Generated Code

The following is c code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 17 entries in the algebraic variable array.
   There are a total of 7 entries in each of the rate and state variable arrays.
   There are a total of 40 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (millisecond).
 * CONSTANTS[0] is V_cell in component environment (picoL).
 * CONSTANTS[1] is Ca_e in component environment (millimolar).
 * CONSTANTS[2] is K_e in component environment (millimolar).
 * CONSTANTS[3] is K_i in component environment (millimolar).
 * CONSTANTS[4] is V_tau in component environment (millivolt).
 * CONSTANTS[5] is k_tau in component environment (millivolt).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[6] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[7] is T in component membrane (kelvin).
 * CONSTANTS[8] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[9] is Cm in component membrane (picoF).
 * ALGEBRAIC[5] is i_Ca_L in component L_type_calcium_current (picoA).
 * ALGEBRAIC[8] is i_Ca_T in component T_type_calcium_current (picoA).
 * ALGEBRAIC[11] is i_K_DR in component voltage_sensitive_K_current (picoA).
 * ALGEBRAIC[13] is i_K_Ca in component Ca_activated_K_current (picoA).
 * ALGEBRAIC[15] is i_leak in component leak_current (picoA).
 * ALGEBRAIC[0] is phi_Ca in component L_type_calcium_current (millivolt_millimolar).
 * CONSTANTS[10] is g_Ca_L in component L_type_calcium_current (nanoS_per_millimolar).
 * STATES[1] is Ca_i in component cytosolic_calcium (millimolar).
 * STATES[2] is m_L in component L_type_calcium_current_m_gate (dimensionless).
 * ALGEBRAIC[1] is m_L_infinity in component L_type_calcium_current_m_gate (dimensionless).
 * ALGEBRAIC[6] is tau_m_L in component L_type_calcium_current_m_gate (millisecond).
 * CONSTANTS[11] is tau_m_L_max in component L_type_calcium_current_m_gate (millisecond).
 * CONSTANTS[12] is V_m_L in component L_type_calcium_current_m_gate (millivolt).
 * CONSTANTS[13] is k_m_L in component L_type_calcium_current_m_gate (millivolt).
 * CONSTANTS[14] is g_Ca_T in component T_type_calcium_current (nanoS_per_millimolar).
 * STATES[3] is m_T in component T_type_calcium_current_m_gate (dimensionless).
 * STATES[4] is h_T in component T_type_calcium_current_h_gate (dimensionless).
 * ALGEBRAIC[2] is m_T_infinity in component T_type_calcium_current_m_gate (dimensionless).
 * ALGEBRAIC[7] is tau_m_T in component T_type_calcium_current_m_gate (millisecond).
 * CONSTANTS[15] is tau_m_T_max in component T_type_calcium_current_m_gate (millisecond).
 * CONSTANTS[16] is V_m_T in component T_type_calcium_current_m_gate (millivolt).
 * CONSTANTS[17] is k_m_T in component T_type_calcium_current_m_gate (millivolt).
 * ALGEBRAIC[3] is h_T_infinity in component T_type_calcium_current_h_gate (dimensionless).
 * CONSTANTS[18] is tau_h_T in component T_type_calcium_current_h_gate (millisecond).
 * CONSTANTS[19] is V_h_T in component T_type_calcium_current_h_gate (millivolt).
 * CONSTANTS[20] is k_h_T in component T_type_calcium_current_h_gate (millivolt).
 * ALGEBRAIC[9] is phi_K in component voltage_sensitive_K_current (millivolt_millimolar).
 * CONSTANTS[21] is g_K_DR in component voltage_sensitive_K_current (nanoS_per_millimolar).
 * STATES[5] is n in component voltage_sensitive_K_current_n_gate (dimensionless).
 * ALGEBRAIC[4] is n_infinity in component voltage_sensitive_K_current_n_gate (dimensionless).
 * CONSTANTS[22] is tau_n in component voltage_sensitive_K_current_n_gate (millisecond).
 * CONSTANTS[23] is V_n in component voltage_sensitive_K_current_n_gate (millivolt).
 * CONSTANTS[24] is k_n in component voltage_sensitive_K_current_n_gate (millivolt).
 * CONSTANTS[25] is g_K_Ca in component Ca_activated_K_current (nanoS_per_millimolar).
 * CONSTANTS[26] is Kc in component Ca_activated_K_current (millimolar).
 * CONSTANTS[27] is g_L in component leak_current (nanoS).
 * CONSTANTS[28] is V_L in component leak_current (millivolt).
 * STATES[6] is Ca_er in component ER_calcium (millimolar).
 * ALGEBRAIC[10] is J_rel in component ER_calcium (millimolar_picoL_per_millisecond).
 * ALGEBRAIC[12] is J_up in component ER_calcium (millimolar_picoL_per_millisecond).
 * CONSTANTS[38] is V_er in component ER_calcium (picoL).
 * CONSTANTS[29] is K_er in component ER_calcium (millimolar).
 * CONSTANTS[30] is f_er in component ER_calcium (dimensionless).
 * CONSTANTS[31] is P in component ER_calcium (picoL_per_millisecond).
 * CONSTANTS[32] is v_er in component ER_calcium (millimolar_picoL_per_millisecond).
 * CONSTANTS[39] is V_c in component cytosolic_calcium (picoL).
 * CONSTANTS[33] is K_p in component cytosolic_calcium (millimolar).
 * CONSTANTS[34] is f_cyt in component cytosolic_calcium (dimensionless).
 * CONSTANTS[35] is v_p in component cytosolic_calcium (millimolar_micrometre_per_millisecond).
 * ALGEBRAIC[14] is J_in in component cytosolic_calcium (millimolar_micrometre_per_millisecond).
 * ALGEBRAIC[16] is J_eff in component cytosolic_calcium (millimolar_micrometre_per_millisecond).
 * CONSTANTS[36] is alpha in component cytosolic_calcium (millimolar_micrometre_per_millisecond_per_picoA).
 * CONSTANTS[37] is beta in component cytosolic_calcium (per_micrometre).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[2] is d/dt m_L in component L_type_calcium_current_m_gate (dimensionless).
 * RATES[3] is d/dt m_T in component T_type_calcium_current_m_gate (dimensionless).
 * RATES[4] is d/dt h_T in component T_type_calcium_current_h_gate (dimensionless).
 * RATES[5] is d/dt n in component voltage_sensitive_K_current_n_gate (dimensionless).
 * RATES[6] is d/dt Ca_er in component ER_calcium (millimolar).
 * RATES[1] is d/dt Ca_i in component cytosolic_calcium (millimolar).
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 1.77;
CONSTANTS[1] = 20;
CONSTANTS[2] = 5.6;
CONSTANTS[3] = 140;
CONSTANTS[4] = -60;
CONSTANTS[5] = 22;
STATES[0] = -70;
CONSTANTS[6] = 8314;
CONSTANTS[7] = 310;
CONSTANTS[8] = 96845;
CONSTANTS[9] = 7;
CONSTANTS[10] = 9;
STATES[1] = 0.00026;
STATES[2] = 0;
CONSTANTS[11] = 27;
CONSTANTS[12] = -18;
CONSTANTS[13] = 12;
CONSTANTS[14] = 10;
STATES[3] = 0;
STATES[4] = 0;
CONSTANTS[15] = 10;
CONSTANTS[16] = -30;
CONSTANTS[17] = 10.5;
CONSTANTS[18] = 15;
CONSTANTS[19] = -57;
CONSTANTS[20] = 5;
CONSTANTS[21] = 0.1;
STATES[5] = 0;
CONSTANTS[22] = 20;
CONSTANTS[23] = -20;
CONSTANTS[24] = 4.5;
CONSTANTS[25] = 0.09;
CONSTANTS[26] = 0.0004;
CONSTANTS[27] = 0.3;
CONSTANTS[28] = -67;
STATES[6] = 0.0172;
CONSTANTS[29] = 0.0002;
CONSTANTS[30] = 0.0025;
CONSTANTS[31] = 0.0012;
CONSTANTS[32] = 0.00005;
CONSTANTS[33] = 0.00008;
CONSTANTS[34] = 0.01;
CONSTANTS[35] = 0.000045;
CONSTANTS[36] = 0.0000074;
CONSTANTS[37] = 0.47;
CONSTANTS[38] =  CONSTANTS[0]*0.150000;
CONSTANTS[39] =  CONSTANTS[0]*0.850000;
}
void
computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0] - CONSTANTS[19])/CONSTANTS[20]));
RATES[4] = (ALGEBRAIC[3] - STATES[4])/CONSTANTS[18];
ALGEBRAIC[4] = 1.00000/(1.00000+exp((CONSTANTS[23] - STATES[0])/CONSTANTS[24]));
RATES[5] = (ALGEBRAIC[4] - STATES[5])/CONSTANTS[22];
ALGEBRAIC[1] = 1.00000/(1.00000+exp((CONSTANTS[12] - STATES[0])/CONSTANTS[13]));
ALGEBRAIC[6] = CONSTANTS[11]/(exp((STATES[0] - CONSTANTS[4])/CONSTANTS[5])+ 2.00000*exp(( 2.00000*(CONSTANTS[4] - STATES[0]))/CONSTANTS[5]));
RATES[2] = (ALGEBRAIC[1] - STATES[2])/ALGEBRAIC[6];
ALGEBRAIC[2] = 1.00000/(1.00000+exp((CONSTANTS[16] - STATES[0])/CONSTANTS[17]));
ALGEBRAIC[7] = CONSTANTS[15]/(exp((STATES[0] - CONSTANTS[4])/CONSTANTS[5])+ 2.00000*exp(( 2.00000*(CONSTANTS[4] - STATES[0]))/CONSTANTS[5]));
RATES[3] = (ALGEBRAIC[2] - STATES[3])/ALGEBRAIC[7];
ALGEBRAIC[10] =  CONSTANTS[31]*(STATES[6] - STATES[1]);
ALGEBRAIC[12] = ( CONSTANTS[32]*pow(STATES[1], 2.00000))/(pow(STATES[1], 2.00000)+pow(CONSTANTS[29], 2.00000));
RATES[6] =  (- CONSTANTS[30]/CONSTANTS[38])*(ALGEBRAIC[10] - ALGEBRAIC[12]);
ALGEBRAIC[0] = ( STATES[0]*(STATES[1] - CONSTANTS[1])*exp(( - 2.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])))/(1.00000 - exp(( - 2.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])));
ALGEBRAIC[5] =  CONSTANTS[10]*pow(STATES[2], 2.00000)*ALGEBRAIC[0];
ALGEBRAIC[8] =  CONSTANTS[14]*pow(STATES[3], 2.00000)*STATES[4]*ALGEBRAIC[0];
ALGEBRAIC[9] = ( STATES[0]*(CONSTANTS[3] - CONSTANTS[2])*exp(( - 1.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])))/(1.00000 - exp(( - 1.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])));
ALGEBRAIC[11] =  CONSTANTS[21]*STATES[5]*ALGEBRAIC[9];
ALGEBRAIC[13] =  (( CONSTANTS[25]*pow(STATES[1], 4.00000))/(pow(STATES[1], 4.00000)+pow(CONSTANTS[26], 4.00000)))*ALGEBRAIC[9];
ALGEBRAIC[15] =  CONSTANTS[27]*(STATES[0] - CONSTANTS[28]);
RATES[0] = - (ALGEBRAIC[5]+ALGEBRAIC[8]+ALGEBRAIC[11]+ALGEBRAIC[13]+ALGEBRAIC[15])/CONSTANTS[9];
ALGEBRAIC[14] =  - CONSTANTS[36]*(ALGEBRAIC[5]+ALGEBRAIC[8]);
ALGEBRAIC[16] = ( CONSTANTS[35]*pow(STATES[1], 2.00000))/(pow(STATES[1], 2.00000)+pow(CONSTANTS[33], 2.00000));
RATES[1] =  (CONSTANTS[34]/CONSTANTS[39])*(ALGEBRAIC[10] - ALGEBRAIC[12])+ CONSTANTS[34]*CONSTANTS[37]*(ALGEBRAIC[14] - ALGEBRAIC[16]);
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0] - CONSTANTS[19])/CONSTANTS[20]));
ALGEBRAIC[4] = 1.00000/(1.00000+exp((CONSTANTS[23] - STATES[0])/CONSTANTS[24]));
ALGEBRAIC[1] = 1.00000/(1.00000+exp((CONSTANTS[12] - STATES[0])/CONSTANTS[13]));
ALGEBRAIC[6] = CONSTANTS[11]/(exp((STATES[0] - CONSTANTS[4])/CONSTANTS[5])+ 2.00000*exp(( 2.00000*(CONSTANTS[4] - STATES[0]))/CONSTANTS[5]));
ALGEBRAIC[2] = 1.00000/(1.00000+exp((CONSTANTS[16] - STATES[0])/CONSTANTS[17]));
ALGEBRAIC[7] = CONSTANTS[15]/(exp((STATES[0] - CONSTANTS[4])/CONSTANTS[5])+ 2.00000*exp(( 2.00000*(CONSTANTS[4] - STATES[0]))/CONSTANTS[5]));
ALGEBRAIC[10] =  CONSTANTS[31]*(STATES[6] - STATES[1]);
ALGEBRAIC[12] = ( CONSTANTS[32]*pow(STATES[1], 2.00000))/(pow(STATES[1], 2.00000)+pow(CONSTANTS[29], 2.00000));
ALGEBRAIC[0] = ( STATES[0]*(STATES[1] - CONSTANTS[1])*exp(( - 2.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])))/(1.00000 - exp(( - 2.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])));
ALGEBRAIC[5] =  CONSTANTS[10]*pow(STATES[2], 2.00000)*ALGEBRAIC[0];
ALGEBRAIC[8] =  CONSTANTS[14]*pow(STATES[3], 2.00000)*STATES[4]*ALGEBRAIC[0];
ALGEBRAIC[9] = ( STATES[0]*(CONSTANTS[3] - CONSTANTS[2])*exp(( - 1.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])))/(1.00000 - exp(( - 1.00000*CONSTANTS[8]*STATES[0])/( CONSTANTS[6]*CONSTANTS[7])));
ALGEBRAIC[11] =  CONSTANTS[21]*STATES[5]*ALGEBRAIC[9];
ALGEBRAIC[13] =  (( CONSTANTS[25]*pow(STATES[1], 4.00000))/(pow(STATES[1], 4.00000)+pow(CONSTANTS[26], 4.00000)))*ALGEBRAIC[9];
ALGEBRAIC[15] =  CONSTANTS[27]*(STATES[0] - CONSTANTS[28]);
ALGEBRAIC[14] =  - CONSTANTS[36]*(ALGEBRAIC[5]+ALGEBRAIC[8]);
ALGEBRAIC[16] = ( CONSTANTS[35]*pow(STATES[1], 2.00000))/(pow(STATES[1], 2.00000)+pow(CONSTANTS[33], 2.00000));
}