STATES[23] - CONSTANTS[40]*STATES[13]; resid[20] = RATES[25] - (ALGEBRAIC[41] - STATES[25])/ALGEBRAIC[42]; resid[21] = RATES[28] - - CONSTANTS[44]*pow(STATES[24], CONSTANTS[50])*STATES[28]+ CONSTANTS[45]*STATES[26]; resid[22] = RATES[26] - ( CONSTANTS[44]*pow(STATES[24], CONSTANTS[50])*STATES[28] - ( CONSTANTS[45]*STATES[26]+ CONSTANTS[46]*pow(STATES[24], CONSTANTS[51])*STATES[26]+ CONSTANTS[48]*STATES[26]))+ CONSTANTS[47]*STATES[27]+ CONSTANTS[49]*STATES[29]; resid[23] = RATES[27] - CONSTANTS[46]*pow(STATES[24], CONSTANTS[51])*STATES[26] - CONSTANTS[47]*STATES[27]; resid[24] = RATES[29] - CONSTANTS[48]*STATES[26] - CONSTANTS[49]*STATES[29]; resid[25] = STATES[43] - CONSTANTS[61]*STATES[44]+ CONSTANTS[62]*STATES[45]; resid[26] = STATES[44] - RATES[32]; resid[27] = RATES[32] - CONSTANTS[63]*STATES[10]*(1.00000 - STATES[32]) - CONSTANTS[64]*STATES[32]; resid[28] = STATES[45] - RATES[33]; resid[29] = RATES[33] - CONSTANTS[65]*STATES[10]*(1.00000 - STATES[33]) - CONSTANTS[66]*STATES[33]; resid[30] = RATES[10] - ALGEBRAIC[49]*((ALGEBRAIC[48] - (ALGEBRAIC[67]+STATES[43]))+- ( ((ALGEBRAIC[64]+ALGEBRAIC[33]) - 2.00000*ALGEBRAIC[28])*(( CONSTANTS[67]*CONSTANTS[3])/( 2.00000*CONSTANTS[68]*CONSTANTS[2])))+(( CONSTANTS[79]*STATES[37]+ CONSTANTS[81]*STATES[34]) - ( CONSTANTS[78]*STATES[10]*ALGEBRAIC[53]+ CONSTANTS[80]*STATES[10]*ALGEBRAIC[57]))); resid[31] = RATES[1] - ( - 0.00000*(ALGEBRAIC[2]+ALGEBRAIC[34]+ ALGEBRAIC[28]*3.00000+ ALGEBRAIC[63]*3.00000)*CONSTANTS[67]*1.00000)/( CONSTANTS[68]*CONSTANTS[2]); resid[32] = RATES[5] - ( - 0.00000*(ALGEBRAIC[68]+ALGEBRAIC[12]+ALGEBRAIC[18]+ALGEBRAIC[61]+ALGEBRAIC[62]+ALGEBRAIC[21]+ ALGEBRAIC[63]*- 2.00000)*CONSTANTS[67]*1.00000)/( CONSTANTS[68]*CONSTANTS[2]); resid[33] = RATES[24] - ALGEBRAIC[50]*((( ALGEBRAIC[43]*CONSTANTS[69])/CONSTANTS[71]+ CONSTANTS[79]*STATES[36]+ CONSTANTS[81]*STATES[35]) - (( ALGEBRAIC[48]*CONSTANTS[68])/CONSTANTS[71]+ ALGEBRAIC[65]*(( CONSTANTS[67]*1.00000)/( 2.00000*CONSTANTS[71]*CONSTANTS[2]))+ CONSTANTS[78]*STATES[24]*ALGEBRAIC[52]+ CONSTANTS[80]*STATES[24]*ALGEBRAIC[56])); resid[34] = RATES[30] - ALGEBRAIC[51]*(ALGEBRAIC[47] - ALGEBRAIC[43]); resid[35] = RATES[31] - ( ALGEBRAIC[67]*CONSTANTS[68])/CONSTANTS[70] - ( ALGEBRAIC[47]*CONSTANTS[69])/CONSTANTS[70]; resid[36] = RATES[36] - CONSTANTS[78]*STATES[24]*ALGEBRAIC[52] - ( ALGEBRAIC[54]*(CONSTANTS[93]/CONSTANTS[94])+ CONSTANTS[79]*STATES[36]); resid[37] = RATES[42] - CONSTANTS[83]*STATES[38]*ALGEBRAIC[52] - ( ALGEBRAIC[55]*(CONSTANTS[93]/CONSTANTS[94])+ CONSTANTS[84]*STATES[42]); resid[38] = RATES[37] - (ALGEBRAIC[54]+ CONSTANTS[78]*STATES[10]*ALGEBRAIC[53]) - CONSTANTS[79]*STATES[37]; resid[39] = RATES[11] - (ALGEBRAIC[55]+ CONSTANTS[83]*STATES[39]*ALGEBRAIC[53]) - CONSTANTS[84]*STATES[11]; resid[40] = RATES[35] - CONSTANTS[80]*STATES[24]*ALGEBRAIC[56] - ( ALGEBRAIC[58]*(CONSTANTS[93]/CONSTANTS[94])+ CONSTANTS[81]*STATES[35]); resid[41] = RATES[41] - CONSTANTS[89]*STATES[38]*ALGEBRAIC[56] - ( ALGEBRAIC[59]*(CONSTANTS[93]/CONSTANTS[94])+ CONSTANTS[90]*STATES[41]); resid[42] = RATES[34] - (ALGEBRAIC[58]+ CONSTANTS[80]*STATES[10]*ALGEBRAIC[57]) - CONSTANTS[81]*STATES[34]; resid[43] = RATES[40] - (ALGEBRAIC[59]+ CONSTANTS[89]*STATES[39]*ALGEBRAIC[57]) - CONSTANTS[90]*STATES[40]; resid[44] = RATES[38] - ( CONSTANTS[84]*STATES[42]+ CONSTANTS[90]*STATES[41]) - ( CONSTANTS[83]*STATES[38]*ALGEBRAIC[52]+ CONSTANTS[89]*STATES[38]*ALGEBRAIC[56]+ ALGEBRAIC[60]*(CONSTANTS[93]/CONSTANTS[94])); resid[45] = RATES[39] - (ALGEBRAIC[60]+ CONSTANTS[84]*STATES[11]+ CONSTANTS[90]*STATES[40]) - ( CONSTANTS[83]*STATES[39]*ALGEBRAIC[53]+ CONSTANTS[89]*STATES[39]*ALGEBRAIC[57]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[2] = CONSTANTS[9]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[3] = STATES[0]+47.1300; ALGEBRAIC[4] = (CONDVAR[3]<0.00000 ? 320.000/(0.100000 - 0.00500000*ALGEBRAIC[3]) : ( 320.000*ALGEBRAIC[3])/(1.00000 - exp( - 0.100000*ALGEBRAIC[3]))); ALGEBRAIC[5] = 80.0000*exp(- STATES[0]/11.0000); ALGEBRAIC[6] = (CONDVAR[5]<0.00000 ? 135.000*exp((80.0000+STATES[0])/- 6.80000) : 0.00000); ALGEBRAIC[7] = (CONDVAR[6]<0.00000 ? 3560.00*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0]) : 1000.00/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/- 11.1000)))); ALGEBRAIC[8] = (CONDVAR[7]<0.00000 ? ( 1000.00*- ( 127140.*exp( 0.244400*STATES[0])+ 3.47400e-05*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))) : 0.00000); ALGEBRAIC[9] = (CONDVAR[8]<0.00000 ? ( 121.200*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))) : ( 300.000*exp( - 2.53500e-07*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000)))); ALGEBRAIC[10] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[12]/STATES[5]); ALGEBRAIC[11] = 1.00000/(1.00000+ 1.49450*exp( 0.0446000*STATES[0])); ALGEBRAIC[12] = CONSTANTS[11]*CONSTANTS[95]*ALGEBRAIC[11]*STATES[6]*(STATES[0] - ALGEBRAIC[10]); ALGEBRAIC[13] = exp(- 5.49500+ 0.169100*STATES[0]); ALGEBRAIC[14] = exp(- 7.67700 - 0.0128000*STATES[0]); ALGEBRAIC[15] = ALGEBRAIC[13]/(ALGEBRAIC[13]+ALGEBRAIC[14]); ALGEBRAIC[16] = 0.00100000/(ALGEBRAIC[13]+ALGEBRAIC[14])+ CONSTANTS[13]*0.0270000; ALGEBRAIC[17] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[12]+ 0.0183300*CONSTANTS[10])/(STATES[5]+ 0.0183300*STATES[1])); ALGEBRAIC[18] = CONSTANTS[14]*pow(STATES[7], 2.00000)*(STATES[0] - ALGEBRAIC[17]); ALGEBRAIC[19] = 1.00000/(1.00000+exp(- (STATES[0] - 24.7000)/13.6000)); ALGEBRAIC[20] = 0.00100000/(( 7.19000e-05*(STATES[0] - 10.0000))/(1.00000 - exp( - 0.148000*(STATES[0] - 10.0000)))+( 0.000131000*(STATES[0] - 10.0000))/(exp( 0.0687000*(STATES[0] - 10.0000)) - 1.00000)); ALGEBRAIC[21] = CONSTANTS[15]*STATES[8]*STATES[9]*(STATES[0] - ALGEBRAIC[10]); ALGEBRAIC[22] = 45.1600*exp( 0.0357700*STATES[0]); ALGEBRAIC[23] = 98.9000*exp( - 0.0623700*STATES[0]); ALGEBRAIC[24] = ( 5.41500*exp(- (STATES[0]+33.5000)/5.00000))/(1.00000+ 0.0513350*exp(- (STATES[0]+33.5000)/5.00000)); ALGEBRAIC[25] = ( 5.41500*exp((STATES[0]+33.5000)/5.00000))/(1.00000+ 0.0513350*exp((STATES[0]+33.5000)/5.00000)); ALGEBRAIC[28] = (( CONSTANTS[21]*5000.00)/( (pow(CONSTANTS[20], 3.00000)+pow(CONSTANTS[10], 3.00000))*(CONSTANTS[19]+CONSTANTS[24])*(1.00000+ CONSTANTS[22]*exp(( (CONSTANTS[23] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])))))*( exp(( CONSTANTS[23]*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[24] - exp(( (CONSTANTS[23] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[10], 3.00000)*STATES[10]); ALGEBRAIC[32] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[24]/STATES[10]); ALGEBRAIC[33] = CONSTANTS[31]*(STATES[0] - ALGEBRAIC[32]); ALGEBRAIC[34] = CONSTANTS[32]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[36] = 400.000*exp((STATES[0]+2.00000)/10.0000); ALGEBRAIC[37] = 50.0000*exp(- (STATES[0]+2.00000)/13.0000); ALGEBRAIC[38] = ALGEBRAIC[36]*CONSTANTS[36]; ALGEBRAIC[39] = ALGEBRAIC[37]/CONSTANTS[37]; ALGEBRAIC[40] = ( 103.750*STATES[24])/1.00000; ALGEBRAIC[41] = 0.800000/(1.00000+exp((STATES[0]+12.5000)/5.00000))+0.200000; ALGEBRAIC[42] = (20.0000+600.000/(1.00000+exp((STATES[0]+20.0000)/9.50000)))/1000.00; ALGEBRAIC[43] = CONSTANTS[43]*(STATES[26]+STATES[27])*(STATES[30] - STATES[24]); ALGEBRAIC[47] = (STATES[31] - STATES[30])/CONSTANTS[59]; ALGEBRAIC[48] = (STATES[24] - STATES[10])/CONSTANTS[60]; ALGEBRAIC[49] = 1.00000/(1.00000+( CONSTANTS[75]*CONSTANTS[72])/pow(CONSTANTS[72]+STATES[10], 2.00000)+( CONSTANTS[76]*CONSTANTS[73])/pow(CONSTANTS[73]+STATES[10], 2.00000)); ALGEBRAIC[50] = 1.00000/(1.00000+( CONSTANTS[75]*CONSTANTS[72])/pow(CONSTANTS[72]+STATES[24], 2.00000)+( CONSTANTS[76]*CONSTANTS[73])/pow(CONSTANTS[73]+STATES[24], 2.00000)); ALGEBRAIC[51] = 1.00000/(1.00000+( CONSTANTS[77]*CONSTANTS[74])/pow(CONSTANTS[74]+STATES[30], 2.00000)); ALGEBRAIC[52] = CONSTANTS[82] - (STATES[36]+STATES[42]); ALGEBRAIC[53] = CONSTANTS[82] - (STATES[37]+STATES[11]); ALGEBRAIC[54] = (STATES[36] - STATES[37])/CONSTANTS[85]; ALGEBRAIC[55] = (STATES[42] - STATES[11])/CONSTANTS[86]; ALGEBRAIC[56] = CONSTANTS[88] - (STATES[35]+STATES[41]); ALGEBRAIC[57] = CONSTANTS[88] - (STATES[34]+STATES[40]); ALGEBRAIC[58] = (STATES[35] - STATES[34])/CONSTANTS[91]; ALGEBRAIC[59] = (STATES[41] - STATES[40])/CONSTANTS[92]; ALGEBRAIC[60] = (STATES[38] - STATES[39])/CONSTANTS[87]; ALGEBRAIC[26] = 1.00000/(2.00000+exp( (( 1.50000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*(STATES[0] - ALGEBRAIC[10]))); ALGEBRAIC[61] = (( CONSTANTS[16]*ALGEBRAIC[26]*CONSTANTS[12])/(CONSTANTS[12]+CONSTANTS[17]))*(STATES[0] - ALGEBRAIC[10]); ALGEBRAIC[27] = 1.00000/(1.00000+exp((7.48800 - STATES[0])/5.98000)); ALGEBRAIC[62] = CONSTANTS[18]*ALGEBRAIC[27]*(STATES[0] - ALGEBRAIC[10]); ALGEBRAIC[29] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[96]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[30] = ( (( CONSTANTS[25]*ALGEBRAIC[29])/(1.00000+pow(CONSTANTS[26]/STATES[1], 1.50000)))*CONSTANTS[12])/(CONSTANTS[12]+CONSTANTS[27]); ALGEBRAIC[63] = (STATES[11]/CONSTANTS[28])*ALGEBRAIC[30]; ALGEBRAIC[31] = ( CONSTANTS[30]*STATES[10])/(CONSTANTS[29]+STATES[10]); ALGEBRAIC[64] = (STATES[11]/CONSTANTS[28])*ALGEBRAIC[31]; ALGEBRAIC[35] = ( (( (CONSTANTS[33]/( 1.00000*1.00000))*4.00000*STATES[0]*pow(CONSTANTS[2], 2.00000)*1000.00)/( CONSTANTS[0]*CONSTANTS[1]))*( 0.00100000*exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 0.341000*CONSTANTS[24]))/(exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[65] = ALGEBRAIC[35]*STATES[25]*(STATES[12]+STATES[13]); ALGEBRAIC[44] = pow(STATES[10]/CONSTANTS[52], CONSTANTS[57]); ALGEBRAIC[45] = pow(STATES[31]/CONSTANTS[53], CONSTANTS[58]); ALGEBRAIC[46] = ( CONSTANTS[56]*( CONSTANTS[54]*ALGEBRAIC[44] - CONSTANTS[55]*ALGEBRAIC[45]))/(1.00000+ALGEBRAIC[44]+ALGEBRAIC[45]); ALGEBRAIC[67] = (STATES[11]/CONSTANTS[28])*ALGEBRAIC[46]; ALGEBRAIC[66] = CONSTANTS[34]/(1.00000+ALGEBRAIC[35]/CONSTANTS[35]); ALGEBRAIC[68] = ( (( (ALGEBRAIC[66]/( 1.00000*1.00000))*STATES[25]*(STATES[12]+STATES[13])*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( STATES[5]*exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]))/(exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[22] = 1.0; SI[23] = 1.0; SI[24] = 1.0; SI[25] = 1.0; SI[26] = 1.0; SI[27] = 1.0; SI[28] = 1.0; SI[29] = 1.0; SI[30] = 1.0; SI[31] = 1.0; SI[43] = 0.0; SI[32] = 1.0; SI[33] = 1.0; SI[44] = 0.0; SI[45] = 0.0; SI[34] = 1.0; SI[35] = 1.0; SI[36] = 1.0; SI[37] = 1.0; SI[38] = 1.0; SI[39] = 1.0; SI[40] = 1.0; SI[41] = 1.0; SI[42] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = fabs(ALGEBRAIC[3]) - 1.00000e-05; CONDVAR[4] = STATES[0] - - 90.0000; CONDVAR[5] = STATES[0] - - 40.0000; CONDVAR[6] = STATES[0] - - 40.0000; CONDVAR[7] = STATES[0] - - 40.0000; CONDVAR[8] = STATES[0] - - 40.0000; }