Rendering of the source text

<?xml version="1.0" encoding="utf-8"?>
<model 
	name="capillary_dynamics_parent_model"
	cmeta:id="capillary_dynamics_parent_model"
	
	xmlns="http://www.cellml.org/cellml/1.1#"
	xmlns:cellml="http://www.cellml.org/cellml/1.1#"
	xmlns:cmeta="http://www.cellml.org/metadata/1.0#"
	xmlns:xlink="http://www.w3.org/1999/xlink">

	<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
		<rdf:Description rdf:about="#capillary_dynamics_parent_model">
			<rdf:value>
			This is the CellML 1.1 "parent" file to test the Capillary Dynamics Model. 
			</rdf:value>
		</rdf:Description>
	</rdf:RDF>

<!-- =============================================	DOCUMENTATION		================================================= -->
<documentation xmlns="http://cellml.org/tmp-documentation">
<article>
  <articleinfo>
  <title>Guyton Model: Capillary Dynamics</title>
  <author>
    <firstname>Catherine</firstname>
          <surname>Lloyd</surname>
    <affiliation>
      <shortaffil>Auckland Bioengineering Institute, University of Auckland</shortaffil>
    </affiliation>
  </author>
</articleinfo>

<section id="cellml_1_1">
<title>CellML 1.1 Version</title>
<para>
This is a CellML 1.1 version of the Capillary Dynamics Module of the Guyton Circulation model. To run, click on "Solve using OpenCell" and all 
dependent files and components will be imported. To run offline, please download all files from the <ulink url="/workspace/guyton_capillary_dynamics_2008/">workspace</ulink> into the same directory and open 
"cap_dynamics_parent.cellml" in OpenCell.
</para>
</section>  


  <section id="sec_status">
    <title>Model Status</title>
    <para>
        This CellML model has been validated. Due to the differences between procedural code (in this case C-code) and 
		declarative languages (CellML), some aspects of the original model were not able to be encapsulated by the CellML 
		model (such as the damping of variables). This may effect the transient behaviour of the model, however the 
		steady-state behaviour would remain	the same. The equations in this file and the steady-state output from the 
		model conform to the results from the MODSIM program.
    </para>
  </section>
  <sect1 id="sec_structure">
  <title>Model Structure</title>

<para>
Arthur Guyton (1919-2003) was an American physiologist who became famous for his 1950s experiments in which he studied the 
physiology of cardiac output and its relationship with the peripheral circulation.  The results of these experiments 
challenged the conventional wisdom that it was the heart itself that controlled cardiac output.  Instead Guyton demonstrated 
that it was the need of the body tissues for oxygen which was the real regulator of cardiac output.  The "Guyton Curves" 
describe the relationship between right atrial pressures and cardiac output, and they form a foundation for understanding the 
physiology of circulation. 
</para>

<para>
The Guyton model of fluid, electrolyte, and circulatory regulation is an extensive mathematical model of human circulatory physiology, 
capable of simulating a variety of experimental conditions, and contains a number of linked subsystems relating to circulation and 
its neuroendocrine control.
</para>

<para>
This is a CellML translation of the Guyton model of the regulation of the circulatory system.  The complete model consists of separate 
modules each of which characterise a separate physiological subsystems.  The Circulation Dynamics is the primary system, to which other 
modules/blocks are connected.  The other modules characterise the dynamics of the kidney, electrolytes and cell water, thirst and drinking, 
hormone regulation, autonomic regulation, cardiovascular system etc, and these feedback on the central circulation model.  The CellML code 
in these modules is based on the C code from the programme C-MODSIM created by Dr Jean-Pierre Montani.
</para>

<para>
This particular CellML model describes the the movement of fluid and protein through the capillary membrane.  It also calculates the volumes of 
fluid in the free fluid space of the interstitium and in the gel fluid space.  It calculates the pressures in both of these fluids as well as 
the so-called solid tissue pressure caused by the compression of solid elements against other portions of the interstitium.  In addition, the 
quantities of proteins and their concentrations in both the free fluid and the gel fluid are calculated. And, finally, the flow of both fluid 
and proteins in the lymph system are computed, as well as the overall body protein balance.
</para>

<informalfigure float="0" id="full_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref="full_model.png"/>
  </imageobject>
</mediaobject>
<caption>A systems analysis diagram for the full Guyton model describing circulation regulation.</caption>
</informalfigure>


<informalfigure float="0" id="capillary_dynamics_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref="capillary_dynamics.png"/>
  </imageobject>
</mediaobject>
<caption>A schematic diagram of the components and processes described in the current CellML model.</caption>
</informalfigure> 

<para>
There are several publications referring to the Guyton model. One of these papers is cited below:
</para>

<para>
Circulation: Overall Regulation,  A.C. Guyton, T.G. Coleman, and H.J. Granger, 1972, 
            <emphasis>Annual Review of Physiology</emphasis>
          , 34, 13-44.  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&amp;cmd=Retrieve&amp;dopt=AbstractPlus&amp;list_uids=4334846&amp;query_hl=1&amp;itool=pubmed_docsum">PubMed ID: 4334846</ulink>
</para>

</sect1>
</article>
</documentation> 

<!-- =======================================================    CITATION AND KEYWORD METADATA    ================================================== -->

	<rdf:RDF
			xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
			xmlns:bqs="http://www.cellml.org/bqs/1.0#"
			xmlns:dc="http://purl.org/dc/elements/1.1/"
			xmlns:dcterms="http://purl.org/dc/terms/"
			xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#">
		<rdf:Description rdf:about="#capillary_dynamics_parent_model">
			<bqs:reference rdf:parseType="Resource">
				<bqs:JournalArticle rdf:parseType="Resource">
					<dc:creator>
						<rdf:Seq>
							<rdf:li rdf:parseType="Resource">
								<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
								<vCard:N rdf:parseType="Resource">
									<vCard:Family>Guyton</vCard:Family>
									<vCard:Given></vCard:Given>
									<vCard:Other></vCard:Other>
								</vCard:N>
							</rdf:li>
							<rdf:li rdf:parseType="Resource">
								<rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person" />
								<vCard:N rdf:parseType="Resource">
									<vCard:Family>Capillary Dynamics</vCard:Family>
									<vCard:Given></vCard:Given>
									<vCard:Other></vCard:Other>
								</vCard:N>
							</rdf:li>

						</rdf:Seq>
					</dc:creator>
					<dc:title>Description of Guyton capillary dynamics module</dc:title>
					<bqs:volume />
					<bqs:first_page />
					<bqs:last_page />
					<bqs:Journal rdf:parseType="Resource">
						<dc:title></dc:title>
					</bqs:Journal>
					<dcterms:issued rdf:parseType="Resource">
						<dcterms:W3CDTF>2008-00-00 00:00</dcterms:W3CDTF>
					</dcterms:issued>
				</bqs:JournalArticle>
			</bqs:reference>
			<bqs:reference rdf:parseType="Resource">
				<dc:subject rdf:parseType="Resource">
					<bqs:subject_type>keyword</bqs:subject_type>
					<rdf:value>
					<rdf:Bag>
						<rdf:li>physiology</rdf:li>
						<rdf:li>organ systems</rdf:li>
						<rdf:li>cardiovascular circulation</rdf:li>
						<rdf:li>capillary dynamics</rdf:li>
						<rdf:li>Guyton</rdf:li>
					</rdf:Bag>
					</rdf:value>
				</dc:subject>
			</bqs:reference>
		</rdf:Description>
	</rdf:RDF>

 <!-- =============================================	Import the required units from the Units file	==================================================== -->
	<import xlink:href="units.cellml">
		<units name="minute" units_ref="minute"/>
		<units name="per_minute" units_ref="per_minute"/>
		<units name="beats_per_minute" units_ref="beats_per_minute"/>
		<units name="beats_per_minute_per_mmHg" units_ref="beats_per_minute_per_mmHg"/>
		<units name="minute_per_L" units_ref="minute_per_L"/>
		<units name="mmHg" units_ref="mmHg"/>
		<units name="per_mmHg" units_ref="per_mmHg"/>
		<units name="mmHg_per_mL" units_ref="mmHg_per_mL"/>
		<units name="mmHg_L" units_ref="mmHg_L"/>
		<units name="per_mmHg2" units_ref="per_mmHg2"/>
		<units name="mmHg3" units_ref="mmHg3"/>
		<units name="monovalent_mEq" units_ref="monovalent_mEq"/>
		<units name="monovalent_mEq_per_minute" units_ref="monovalent_mEq_per_minute"/>
		<units name="monovalent_mEq_per_litre" units_ref="monovalent_mEq_per_litre"/>
		<units name="mOsm" units_ref="mOsm"/>
		<units name="mOsm_per_litre" units_ref="mOsm_per_litre"/>
		<units name="mOsm_per_minute" units_ref="mOsm_per_minute"/>
		<units name="monovalent_mEq_per_litre_per_minute" units_ref="monovalent_mEq_per_litre_per_minute"/>
		<units name="litre2_per_monovalent_mEq_per_minute" units_ref="litre2_per_monovalent_mEq_per_minute"/>
		<units name="L_per_minute" units_ref="L_per_minute"/>
		<units name="per_mmHg_per_minute" units_ref="per_mmHg_per_minute"/>
		<units name="mL" units_ref="mL"/>
		<units name="gram_per_L" units_ref="gram_per_L"/>
		<units name="L_mmHg_per_gram" units_ref="L_mmHg_per_gram"/>
		<units name="L2_mmHg_per_gram2" units_ref="L2_mmHg_per_gram2"/>
		<units name="mmHg_minute_per_L" units_ref="mmHg_minute_per_L"/>
		<units name="mmHg_L_per_minute" units_ref="mmHg_L_per_minute"/>
		<units name="gram_per_minute" units_ref="gram_per_minute"/>
		<units name="mL_per_L" units_ref="mL_per_L"/>
		<units name="mL_per_L_per_mmHg" units_ref="mL_per_L_per_mmHg"/>
		<units name="mL_per_L_per_minute" units_ref="mL_per_L_per_minute"/>
		<units name="mL_per_minute_per_mmHg" units_ref="mL_per_minute_per_mmHg"/>
		<units name="L_mL_per_minute_per_mmHg" units_ref="L_mL_per_minute_per_mmHg"/>
		<units name="L_per_mL" units_ref="L_per_mL"/>
		<units name="L_per_mmHg" units_ref="L_per_mmHg"/>
		<units name="mL_per_minute" units_ref="mL_per_minute"/>
		<units name="L_per_minute_per_mmHg" units_ref="L_per_minute_per_mmHg"/>
		<units name="L_per_minute_per_mmHg2" units_ref="L_per_minute_per_mmHg2"/>
	</import>

<!-- =====================================	Import all Parameters and State Variables from the Parameter file	============================================== -->
	<import xlink:href="parameters.cellml">
		<component component_ref="parameter_values" name="parameter_values"/>
		<component component_ref="state_variables" name="state_variables"/>
	</import>

<!-- ============================================	Import Environment Component from the Environment file	============================================== -->
	<import xlink:href="environment.cellml">
		<component component_ref="environment" name="environment"/>
	</import>

<!-- ============================================	Import all the separate model files and their components	============================================== -->
	<import xlink:href="cap_dynamics.cellml">
		<component component_ref="capillary_dynamics" name="capillary_dynamics"/>
	</import>

	
<!-- ========================================	INPUT VALUES		============================================= -->
	<component 	name="input_values" 
				cmeta:id="input_values">
		<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
			<rdf:Description rdf:about="#input_values">
				<rdf:value>
				Component to set all input values to 1.0 or a prescribed value.
				</rdf:value>
			</rdf:Description>
		</rdf:RDF>
		
		<variable name="VEC"	initial_value="14.8548"		units="litre" private_interface="none" public_interface="out"/>
		<variable name="PPD"	initial_value="4.4805e-06"	units="gram_per_minute" private_interface="none" public_interface="out"/>
		<variable name="RVS"	initial_value="2.77751"		units="mmHg_minute_per_L" private_interface="none" public_interface="out"/>
		<variable name="DFP"	initial_value="-4.078e-07"	units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable name="VPF"	initial_value="0.0123238"	units="litre" private_interface="none" public_interface="out"/>
		<variable name="BFN"	initial_value="2.79521"		units="L_per_minute" private_interface="none" public_interface="out"/>
		<variable name="PVS"	initial_value="3.71612"		units="mmHg" private_interface="none" public_interface="out"/>
	</component>
	
<!-- CAPILLARY DYNAMICS INPUT CONNECTIONS -->
	<connection>
		<map_components component_1="capillary_dynamics" component_2="input_values"/>
		<map_variables variable_1="VEC" variable_2="VEC"/>
		<map_variables variable_1="PPD" variable_2="PPD"/>
		<map_variables variable_1="RVS" variable_2="RVS"/>
		<map_variables variable_1="DFP" variable_2="DFP"/>
		<map_variables variable_1="VPF" variable_2="VPF"/>
		<map_variables variable_1="BFN" variable_2="BFN"/>
		<map_variables variable_1="PVS" variable_2="PVS"/>
	</connection>
	<connection>
		<map_components component_1="capillary_dynamics" component_2="environment"/>
		<map_variables variable_1="time" variable_2="time"/>
	</connection>

</model>