function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =0; end % There are a total of 1 entries in each of the rate and state variable arrays. % There are a total of 19 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (minute)'); LEGEND_CONSTANTS(:,16) = strpad('C in component C (nanomolar)'); LEGEND_CONSTANTS(:,1) = strpad('kf1 in component model_parameters (second_order_rate_constant)'); LEGEND_CONSTANTS(:,13) = strpad('kr1 in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,14) = strpad('k_x1 in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,2) = strpad('kt in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,3) = strpad('ke in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,4) = strpad('L in component model_parameters (nanomolar)'); LEGEND_CONSTANTS(:,17) = strpad('R in component R (nanomolar)'); LEGEND_CONSTANTS(:,15) = strpad('K_X in component D (per_nanomolar)'); LEGEND_CONSTANTS(:,18) = strpad('D in component D (nanomolar)'); LEGEND_CONSTANTS(:,5) = strpad('kx2 in component model_parameters (second_order_rate_constant)'); LEGEND_CONSTANTS(:,6) = strpad('k_x2 in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,7) = strpad('R_initial in component R (nanomolar)'); LEGEND_CONSTANTS(:,8) = strpad('krec in component model_parameters (first_order_rate_constant)'); LEGEND_CONSTANTS(:,9) = strpad('kdeg in component model_parameters (first_order_rate_constant)'); LEGEND_STATES(:,1) = strpad('Ri in component Ri (nanomolar)'); LEGEND_CONSTANTS(:,19) = strpad('signal in component signal (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('kappaE in component model_parameters (dimensionless)'); LEGEND_CONSTANTS(:,11) = strpad('Vs in component model_parameters (flux)'); LEGEND_CONSTANTS(:,12) = strpad('KD in component model_parameters (nanomolar)'); LEGEND_RATES(:,1) = strpad('d/dt Ri in component Ri (nanomolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 0.1; CONSTANTS(:,2) = 0.005; CONSTANTS(:,3) = 0.10; CONSTANTS(:,4) = 0.01; CONSTANTS(:,5) = 4.83; CONSTANTS(:,6) = 0.016; CONSTANTS(:,7) = 2000.0; CONSTANTS(:,8) = 0.0; CONSTANTS(:,9) = 0.05; STATES(:,1) = 200.0; CONSTANTS(:,10) = 0.20; CONSTANTS(:,11) = 10.0; CONSTANTS(:,12) = 1.0; CONSTANTS(:,13) = CONSTANTS(:,12).*CONSTANTS(:,1); CONSTANTS(:,14) = 0.0100000.*CONSTANTS(:,13); CONSTANTS(:,15) = CONSTANTS(:,5)./(CONSTANTS(:,6)+CONSTANTS(:,14)+CONSTANTS(:,3)); [CONSTANTS, STATES, ALGEBRAIC] = rootfind_0(VOI, CONSTANTS, STATES, ALGEBRAIC); CONSTANTS(:,19) = (( 2.00000.*CONSTANTS(:,18))./200.000)./(CONSTANTS(:,10)+( 2.00000.*CONSTANTS(:,18))./200.000); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = CONSTANTS(:,2).*(CONSTANTS(:,17)+CONSTANTS(:,16)) - (CONSTANTS(:,8)+CONSTANTS(:,9)).*STATES(:,1); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end end % Functions required for solving differential algebraic equation function [CONSTANTS, STATES, ALGEBRAIC] = rootfind_0(VOI, CONSTANTS_IN, STATES_IN, ALGEBRAIC_IN) ALGEBRAIC = ALGEBRAIC_IN; CONSTANTS = CONSTANTS_IN; STATES = STATES_IN; global initialGuess_0; if (length(initialGuess_0) ~= 3), initialGuess_0 = [0.1,0.1,0.1];, end options = optimset('Display', 'off', 'TolX', 1E-6); if length(VOI) == 1 residualfn = @(algebraicCandidate)residualSN_0(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES); soln = fsolve(residualfn, initialGuess_0, options); initialGuess_0 = soln; CONSTANTS(:,16) = soln(1); CONSTANTS(:,17) = soln(2); CONSTANTS(:,18) = soln(3); else SET_CONSTANTS(:,16) = logical(1); SET_CONSTANTS(:,17) = logical(1); SET_CONSTANTS(:,18) = logical(1); for i=1:length(VOI) residualfn = @(algebraicCandidate)residualSN_0(algebraicCandidate, ALGEBRAIC(i,:), VOI(i), CONSTANTS, STATES(i,:)); soln = fsolve(residualfn, initialGuess_0, options); initialGuess_0 = soln; TEMP_CONSTANTS(:,16) = soln(1); TEMP_CONSTANTS(:,17) = soln(2); TEMP_CONSTANTS(:,18) = soln(3); ALGEBRAIC(i,SET_ALGEBRAIC) = TEMP_ALGEBRAIC(SET_ALGEBRAIC); end end end function resid = residualSN_0(algebraicCandidate, ALGEBRAIC, VOI, CONSTANTS, STATES) CONSTANTS(:,16) = algebraicCandidate(1); CONSTANTS(:,17) = algebraicCandidate(2); CONSTANTS(:,18) = algebraicCandidate(3); resid(1) = CONSTANTS(:,16) - ( CONSTANTS(:,1).*CONSTANTS(:,4).*CONSTANTS(:,17))./(CONSTANTS(:,13)+CONSTANTS(:,2)+ (CONSTANTS(:,14)+CONSTANTS(:,3)).*CONSTANTS(:,15).*CONSTANTS(:,17)); resid(2) = CONSTANTS(:,18) - CONSTANTS(:,15).*CONSTANTS(:,17).*CONSTANTS(:,16); resid(3) = CONSTANTS(:,17) - (CONSTANTS(:,7) - (CONSTANTS(:,16)+ 2.00000.*(CONSTANTS(:,3)./CONSTANTS(:,2)).*(1.00000+CONSTANTS(:,8)./CONSTANTS(:,9)).*CONSTANTS(:,18))); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end