# Size of variable arrays: sizeAlgebraic = 0 sizeStates = 1 sizeConstants = 19 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (minute)" legend_constants[15] = "C in component C (nanomolar)" legend_constants[0] = "kf1 in component model_parameters (second_order_rate_constant)" legend_constants[12] = "kr1 in component model_parameters (first_order_rate_constant)" legend_constants[13] = "k_x1 in component model_parameters (first_order_rate_constant)" legend_constants[1] = "kt in component model_parameters (first_order_rate_constant)" legend_constants[2] = "ke in component model_parameters (first_order_rate_constant)" legend_constants[3] = "L in component model_parameters (nanomolar)" legend_constants[16] = "R in component R (nanomolar)" legend_constants[14] = "K_X in component D (per_nanomolar)" legend_constants[17] = "D in component D (nanomolar)" legend_constants[4] = "kx2 in component model_parameters (second_order_rate_constant)" legend_constants[5] = "k_x2 in component model_parameters (first_order_rate_constant)" legend_constants[6] = "R_initial in component R (nanomolar)" legend_constants[7] = "krec in component model_parameters (first_order_rate_constant)" legend_constants[8] = "kdeg in component model_parameters (first_order_rate_constant)" legend_states[0] = "Ri in component Ri (nanomolar)" legend_constants[18] = "signal in component signal (dimensionless)" legend_constants[9] = "kappaE in component model_parameters (dimensionless)" legend_constants[10] = "Vs in component model_parameters (flux)" legend_constants[11] = "KD in component model_parameters (nanomolar)" legend_rates[0] = "d/dt Ri in component Ri (nanomolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 0.1 constants[1] = 0.005 constants[2] = 0.10 constants[3] = 0.01 constants[4] = 4.83 constants[5] = 0.016 constants[6] = 2000.0 constants[7] = 0.0 constants[8] = 0.05 states[0] = 200.0 constants[9] = 0.20 constants[10] = 10.0 constants[11] = 1.0 constants[12] = constants[11]*constants[0] constants[13] = 0.0100000*constants[12] constants[14] = constants[4]/(constants[5]+constants[13]+constants[2]) rootfind_0(voi, constants, rates, states, algebraic) constants[18] = ((2.00000*constants[17])/200.000)/(constants[9]+(2.00000*constants[17])/200.000) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = constants[1]*(constants[16]+constants[15])-(constants[7]+constants[8])*states[0] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) return algebraic initialGuess0 = None def rootfind_0(voi, constants, rates, states, algebraic): """Calculate values of algebraic variables for DAE""" from scipy.optimize import fsolve global initialGuess0 if initialGuess0 is None: initialGuess0 = ones(3)*0.1 if not iterable(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic, voi, constants, rates, states), xtol=1E-6) initialGuess0 = soln constants[15] = soln[0] constants[16] = soln[1] constants[17] = soln[2] else: for (i,t) in enumerate(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6) initialGuess0 = soln constants[15][i] = soln[0] constants[16][i] = soln[1] constants[17][i] = soln[2] def residualSN_0(algebraicCandidate, algebraic, voi, constants, rates, states): resid = array([0.0] * 3) constants[15] = algebraicCandidate[0] constants[16] = algebraicCandidate[1] constants[17] = algebraicCandidate[2] resid[0] = (constants[15]-(constants[0]*constants[3]*constants[16])/(constants[12]+constants[1]+(constants[13]+constants[2])*constants[14]*constants[16])) resid[1] = (constants[17]-constants[14]*constants[16]*constants[15]) resid[2] = (constants[16]-(constants[6]-(constants[15]+2.00000*(constants[2]/constants[1])*(1.00000+constants[7]/constants[8])*constants[17]))) return resid def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)