Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 46 entries in the algebraic variable array.
   There are a total of 32 entries in each of the rate and state variable arrays.
   There are a total of 51 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (millijoule_per_mole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is Cm in component membrane (nanoF).
 * ALGEBRAIC[41] is i_Na in component sodium_current (picoA).
 * ALGEBRAIC[42] is i_Ca_L in component L_type_Ca_channel (picoA).
 * ALGEBRAIC[43] is i_t in component Ca_independent_transient_outward_K_current (picoA).
 * ALGEBRAIC[18] is i_sus in component sustained_outward_K_current (picoA).
 * ALGEBRAIC[29] is i_K1 in component inward_rectifier (picoA).
 * ALGEBRAIC[44] is i_Kr in component delayed_rectifier_K_currents (picoA).
 * ALGEBRAIC[23] is i_Ks in component delayed_rectifier_K_currents (picoA).
 * ALGEBRAIC[30] is i_B_Na in component background_currents (picoA).
 * ALGEBRAIC[45] is i_B_Ca in component background_currents (picoA).
 * ALGEBRAIC[32] is i_NaK in component sodium_potassium_pump (picoA).
 * ALGEBRAIC[33] is i_CaP in component sarcolemmal_calcium_pump_current (picoA).
 * ALGEBRAIC[34] is i_NaCa in component Na_Ca_ion_exchanger_current (picoA).
 * ALGEBRAIC[0] is i_Stim in component membrane (picoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (picoA).
 * ALGEBRAIC[1] is E_Na in component sodium_current (millivolt).
 * CONSTANTS[9] is P_Na in component sodium_current (nanolitre_per_second).
 * STATES[1] is Na_c in component cleft_space_ion_concentrations (millimolar).
 * STATES[2] is Na_i in component intracellular_ion_concentrations (millimolar).
 * STATES[3] is m in component sodium_current_m_gate (dimensionless).
 * STATES[4] is h1 in component sodium_current_h1_gate (dimensionless).
 * STATES[5] is h2 in component sodium_current_h2_gate (dimensionless).
 * ALGEBRAIC[2] is m_infinity in component sodium_current_m_gate (dimensionless).
 * ALGEBRAIC[3] is tau_m in component sodium_current_m_gate (second).
 * ALGEBRAIC[4] is h_infinity in component sodium_current_h1_gate (dimensionless).
 * ALGEBRAIC[5] is tau_h1 in component sodium_current_h1_gate (second).
 * ALGEBRAIC[6] is tau_h2 in component sodium_current_h2_gate (second).
 * CONSTANTS[10] is g_Ca_L in component L_type_Ca_channel (nanoS).
 * CONSTANTS[11] is E_Ca_app in component L_type_Ca_channel (millivolt).
 * ALGEBRAIC[7] is f_Ca in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[12] is k_Ca in component L_type_Ca_channel (millimolar).
 * STATES[6] is Ca_d in component intracellular_ion_concentrations (millimolar).
 * STATES[7] is d_L in component L_type_Ca_channel_d_L_gate (dimensionless).
 * STATES[8] is f_L_1 in component L_type_Ca_channel_f_L1_gate (dimensionless).
 * STATES[9] is f_L_2 in component L_type_Ca_channel_f_L2_gate (dimensionless).
 * ALGEBRAIC[8] is d_L_infinity in component L_type_Ca_channel_d_L_gate (dimensionless).
 * ALGEBRAIC[9] is tau_d_L in component L_type_Ca_channel_d_L_gate (second).
 * ALGEBRAIC[10] is f_L_infinity in component L_type_Ca_channel_f_L1_gate (dimensionless).
 * ALGEBRAIC[11] is tau_f_L1 in component L_type_Ca_channel_f_L1_gate (second).
 * ALGEBRAIC[12] is tau_f_L2 in component L_type_Ca_channel_f_L2_gate (second).
 * ALGEBRAIC[13] is E_K in component Ca_independent_transient_outward_K_current (millivolt).
 * CONSTANTS[13] is g_t in component Ca_independent_transient_outward_K_current (nanoS).
 * STATES[10] is K_c in component cleft_space_ion_concentrations (millimolar).
 * STATES[11] is K_i in component intracellular_ion_concentrations (millimolar).
 * STATES[12] is r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless).
 * STATES[13] is s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless).
 * ALGEBRAIC[15] is tau_r in component Ca_independent_transient_outward_K_current_r_gate (second).
 * ALGEBRAIC[14] is r_infinity in component Ca_independent_transient_outward_K_current_r_gate (dimensionless).
 * ALGEBRAIC[17] is tau_s in component Ca_independent_transient_outward_K_current_s_gate (second).
 * ALGEBRAIC[16] is s_infinity in component Ca_independent_transient_outward_K_current_s_gate (dimensionless).
 * CONSTANTS[14] is g_sus in component sustained_outward_K_current (nanoS).
 * STATES[14] is r_sus in component sustained_outward_K_current_r_sus_gate (dimensionless).
 * STATES[15] is s_sus in component sustained_outward_K_current_s_sus_gate (dimensionless).
 * ALGEBRAIC[20] is tau_r_sus in component sustained_outward_K_current_r_sus_gate (second).
 * ALGEBRAIC[19] is r_sus_infinity in component sustained_outward_K_current_r_sus_gate (dimensionless).
 * ALGEBRAIC[22] is tau_s_sus in component sustained_outward_K_current_s_sus_gate (second).
 * ALGEBRAIC[21] is s_sus_infinity in component sustained_outward_K_current_s_sus_gate (dimensionless).
 * CONSTANTS[15] is g_Ks in component delayed_rectifier_K_currents (nanoS).
 * CONSTANTS[16] is g_Kr in component delayed_rectifier_K_currents (nanoS).
 * STATES[16] is n in component delayed_rectifier_K_currents_n_gate (dimensionless).
 * STATES[17] is p_a in component delayed_rectifier_K_currents_pa_gate (dimensionless).
 * ALGEBRAIC[28] is p_i in component delayed_rectifier_K_currents_pi_gate (dimensionless).
 * ALGEBRAIC[25] is tau_n in component delayed_rectifier_K_currents_n_gate (second).
 * ALGEBRAIC[24] is n_infinity in component delayed_rectifier_K_currents_n_gate (dimensionless).
 * ALGEBRAIC[27] is tau_p_a in component delayed_rectifier_K_currents_pa_gate (second).
 * ALGEBRAIC[26] is p_a_infinity in component delayed_rectifier_K_currents_pa_gate (dimensionless).
 * CONSTANTS[17] is g_K1 in component inward_rectifier (nanoS).
 * CONSTANTS[18] is g_B_Na in component background_currents (nanoS).
 * CONSTANTS[19] is g_B_Ca in component background_currents (nanoS).
 * ALGEBRAIC[31] is E_Ca in component background_currents (millivolt).
 * STATES[18] is Ca_c in component cleft_space_ion_concentrations (millimolar).
 * STATES[19] is Ca_i in component intracellular_ion_concentrations (millimolar).
 * CONSTANTS[20] is k_NaK_K in component sodium_potassium_pump (millimolar).
 * CONSTANTS[21] is k_NaK_Na in component sodium_potassium_pump (millimolar).
 * CONSTANTS[22] is i_NaK_max in component sodium_potassium_pump (picoA).
 * CONSTANTS[23] is i_CaP_max in component sarcolemmal_calcium_pump_current (picoA).
 * CONSTANTS[24] is k_CaP in component sarcolemmal_calcium_pump_current (millimolar).
 * CONSTANTS[25] is k_NaCa in component Na_Ca_ion_exchanger_current (picoA_per_millimolar_4).
 * CONSTANTS[26] is d_NaCa in component Na_Ca_ion_exchanger_current (per_millimolar_4).
 * CONSTANTS[27] is gamma in component Na_Ca_ion_exchanger_current (dimensionless).
 * CONSTANTS[28] is phi_Na_en in component intracellular_ion_concentrations (picoA).
 * CONSTANTS[29] is Vol_i in component intracellular_ion_concentrations (nanolitre).
 * CONSTANTS[49] is Vol_d in component intracellular_ion_concentrations (nanolitre).
 * ALGEBRAIC[35] is i_di in component intracellular_ion_concentrations (picoA).
 * CONSTANTS[30] is tau_di in component intracellular_ion_concentrations (second).
 * ALGEBRAIC[36] is i_up in component Ca_handling_by_the_SR (picoA).
 * ALGEBRAIC[38] is i_rel in component Ca_handling_by_the_SR (picoA).
 * STATES[29] is dOCdt in component intracellular_Ca_buffering (per_second).
 * STATES[30] is dOTCdt in component intracellular_Ca_buffering (per_second).
 * STATES[31] is dOTMgCdt in component intracellular_Ca_buffering (per_second).
 * STATES[20] is O_C in component intracellular_Ca_buffering (dimensionless).
 * STATES[21] is O_TC in component intracellular_Ca_buffering (dimensionless).
 * STATES[22] is O_TMgC in component intracellular_Ca_buffering (dimensionless).
 * STATES[23] is O_TMgMg in component intracellular_Ca_buffering (dimensionless).
 * CONSTANTS[31] is Mg_i in component intracellular_Ca_buffering (millimolar).
 * CONSTANTS[50] is Vol_c in component cleft_space_ion_concentrations (nanolitre).
 * CONSTANTS[32] is tau_Na in component cleft_space_ion_concentrations (second).
 * CONSTANTS[33] is tau_K in component cleft_space_ion_concentrations (second).
 * CONSTANTS[34] is tau_Ca in component cleft_space_ion_concentrations (second).
 * CONSTANTS[35] is Na_b in component cleft_space_ion_concentrations (millimolar).
 * CONSTANTS[36] is Ca_b in component cleft_space_ion_concentrations (millimolar).
 * CONSTANTS[37] is K_b in component cleft_space_ion_concentrations (millimolar).
 * ALGEBRAIC[37] is i_tr in component Ca_handling_by_the_SR (picoA).
 * CONSTANTS[38] is I_up_max in component Ca_handling_by_the_SR (picoA).
 * CONSTANTS[39] is k_cyca in component Ca_handling_by_the_SR (millimolar).
 * CONSTANTS[40] is k_srca in component Ca_handling_by_the_SR (millimolar).
 * CONSTANTS[41] is k_xcs in component Ca_handling_by_the_SR (dimensionless).
 * CONSTANTS[42] is alpha_rel in component Ca_handling_by_the_SR (picoA_per_millimolar).
 * STATES[24] is Ca_rel in component Ca_handling_by_the_SR (millimolar).
 * STATES[25] is Ca_up in component Ca_handling_by_the_SR (millimolar).
 * CONSTANTS[43] is Vol_up in component Ca_handling_by_the_SR (nanolitre).
 * CONSTANTS[44] is Vol_rel in component Ca_handling_by_the_SR (nanolitre).
 * ALGEBRAIC[39] is r_act in component Ca_handling_by_the_SR (per_second).
 * ALGEBRAIC[40] is r_inact in component Ca_handling_by_the_SR (per_second).
 * CONSTANTS[45] is r_recov in component Ca_handling_by_the_SR (per_second).
 * STATES[26] is O_Calse in component Ca_handling_by_the_SR (dimensionless).
 * STATES[27] is F1 in component Ca_handling_by_the_SR (dimensionless).
 * STATES[28] is F2 in component Ca_handling_by_the_SR (dimensionless).
 * CONSTANTS[46] is tau_tr in component Ca_handling_by_the_SR (second).
 * CONSTANTS[47] is k_rel_i in component Ca_handling_by_the_SR (millimolar).
 * CONSTANTS[48] is k_rel_d in component Ca_handling_by_the_SR (millimolar).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[3] is d/dt m in component sodium_current_m_gate (dimensionless).
 * RATES[4] is d/dt h1 in component sodium_current_h1_gate (dimensionless).
 * RATES[5] is d/dt h2 in component sodium_current_h2_gate (dimensionless).
 * RATES[7] is d/dt d_L in component L_type_Ca_channel_d_L_gate (dimensionless).
 * RATES[8] is d/dt f_L_1 in component L_type_Ca_channel_f_L1_gate (dimensionless).
 * RATES[9] is d/dt f_L_2 in component L_type_Ca_channel_f_L2_gate (dimensionless).
 * RATES[12] is d/dt r in component Ca_independent_transient_outward_K_current_r_gate (dimensionless).
 * RATES[13] is d/dt s in component Ca_independent_transient_outward_K_current_s_gate (dimensionless).
 * RATES[14] is d/dt r_sus in component sustained_outward_K_current_r_sus_gate (dimensionless).
 * RATES[15] is d/dt s_sus in component sustained_outward_K_current_s_sus_gate (dimensionless).
 * RATES[16] is d/dt n in component delayed_rectifier_K_currents_n_gate (dimensionless).
 * RATES[17] is d/dt p_a in component delayed_rectifier_K_currents_pa_gate (dimensionless).
 * RATES[2] is d/dt Na_i in component intracellular_ion_concentrations (millimolar).
 * RATES[11] is d/dt K_i in component intracellular_ion_concentrations (millimolar).
 * RATES[19] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar).
 * RATES[6] is d/dt Ca_d in component intracellular_ion_concentrations (millimolar).
 * RATES[20] is d/dt O_C in component intracellular_Ca_buffering (dimensionless).
 * RATES[21] is d/dt O_TC in component intracellular_Ca_buffering (dimensionless).
 * RATES[22] is d/dt O_TMgC in component intracellular_Ca_buffering (dimensionless).
 * RATES[23] is d/dt O_TMgMg in component intracellular_Ca_buffering (dimensionless).
 * RATES[1] is d/dt Na_c in component cleft_space_ion_concentrations (millimolar).
 * RATES[10] is d/dt K_c in component cleft_space_ion_concentrations (millimolar).
 * RATES[18] is d/dt Ca_c in component cleft_space_ion_concentrations (millimolar).
 * RATES[26] is d/dt O_Calse in component Ca_handling_by_the_SR (dimensionless).
 * RATES[24] is d/dt Ca_rel in component Ca_handling_by_the_SR (millimolar).
 * RATES[25] is d/dt Ca_up in component Ca_handling_by_the_SR (millimolar).
 * RATES[27] is d/dt F1 in component Ca_handling_by_the_SR (dimensionless).
 * RATES[28] is d/dt F2 in component Ca_handling_by_the_SR (dimensionless).
 * There are a total of 3 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -74.2525;
CONSTANTS[0] = 8314;
CONSTANTS[1] = 306.15;
CONSTANTS[2] = 96487;
CONSTANTS[3] = 0.05;
CONSTANTS[4] = 0.1;
CONSTANTS[5] = 100000000;
CONSTANTS[6] = 1;
CONSTANTS[7] = 0.006;
CONSTANTS[8] = -280;
CONSTANTS[9] = 0.0016;
STATES[1] = 130.011;
STATES[2] = 8.5547;
STATES[3] = 0.0032017;
STATES[4] = 0.8814;
STATES[5] = 0.8742;
CONSTANTS[10] = 6.75;
CONSTANTS[11] = 60;
CONSTANTS[12] = 0.025;
STATES[6] = 7.2495e-5;
STATES[7] = 1.3005e-5;
STATES[8] = 0.9986;
STATES[9] = 0.9986;
CONSTANTS[13] = 7.5;
STATES[10] = 5.3581;
STATES[11] = 129.435;
STATES[12] = 0.0010678;
STATES[13] = 0.949;
CONSTANTS[14] = 2.75;
STATES[14] = 0.00015949;
STATES[15] = 0.9912;
CONSTANTS[15] = 1;
CONSTANTS[16] = 0.5;
STATES[16] = 0.0048357;
STATES[17] = 0.0001;
CONSTANTS[17] = 3;
CONSTANTS[18] = 0.060599;
CONSTANTS[19] = 0.078681;
STATES[18] = 1.8147;
STATES[19] = 6.729e-5;
CONSTANTS[20] = 1;
CONSTANTS[21] = 11;
CONSTANTS[22] = 70.8253;
CONSTANTS[23] = 4;
CONSTANTS[24] = 0.0002;
CONSTANTS[25] = 0.0374842;
CONSTANTS[26] = 0.0003;
CONSTANTS[27] = 0.45;
CONSTANTS[28] = -1.68;
CONSTANTS[29] = 0.005884;
CONSTANTS[30] = 0.01;
STATES[20] = 0.0275;
STATES[21] = 0.0133;
STATES[22] = 0.1961;
STATES[23] = 0.7094;
CONSTANTS[31] = 2.5;
CONSTANTS[32] = 14.3;
CONSTANTS[33] = 10;
CONSTANTS[34] = 24.7;
CONSTANTS[35] = 130;
CONSTANTS[36] = 1.8;
CONSTANTS[37] = 5.4;
CONSTANTS[38] = 2800;
CONSTANTS[39] = 0.0003;
CONSTANTS[40] = 0.5;
CONSTANTS[41] = 0.4;
CONSTANTS[42] = 200000;
STATES[24] = 0.6465;
STATES[25] = 0.6646;
CONSTANTS[43] = 0.0003969;
CONSTANTS[44] = 4.41e-5;
CONSTANTS[45] = 0.815;
STATES[26] = 0.4369;
STATES[27] = 0.4284;
STATES[28] = 0.0028;
CONSTANTS[46] = 0.01;
CONSTANTS[47] = 0.0003;
CONSTANTS[48] = 0.003;
CONSTANTS[49] =  0.0200000*CONSTANTS[29];
CONSTANTS[50] =  0.136000*CONSTANTS[29];
STATES[29] = 0.1001;
STATES[30] = 0.1001;
STATES[31] = 0.1001;
RATES[0] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[9] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[17] = 0.1001;
RATES[2] = 0.1001;
RATES[11] = 0.1001;
RATES[19] = 0.1001;
RATES[6] = 0.1001;
RATES[20] = 0.1001;
RATES[21] = 0.1001;
RATES[22] = 0.1001;
RATES[23] = 0.1001;
RATES[1] = 0.1001;
RATES[10] = 0.1001;
RATES[18] = 0.1001;
RATES[26] = 0.1001;
RATES[24] = 0.1001;
RATES[25] = 0.1001;
RATES[27] = 0.1001;
RATES[28] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[41]+ALGEBRAIC[42]+ALGEBRAIC[43]+ALGEBRAIC[18]+ALGEBRAIC[29]+ALGEBRAIC[44]+ALGEBRAIC[23]+ALGEBRAIC[30]+ALGEBRAIC[45]+ALGEBRAIC[32]+ALGEBRAIC[33]+ALGEBRAIC[34]);
resid[1] = RATES[3] - (ALGEBRAIC[2] - STATES[3])/ALGEBRAIC[3];
resid[2] = RATES[4] - (ALGEBRAIC[4] - STATES[4])/ALGEBRAIC[5];
resid[3] = RATES[5] - (ALGEBRAIC[4] - STATES[5])/ALGEBRAIC[6];
resid[4] = RATES[7] - (ALGEBRAIC[8] - STATES[7])/ALGEBRAIC[9];
resid[5] = RATES[8] - (ALGEBRAIC[10] - STATES[8])/ALGEBRAIC[11];
resid[6] = RATES[9] - (ALGEBRAIC[10] - STATES[9])/ALGEBRAIC[12];
resid[7] = RATES[12] - (ALGEBRAIC[14] - STATES[12])/ALGEBRAIC[15];
resid[8] = RATES[13] - (ALGEBRAIC[16] - STATES[13])/ALGEBRAIC[17];
resid[9] = RATES[14] - (ALGEBRAIC[19] - STATES[14])/ALGEBRAIC[20];
resid[10] = RATES[15] - (ALGEBRAIC[21] - STATES[15])/ALGEBRAIC[22];
resid[11] = RATES[16] - (ALGEBRAIC[24] - STATES[16])/ALGEBRAIC[25];
resid[12] = RATES[17] - (ALGEBRAIC[26] - STATES[17])/ALGEBRAIC[27];
resid[13] = RATES[2] - - (ALGEBRAIC[41]+ALGEBRAIC[30]+ 3.00000*ALGEBRAIC[32]+ 3.00000*ALGEBRAIC[34]+CONSTANTS[28])/( CONSTANTS[29]*CONSTANTS[2]);
resid[14] = RATES[11] - - ((ALGEBRAIC[43]+ALGEBRAIC[18]+ALGEBRAIC[29]+ALGEBRAIC[44]+ALGEBRAIC[23]) -  2.00000*ALGEBRAIC[32])/( CONSTANTS[29]*CONSTANTS[2]);
resid[15] = RATES[19] - - ((((- ALGEBRAIC[35]+ALGEBRAIC[45]+ALGEBRAIC[33]) -  2.00000*ALGEBRAIC[34])+ALGEBRAIC[36]) - ALGEBRAIC[38])/( 2.00000*CONSTANTS[29]*CONSTANTS[2]) - ( 0.0800000*STATES[30]+ 0.160000*STATES[31]+ 0.0450000*STATES[29]);
resid[16] = RATES[6] - - (ALGEBRAIC[42]+ALGEBRAIC[35])/( 2.00000*CONSTANTS[49]*CONSTANTS[2]);
resid[17] = RATES[20] -  200000.*STATES[19]*(1.00000 - STATES[20]) -  476.000*STATES[20];
resid[18] = STATES[29] - RATES[20];
resid[19] = RATES[21] -  78400.0*STATES[19]*(1.00000 - STATES[21]) -  392.000*STATES[21];
resid[20] = STATES[30] - RATES[21];
resid[21] = RATES[22] -  200000.*STATES[19]*((1.00000 - STATES[22]) - STATES[23]) -  6.60000*STATES[22];
resid[22] = STATES[31] - RATES[22];
resid[23] = RATES[23] -  2000.00*CONSTANTS[31]*((1.00000 - STATES[22]) - STATES[23]) -  666.000*STATES[23];
resid[24] = RATES[1] - (CONSTANTS[35] - STATES[1])/CONSTANTS[32]+(ALGEBRAIC[41]+ALGEBRAIC[30]+ 3.00000*ALGEBRAIC[32]+ 3.00000*ALGEBRAIC[34]+CONSTANTS[28])/( CONSTANTS[50]*CONSTANTS[2]);
resid[25] = RATES[10] - (CONSTANTS[37] - STATES[10])/CONSTANTS[33]+((ALGEBRAIC[43]+ALGEBRAIC[18]+ALGEBRAIC[29]+ALGEBRAIC[44]+ALGEBRAIC[23]) -  2.00000*ALGEBRAIC[32])/( CONSTANTS[50]*CONSTANTS[2]);
resid[26] = RATES[18] - (CONSTANTS[36] - STATES[18])/CONSTANTS[34]+((ALGEBRAIC[42]+ALGEBRAIC[45]+ALGEBRAIC[33]) -  2.00000*ALGEBRAIC[34])/( 2.00000*CONSTANTS[50]*CONSTANTS[2]);
resid[27] = RATES[26] -  480.000*STATES[24]*(1.00000 - STATES[26]) -  400.000*STATES[26];
resid[28] = RATES[24] - (ALGEBRAIC[37] - ALGEBRAIC[38])/( 2.00000*CONSTANTS[44]*CONSTANTS[2]) -  31.0000*RATES[26];
resid[29] = RATES[25] - (ALGEBRAIC[36] - ALGEBRAIC[37])/( 2.00000*CONSTANTS[43]*CONSTANTS[2]);
resid[30] = RATES[27] -  CONSTANTS[45]*((1.00000 - STATES[27]) - STATES[28]) -  ALGEBRAIC[39]*STATES[27];
resid[31] = RATES[28] -  ALGEBRAIC[39]*STATES[27] -  ALGEBRAIC[40]*STATES[28];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+27.1200)/- 8.21000));
ALGEBRAIC[3] =  4.20000e-05*exp(- pow((STATES[0]+25.5700)/28.8000, 2.00000))+2.40000e-05;
ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+63.6000)/5.30000));
ALGEBRAIC[5] = 0.0300000/(1.00000+exp((STATES[0]+35.1000)/3.20000))+0.000300000;
ALGEBRAIC[6] = 0.120000/(1.00000+exp((STATES[0]+35.1000)/3.20000))+0.00300000;
ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+9.00000)/- 5.80000));
ALGEBRAIC[9] =  0.00270000*exp(- pow((STATES[0]+35.0000)/30.0000, 2.00000))+0.00200000;
ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0]+27.4000)/7.10000));
ALGEBRAIC[11] =  0.161000*exp(- pow((STATES[0]+40.0000)/14.4000, 2.00000))+0.0100000;
ALGEBRAIC[12] =  1.33230*exp(- pow((STATES[0]+40.0000)/14.2000, 2.00000))+0.0626000;
ALGEBRAIC[14] = 1.00000/(1.00000+exp((STATES[0] - 1.00000)/- 11.0000));
ALGEBRAIC[15] =  0.00350000*exp(- pow(STATES[0]/30.0000, 2.00000))+0.00150000;
ALGEBRAIC[16] = 1.00000/(1.00000+exp((STATES[0]+40.5000)/11.5000));
ALGEBRAIC[17] =  0.481200*exp(- pow((STATES[0]+52.4500)/14.9700, 2.00000))+0.0141400;
ALGEBRAIC[13] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[10]/STATES[11]);
ALGEBRAIC[18] =  CONSTANTS[14]*STATES[14]*STATES[15]*(STATES[0] - ALGEBRAIC[13]);
ALGEBRAIC[19] = 1.00000/(1.00000+exp((STATES[0]+4.30000)/- 8.00000));
ALGEBRAIC[20] = 0.00900000/(1.00000+exp((STATES[0]+5.00000)/12.0000))+0.000500000;
ALGEBRAIC[21] = 0.400000/(1.00000+exp((STATES[0]+20.0000)/10.0000))+0.600000;
ALGEBRAIC[22] = 0.0470000/(1.00000+exp((STATES[0]+60.0000)/10.0000))+0.300000;
ALGEBRAIC[23] =  CONSTANTS[15]*STATES[16]*(STATES[0] - ALGEBRAIC[13]);
ALGEBRAIC[24] = 1.00000/(1.00000+exp((STATES[0] - 19.9000)/- 12.7000));
ALGEBRAIC[25] = 0.700000+ 0.400000*exp(- pow((STATES[0] - 20.0000)/20.0000, 2.00000));
ALGEBRAIC[26] = 1.00000/(1.00000+exp((STATES[0]+15.0000)/- 6.00000));
ALGEBRAIC[27] = 0.0311800+ 0.217180*exp(- pow((STATES[0]+20.1376)/22.1996, 2.00000));
ALGEBRAIC[29] = ( CONSTANTS[17]*pow(STATES[10]/1.00000, 0.445700)*(STATES[0] - ALGEBRAIC[13]))/(1.00000+exp(( 1.50000*((STATES[0] - ALGEBRAIC[13])+3.60000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[1]/STATES[2]);
ALGEBRAIC[30] =  CONSTANTS[18]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[32] = ( (( (( CONSTANTS[22]*STATES[10])/(STATES[10]+CONSTANTS[20]))*pow(STATES[2], 1.50000))/(pow(STATES[2], 1.50000)+pow(CONSTANTS[21], 1.50000)))*(STATES[0]+150.000))/(STATES[0]+200.000);
ALGEBRAIC[33] = ( CONSTANTS[23]*STATES[19])/(STATES[19]+CONSTANTS[24]);
ALGEBRAIC[34] = ( CONSTANTS[25]*( pow(STATES[2], 3.00000)*STATES[18]*exp(( CONSTANTS[27]*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1])) -  pow(STATES[1], 3.00000)*STATES[19]*exp(( (CONSTANTS[27] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/(1.00000+ CONSTANTS[26]*( pow(STATES[1], 3.00000)*STATES[19]+ pow(STATES[2], 3.00000)*STATES[18]));
ALGEBRAIC[35] = ( (STATES[6] - STATES[19])*2.00000*CONSTANTS[2]*CONSTANTS[49])/CONSTANTS[30];
ALGEBRAIC[36] = ( CONSTANTS[38]*(STATES[19]/CONSTANTS[39] - ( pow(CONSTANTS[41], 2.00000)*STATES[25])/CONSTANTS[40]))/((STATES[19]+CONSTANTS[39])/CONSTANTS[39]+( CONSTANTS[41]*(STATES[25]+CONSTANTS[40]))/CONSTANTS[40]);
ALGEBRAIC[37] = ( (STATES[25] - STATES[24])*2.00000*CONSTANTS[2]*CONSTANTS[44])/CONSTANTS[46];
ALGEBRAIC[38] =  CONSTANTS[42]*pow(STATES[28]/(STATES[28]+0.250000), 2.00000)*(STATES[24] - STATES[19]);
ALGEBRAIC[39] =  203.800*(pow(STATES[19]/(STATES[19]+CONSTANTS[47]), 4.00000)+pow(STATES[6]/(STATES[6]+CONSTANTS[48]), 4.00000));
ALGEBRAIC[40] = 33.9600+ 339.600*pow(STATES[19]/(STATES[19]+CONSTANTS[47]), 4.00000);
ALGEBRAIC[41] = ( (( CONSTANTS[9]*pow(STATES[3], 3.00000)*( 0.900000*STATES[4]+ 0.100000*STATES[5])*STATES[1]*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*(exp(( (STATES[0] - ALGEBRAIC[1])*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000))/(exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000);
ALGEBRAIC[7] = STATES[6]/(STATES[6]+CONSTANTS[12]);
ALGEBRAIC[42] =  CONSTANTS[10]*STATES[7]*( ALGEBRAIC[7]*STATES[8]+ (1.00000 - ALGEBRAIC[7])*STATES[9])*(STATES[0] - CONSTANTS[11]);
ALGEBRAIC[43] =  CONSTANTS[13]*STATES[12]*STATES[13]*(STATES[0] - ALGEBRAIC[13]);
ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[0]+55.0000)/24.0000));
ALGEBRAIC[44] =  CONSTANTS[16]*STATES[17]*ALGEBRAIC[28]*(STATES[0] - ALGEBRAIC[13]);
ALGEBRAIC[31] =  (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(STATES[18]/STATES[19]);
ALGEBRAIC[45] =  CONSTANTS[19]*(STATES[0] - ALGEBRAIC[31]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[29] = 0.0;
SI[30] = 0.0;
SI[31] = 0.0;
SI[20] = 1.0;
SI[21] = 1.0;
SI[22] = 1.0;
SI[23] = 1.0;
SI[24] = 1.0;
SI[25] = 1.0;
SI[26] = 1.0;
SI[27] = 1.0;
SI[28] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[4];
CONDVAR[1] = VOI - CONSTANTS[5];
CONDVAR[2] = ((VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7];
}