Rendering of the source text

<?xml version='1.0' encoding='utf-8'?>
<!--  FILE :  mckenzie_model_1998.xml

CREATED :  21st November 2002

LAST MODIFIED : 21st November 2002

AUTHOR :  Catherine Lloyd
          Bioengineering Institute
          The University of Auckland
          
MODEL STATUS :  This model conforms to the CellML 1.0 Specification released on
10th August 2001, and the 16/1/02 CellML Metadata 1.0 Specification.

DESCRIPTION :  This file contains a CellML description of McKenzie and Sneyd's 1998 mathematical model of the formation and breakup of spiral waves of calcium.

CHANGES:  
  
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" cmeta:id="mckenzie_1998_version01" name="mckenzie_1998_version01">
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
  <articleinfo>
  <title>Modelling the Formation and Breakup of Spiral Waves of Calcium</title>
  <author>
    <firstname>Catherine</firstname>
          <surname>Lloyd</surname>
    <affiliation>
      <shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
    </affiliation>
  </author>
</articleinfo>
  <section id="sec_status">
    <title>Model Status</title>
    <para>
            This model contains partial differentials and as such can not currently be solved by existing CellML tools.
          </para>
  </section>
  <sect1 id="sec_structure">
<title>Model Structure</title>

<para>
In many cell types, Ca<superscript>2+</superscript> acting as a signalling agent plays an important role in the control of cellular function.  It is thought that these signals are mediated through oscillations in intracellular Ca<superscript>2+</superscript> concentration ([Ca<superscript>2+</superscript>]<subscript>i</subscript>).  The mechanisms underlying these oscillations are complex and they have only been partially elucidated.  In addition, in larger cells such as in the <emphasis>Xenopus laevis</emphasis> oocyte, a variety of Ca<superscript>2+</superscript> wave behaviour has been seen, including plane waves, pulsating patterns and spiral waves.  This has lead to the frequent use of <emphasis>Xenopus</emphasis> oocytes in experimental studies of Ca<superscript>2+</superscript> waves. 
</para>

<para>
The probability of the inositol 1,4,5-triphosphate (IP<subscript>3</subscript>) receptor being in the open state is influenced by both IP<subscript>3</subscript> and Ca<superscript>2+</superscript>.  This duel system of control is thought to underlie Ca<superscript>2+</superscript> waves and oscillations.  IP<subscript>3</subscript> binding to the receptor activates the channel, causing a small amount of Ca<superscript>2+</superscript> to diffuse out of the ER into the cytosol.  This Ca<superscript>2+</superscript> has a positive feedback effect, called calcium-induced calcium release (CICR), and it is thought to underlie Ca<superscript>2+</superscript> wave propagation.  At intermediate IP<subscript>3</subscript> concentrations, a stable limit cycle appears in the kinetics, and the model becomes oscillatory.  Under these conditions, wave propagation can occur even without excitability.
</para>

<para>
Several mathematical models for Ca<superscript>2+</superscript> wave propagation have been published (for some examples see <ulink url="${HTML_EXMPL_IP3_CA2+_MODEL}">DeYoung and Keizer's IP<subscript>3</subscript>-mediated Ca<superscript>2+</superscript> release model, 1992</ulink> and <ulink url="${HTML_EXMPL_LI_MODEL}">Li and Rinzel's IP<subscript>3</subscript>-mediated Ca<superscript>2+</superscript> oscillations model, 1994</ulink>), all of which are similar.  The mathematical model described here was published by McKenzie and Sneyd in 1998 (see <xref linkend="fig_cell_diagram"/> below).  It describes the process by which IP<subscript>3</subscript> diffuses through the cytosol and binds to receptors located on the endoplasmic reticulum (ER).  These receptors also function as Ca<superscript>2+</superscript> channels.  They open upon IP<subscript>3</subscript> binding, and Ca<superscript>2+</superscript> diffuses out of the ER down its electrochemical gradient into the cytosol.  Ca<superscript>2+</superscript> is pumped against its electrochemical gradient out of the cytosol into the ER, and ions also leak into the cytosol from the ER and the external environment as they diffuse into the cytosol down their electrochemical gradient.  
</para>

<para>
Model simulations showed that spiral waves could be induced by simulating the release of IP<subscript>3</subscript>.  Increasing the size of the IP<subscript>3</subscript> additions caused a decrease in the rotation period and the breakup of the spiral wave solutions.  Following this, irregular spatio-temporal patterns occurred.  From their model simulations, the authors predict that a simple experimental procedure may be sufficient to reproduce unstable spiral waves.
</para>

<para>
The complete original paper reference is cited below:
</para>

<para>
On the Formation and Breakup of Spiral Waves of Calcium, A. McKenzie and J. Sneyd, 1998, <emphasis>International Journal of Bifurcation and Chaos</emphasis>, 8, 2003-2012.(A <ulink url="http://www.math.auckland.ac.nz/~sneyd/">PDF version</ulink> of the article is available on James Sneyd's website.)  
</para>

<para>
The raw CellML descriptions of the model can be downloaded in various formats as described in <xref linkend="sec_download_this_model"/>.
</para>

<informalfigure float="0" id="fig_cell_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>cell_diagram</title>
    </objectinfo>
    <imagedata fileref="mckenzie_1998.png"/>
  </imageobject>
</mediaobject>
<caption>A schematic diagram representing the model.</caption>
</informalfigure>

</sect1>
</article>
</documentation>
  
  
  <!--
    Below, we define some additional units for association with variables and
    constants within the model. The identifiers are fairly self-explanatory.
  -->
  
  <units name="micromolar">
    <unit units="mole" prefix="micro"/>
    <unit units="litre" exponent="-1"/>
  </units>
  
  <units name="flux">
    <unit units="micromolar"/>
    <unit units="second" exponent="-1"/>
  </units>
  
  <units name="mm2_per_second">
    <unit units="metre" prefix="micro" exponent="2"/>
    <unit units="second" exponent="-1"/>
  </units>
  
  <!--
    The "environment" component is used to declare variables that are used by
    all or most of the other components, in this case just "time".
  -->
  
  <component name="environment">
    <variable units="second" public_interface="out" name="time"/>
  </component>
  
  
  <component name="IP3">
    <variable units="micromolar" public_interface="out" name="P" initial_value="0.0"/>
    
    <variable units="mm2_per_second" name="D_P" initial_value="300.0"/>
    <variable units="micromolar" name="Pxx"/>
    <variable units="micromolar" name="Pyy"/>
    
    <variable units="second" public_interface="in" name="time"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="P_partialdiff_eq">
        <eq/>
        <apply>
          <partialdiff/>
          <bvar>
            <ci> time </ci>
          </bvar>
          <ci> P </ci>
        </apply>
        <apply>
          <times/>
          <ci> D_P </ci>
          <apply>
            <plus/>
            <ci> Pxx </ci>
            <ci> Pyy </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="calcium">
    <variable units="micromolar" public_interface="out" name="c" initial_value="0.3"/>
    
    <variable units="mm2_per_second" name="D_c" initial_value="20.0"/>
    <variable units="micromolar" name="cxx"/>
    <variable units="micromolar" name="cyy"/>
    
    <variable units="second" public_interface="in" name="time"/>
    <variable units="flux" public_interface="in" name="J_channel"/>
    <variable units="flux" public_interface="in" name="J_pump"/>
    <variable units="flux" public_interface="in" name="J_leak"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="c_partialdiff_eq">
        <eq/>
        <apply>
          <partialdiff/>
          <bvar>
            <ci> time </ci>
          </bvar>
          <ci> c </ci>
        </apply>
        <apply>
          <plus/>
          <apply>
            <times/>
            <ci> D_c </ci>
            <apply>
              <plus/>
              <ci> cxx </ci>
              <ci> cyy </ci>
            </apply>
          </apply>
          <ci> J_channel </ci>
          <ci> J_leak </ci>
          <apply>
            <minus/>
            <ci> J_pump </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="IP3_receptor">
    <variable units="flux" public_interface="out" name="J_channel"/>
    
    <variable units="flux" name="k_flux" initial_value="16.0"/>
    <variable units="dimensionless" name="mu_P"/>
    <variable units="dimensionless" name="mu_0" initial_value="0.29"/>
    <variable units="dimensionless" name="mu_1" initial_value="0.30"/>
    <variable units="micromolar" name="k1" initial_value="0.7"/>
    <variable units="micromolar" name="k_mu" initial_value="4.0"/>
    <variable units="dimensionless" name="b" initial_value="0.111"/>
    
    <variable units="second" public_interface="in" private_interface="out" name="time"/>
    <variable units="micromolar" public_interface="in" private_interface="out" name="c"/>
    <variable units="micromolar" public_interface="in" name="P"/>
    
    <variable units="dimensionless" private_interface="in" name="h"/>
   
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="J_channel_calculation">
        <eq/>
        <ci> J_channel </ci>
        <apply>
          <times/>
          <ci> k_flux </ci>
          <ci> mu_P </ci>
          <ci> h </ci>
          <apply>
            <plus/>
            <ci> b </ci>
            <apply>
              <divide/>
              <apply>
                <times/>
                <apply>
                  <minus/>
                  <cn cellml:units="dimensionless"> 1.0 </cn>
                  <ci> b </ci>
                </apply>
                <ci> c </ci>
              </apply>
              <apply>
                <plus/>
                <ci> k1 </ci>
                <ci> c </ci>
              </apply>
            </apply>
          </apply>
        </apply>
      </apply>
      
      <apply id="mu_P_calculation">
        <eq/>
        <ci> mu_P </ci>
        <apply>
          <plus/>
          <ci> mu_0 </ci>
          <apply>
            <divide/>
            <apply>
              <times/>
              <ci> mu_1 </ci>
              <ci> P </ci>
            </apply>
            <apply>
              <plus/>
              <ci> k_mu </ci>
              <ci> P </ci>
            </apply>
          </apply>
        </apply>
      </apply>
    </math>
  </component>
  
  <component name="IP3_receptor_h_gate">
    <variable units="dimensionless" public_interface="out" name="h"/>
    
    <variable units="second" name="tau_h" initial_value="2.0"/>
    <variable units="dimensionless" name="h_infinity"/>
    <variable units="micromolar" name="k2" initial_value="0.7"/>
    
    <variable units="micromolar" public_interface="in" name="c"/>
    <variable units="second" public_interface="in" name="time"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="h_diff_eq">
        <eq/>
        <apply>
          <diff/>
          <bvar>
            <ci> time </ci>
          </bvar>
          <ci> h </ci>
        </apply>
        <apply>
          <divide/>
          <apply>
            <minus/>
            <ci> h_infinity </ci>
            <ci> h </ci>
          </apply>
          <ci> tau_h </ci>
        </apply>
      </apply>
      
      <apply id="h_infinity_calculation">
        <eq/>
        <ci> h_infinity </ci>
        <apply>
          <divide/>
          <apply>
            <power/>
            <ci> k2 </ci>
            <cn cellml:units="dimensionless"> 2.0 </cn>
          </apply>
          <apply>
            <plus/>
            <apply>
              <power/>
              <ci> k2 </ci>
              <cn cellml:units="dimensionless"> 2.0 </cn>
            </apply>
            <apply>
              <power/>
              <ci> c </ci>
              <cn cellml:units="dimensionless"> 2.0 </cn>
            </apply>
          </apply>
        </apply>
      </apply>
    </math>
  </component> 
  
  <component name="calcium_pump">
    <variable units="flux" public_interface="out" name="J_pump"/>
    
    <variable units="flux" name="gamma" initial_value="2.0"/>
    <variable units="micromolar" name="k_gamma" initial_value="0.10"/>
    
    <variable units="second" public_interface="in" name="time"/>
    <variable units="micromolar" public_interface="in" name="c"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="J_pump_calculation">
        <eq/>
        <ci> J_pump </ci>
        <apply>
          <divide/>
          <apply>
            <times/>
            <ci> gamma </ci>
            <ci> c </ci>
          </apply>
          <apply>
            <plus/>
            <ci> k_gamma </ci>
            <ci> c </ci>
          </apply>
        </apply>
      </apply>
    </math>
  </component>  
  
  <component name="calcium_leak">
    <variable units="flux" public_interface="out" name="J_leak"/>
    
    <variable units="dimensionless" name="beta" initial_value="0.0"/>
    
    <variable units="second" public_interface="in" name="time"/>
    
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply id="J_leak_calculation">
        <eq/>
        <ci> J_leak </ci>
        <ci> beta </ci>
      </apply>
    </math>
  </component>
  
  <group>
    <relationship_ref relationship="encapsulation"/>
    <component_ref component="IP3_receptor">
      <component_ref component="IP3_receptor_h_gate"/>
    </component_ref>
  </group>
  
  <connection>
    <map_components component_2="environment" component_1="IP3"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="calcium"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="IP3_receptor"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="calcium_pump"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="environment" component_1="calcium_leak"/>
    <map_variables variable_2="time" variable_1="time"/>
  </connection>
  
  <connection>
    <map_components component_2="IP3_receptor" component_1="IP3"/>
    <map_variables variable_2="P" variable_1="P"/>
  </connection>
  
  <connection>
    <map_components component_2="IP3_receptor" component_1="calcium"/>
    <map_variables variable_2="c" variable_1="c"/>
    <map_variables variable_2="J_channel" variable_1="J_channel"/>
  </connection> 
  
  <connection>
    <map_components component_2="calcium_pump" component_1="calcium"/>
    <map_variables variable_2="c" variable_1="c"/>
    <map_variables variable_2="J_pump" variable_1="J_pump"/>
  </connection>
  
  <connection>
    <map_components component_2="calcium_leak" component_1="calcium"/>
    <map_variables variable_2="J_leak" variable_1="J_leak"/>
  </connection>
  
  <connection>
    <map_components component_2="IP3_receptor_h_gate" component_1="IP3_receptor"/>
    <map_variables variable_2="h" variable_1="h"/>
    <map_variables variable_2="time" variable_1="time"/>
    <map_variables variable_2="c" variable_1="c"/>
  </connection>





<rdf:RDF>
  <rdf:Bag rdf:about="rdf:#06ac76f7-37f8-448e-ba78-0775cc5d1531">
    <rdf:li>calcium dynamics</rdf:li>
    <rdf:li>Oocyte</rdf:li>
    <rdf:li>ca++ spiral waves</rdf:li>
  </rdf:Bag>
  <rdf:Seq rdf:about="rdf:#2310ff4c-231f-4d2e-9865-bb9367a10284">
    <rdf:li rdf:resource="rdf:#eead52f8-460c-437d-9f8c-9f181d173164"/>
    <rdf:li rdf:resource="rdf:#4e24371e-2c45-432f-a826-8f0b5d2b0331"/>
  </rdf:Seq>
  <rdf:Description rdf:about="rdf:#2f40b5ec-ce91-4041-bb6c-f18c61406d0d">
    <vCard:ORG rdf:resource="rdf:#0a15a6c2-24d0-4ff3-8572-9f5fec7491f5"/>
    <vCard:EMAIL rdf:resource="rdf:#b34ff10a-3fab-4981-a496-dcd94b34623b"/>
    <vCard:N rdf:resource="rdf:#8720c536-65b5-49ec-b550-a20b34a216bf"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#37fdfbef-e800-4a93-b629-b2c2ddb48ec2">
    <dc:title>International Journal of Bifurcation and Chaos</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#6bb7cfec-ee1e-4401-9d8f-e2399f0309ff">
    <bqs:subject_type>keyword</bqs:subject_type>
    <rdf:value rdf:resource="rdf:#06ac76f7-37f8-448e-ba78-0775cc5d1531"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8720c536-65b5-49ec-b550-a20b34a216bf">
    <vCard:Given>Catherine</vCard:Given>
    <vCard:Family>Lloyd</vCard:Family>
    <vCard:Other>May</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#837c3e08-1b25-4757-89ce-c3869f82e63d">
    <vCard:FN>Catherine Lloyd</vCard:FN>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#f6fd9185-28e4-4c0a-9b9a-ce56c1c142aa">
    <vCard:Given>A</vCard:Given>
    <vCard:Family>McKenzie</vCard:Family>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#5b5227b6-ef3e-4885-b7db-a363afe84eef">
    <dc:creator rdf:resource="rdf:#837c3e08-1b25-4757-89ce-c3869f82e63d"/>
    <rdf:value>This is the CellML description of McKenzie and Sneyd's 1998 &#13;
          mathematical model of the formation and breakup of spiral waves of &#13;
          calcium.</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="">
    <dc:publisher>The University of Auckland, Bioengineering Institute</dc:publisher>
    <cmeta:comment rdf:resource="rdf:#b43468d4-bb5d-4453-b548-0af11438d3eb"/>
    <dcterms:created rdf:resource="rdf:#74d5b364-4383-4644-a2cf-d83cfa8cc431"/>
    <dc:creator rdf:resource="rdf:#2f40b5ec-ce91-4041-bb6c-f18c61406d0d"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#c5f1e1fe-2076-4d3b-b4ca-1856b47752fe">
    <dc:creator rdf:resource="rdf:#2310ff4c-231f-4d2e-9865-bb9367a10284"/>
    <dc:title>On the Formation and Breakup of Spiral Waves of Calcium</dc:title>
    <bqs:volume>8</bqs:volume>
    <bqs:first_page>2003</bqs:first_page>
    <bqs:Journal rdf:resource="rdf:#37fdfbef-e800-4a93-b629-b2c2ddb48ec2"/>
    <dcterms:issued rdf:resource="rdf:#637a633d-6854-4c42-beae-96aa8d56fa6f"/>
    <bqs:last_page>2012</bqs:last_page>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#3dd9118e-e9a3-4623-8bb4-1bcc7a343eb3">
    <dc:subject rdf:resource="rdf:#6bb7cfec-ee1e-4401-9d8f-e2399f0309ff"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#0a15a6c2-24d0-4ff3-8572-9f5fec7491f5">
    <vCard:Orgname>The University of Auckland</vCard:Orgname>
    <vCard:Orgunit>The Bioengineering Institute</vCard:Orgunit>
  </rdf:Description>
  <rdf:Description rdf:about="#mckenzie_1998_version01">
    <dc:title>
        McKenzie and Sneyd's 1998 mathematical model of the formation and 
        breakup of spiral waves of calcium.
      </dc:title>
    <cmeta:bio_entity>Oocyte</cmeta:bio_entity>
    <cmeta:comment rdf:resource="rdf:#5b5227b6-ef3e-4885-b7db-a363afe84eef"/>
    <bqs:reference rdf:resource="rdf:#3dd9118e-e9a3-4623-8bb4-1bcc7a343eb3"/>
    <bqs:reference rdf:resource="rdf:#8e934630-a277-4064-bb45-64cb48fffa8c"/>
    <cmeta:species>Xenopus laevis</cmeta:species>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#eead52f8-460c-437d-9f8c-9f181d173164">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#f6fd9185-28e4-4c0a-9b9a-ce56c1c142aa"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#4e24371e-2c45-432f-a826-8f0b5d2b0331">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#f1c48bd9-3943-42e9-8017-f4cfc7871beb"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#74d5b364-4383-4644-a2cf-d83cfa8cc431">
    <dcterms:W3CDTF>2002-11-21T00:00:00+00:00</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#637a633d-6854-4c42-beae-96aa8d56fa6f">
    <dcterms:W3CDTF>1998-01-01 00:00</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#66724181-fe5a-4e56-8899-83aa764e7572">
    <vCard:FN/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#b34ff10a-3fab-4981-a496-dcd94b34623b">
    <rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
    <rdf:value>c.lloyd@auckland.ac.nz</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#f1c48bd9-3943-42e9-8017-f4cfc7871beb">
    <vCard:Given>J</vCard:Given>
    <vCard:Family>Sneyd</vCard:Family>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#b43468d4-bb5d-4453-b548-0af11438d3eb">
    <dc:creator rdf:resource="rdf:#66724181-fe5a-4e56-8899-83aa764e7572"/>
    <rdf:value/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8e934630-a277-4064-bb45-64cb48fffa8c">
    <bqs:Pubmed_id/>
    <bqs:JournalArticle rdf:resource="rdf:#c5f1e1fe-2076-4d3b-b4ca-1856b47752fe"/>
  </rdf:Description>
</rdf:RDF>
</model>