/* There are a total of 65 entries in the algebraic variable array. There are a total of 28 entries in each of the rate and state variable arrays. There are a total of 42 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_millimole). * CONSTANTS[3] is Cm in component membrane (picoF). * CONSTANTS[4] is i_stim in component membrane (picoA_per_picoF). * ALGEBRAIC[58] is i_Na in component fast_sodium_current (picoA_per_picoF). * ALGEBRAIC[59] is i_K1 in component time_independent_potassium_current (picoA_per_picoF). * ALGEBRAIC[8] is i_to in component transient_outward_K_current (picoA_per_picoF). * ALGEBRAIC[60] is i_Kur_d in component ultrarapid_delayed_rectifier_K_current (picoA_per_picoF). * ALGEBRAIC[26] is i_Kr in component rapid_delayed_rectifier_K_current (picoA_per_picoF). * ALGEBRAIC[31] is i_Ks in component slow_delayed_rectifier_K_current (picoA_per_picoF). * ALGEBRAIC[36] is i_Ca in component sarcolemmal_Ca_current (picoA_per_picoF). * ALGEBRAIC[61] is i_Cl_Ca in component Ca_activated_Cl_current (picoA_per_picoF). * ALGEBRAIC[47] is i_p_Ca in component Ca_pump_current (picoA_per_picoF). * ALGEBRAIC[63] is i_NaK in component sodium_potassium_pump (picoA_per_picoF). * ALGEBRAIC[44] is i_NaCa in component Na_Ca_exchanger_current (picoA_per_picoF). * ALGEBRAIC[45] is i_B_Na in component background_currents (picoA_per_picoF). * ALGEBRAIC[64] is i_B_Ca in component background_currents (picoA_per_picoF). * ALGEBRAIC[0] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[5] is g_Na in component fast_sodium_current (nanoS_per_picoF). * STATES[1] is Na_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[6] is Na_o in component standard_ionic_concentrations (millimolar). * STATES[2] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[3] is h in component fast_sodium_current_h_gate (dimensionless). * STATES[4] is j in component fast_sodium_current_j_gate (dimensionless). * ALGEBRAIC[1] is alpha_m in component fast_sodium_current_m_gate (per_millisecond). * ALGEBRAIC[2] is beta_m in component fast_sodium_current_m_gate (per_millisecond). * ALGEBRAIC[3] is alpha_h in component fast_sodium_current_h_gate (per_millisecond). * ALGEBRAIC[4] is beta_h in component fast_sodium_current_h_gate (per_millisecond). * ALGEBRAIC[5] is alpha_j in component fast_sodium_current_j_gate (per_millisecond). * ALGEBRAIC[6] is beta_j in component fast_sodium_current_j_gate (per_millisecond). * ALGEBRAIC[7] is E_K in component time_independent_potassium_current (millivolt). * CONSTANTS[7] is g_K1 in component time_independent_potassium_current (nanoS_per_picoF). * CONSTANTS[8] is K_o in component standard_ionic_concentrations (millimolar). * STATES[5] is K_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[9] is g_to in component transient_outward_K_current (nanoS_per_picoF). * STATES[6] is oa in component transient_outward_K_current_oa_gate (dimensionless). * STATES[7] is oi in component transient_outward_K_current_oi_gate (dimensionless). * ALGEBRAIC[9] is alpha_oa in component transient_outward_K_current_oa_gate (per_millisecond). * ALGEBRAIC[10] is beta_oa in component transient_outward_K_current_oa_gate (per_millisecond). * ALGEBRAIC[11] is tau_oa in component transient_outward_K_current_oa_gate (millisecond). * ALGEBRAIC[12] is oa_infinity in component transient_outward_K_current_oa_gate (dimensionless). * ALGEBRAIC[13] is alpha_oi in component transient_outward_K_current_oi_gate (per_millisecond). * ALGEBRAIC[14] is beta_oi in component transient_outward_K_current_oi_gate (per_millisecond). * ALGEBRAIC[15] is tau_oi in component transient_outward_K_current_oi_gate (millisecond). * ALGEBRAIC[16] is oi_infinity in component transient_outward_K_current_oi_gate (dimensionless). * ALGEBRAIC[17] is g_Kur_d in component ultrarapid_delayed_rectifier_K_current (nanoS_per_picoF). * STATES[8] is ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (dimensionless). * STATES[9] is ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (dimensionless). * ALGEBRAIC[18] is alpha_ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (per_millisecond). * ALGEBRAIC[19] is beta_ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (per_millisecond). * ALGEBRAIC[20] is tau_ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (millisecond). * ALGEBRAIC[21] is ua_infinity in component ultrarapid_delayed_rectifier_K_current_ua_gate (dimensionless). * ALGEBRAIC[22] is alpha_ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (per_millisecond). * ALGEBRAIC[23] is beta_ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (per_millisecond). * ALGEBRAIC[24] is tau_ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (millisecond). * ALGEBRAIC[25] is ui_infinity in component ultrarapid_delayed_rectifier_K_current_ui_gate (dimensionless). * CONSTANTS[10] is g_Kr in component rapid_delayed_rectifier_K_current (nanoS_per_picoF). * STATES[10] is xr in component rapid_delayed_rectifier_K_current_xr_gate (dimensionless). * ALGEBRAIC[27] is alpha_xr in component rapid_delayed_rectifier_K_current_xr_gate (per_millisecond). * ALGEBRAIC[28] is beta_xr in component rapid_delayed_rectifier_K_current_xr_gate (per_millisecond). * ALGEBRAIC[29] is tau_xr in component rapid_delayed_rectifier_K_current_xr_gate (millisecond). * ALGEBRAIC[30] is xr_infinity in component rapid_delayed_rectifier_K_current_xr_gate (dimensionless). * CONSTANTS[11] is g_Ks in component slow_delayed_rectifier_K_current (nanoS_per_picoF). * STATES[11] is xs in component slow_delayed_rectifier_K_current_xs_gate (dimensionless). * ALGEBRAIC[32] is alpha_xs in component slow_delayed_rectifier_K_current_xs_gate (per_millisecond). * ALGEBRAIC[33] is beta_xs in component slow_delayed_rectifier_K_current_xs_gate (per_millisecond). * ALGEBRAIC[34] is tau_xs in component slow_delayed_rectifier_K_current_xs_gate (millisecond). * ALGEBRAIC[35] is xs_infinity in component slow_delayed_rectifier_K_current_xs_gate (dimensionless). * CONSTANTS[12] is g_Ca in component sarcolemmal_Ca_current (nanoS_per_picoF). * STATES[12] is Ca_i in component intracellular_ion_concentrations (millimolar). * STATES[13] is d in component sarcolemmal_Ca_current_d_gate (dimensionless). * STATES[14] is f in component sarcolemmal_Ca_current_f_gate (dimensionless). * STATES[15] is f_Ca in component sarcolemmal_Ca_current_f_Ca_gate (dimensionless). * ALGEBRAIC[37] is d_infinity in component sarcolemmal_Ca_current_d_gate (dimensionless). * ALGEBRAIC[38] is tau_d in component sarcolemmal_Ca_current_d_gate (millisecond). * ALGEBRAIC[39] is f_infinity in component sarcolemmal_Ca_current_f_gate (dimensionless). * ALGEBRAIC[40] is tau_f in component sarcolemmal_Ca_current_f_gate (millisecond). * ALGEBRAIC[41] is f_Ca_infinity in component sarcolemmal_Ca_current_f_Ca_gate (dimensionless). * CONSTANTS[13] is tau_f_Ca in component sarcolemmal_Ca_current_f_Ca_gate (millisecond). * CONSTANTS[14] is g_Cl_Ca in component Ca_activated_Cl_current (nanoS_per_picoF). * ALGEBRAIC[42] is E_Cl in component Ca_activated_Cl_current (millivolt). * ALGEBRAIC[49] is Fn in component Ca_release_current_from_JSR (dimensionless). * STATES[16] is Cl_i in component intracellular_ion_concentrations (millimolar). * CONSTANTS[15] is Cl_o in component standard_ionic_concentrations (millimolar). * CONSTANTS[16] is q_Ca in component Ca_activated_Cl_current_q_Ca_gate (dimensionless). * ALGEBRAIC[62] is q_Ca_infinity in component Ca_activated_Cl_current_q_Ca_gate (dimensionless). * CONSTANTS[17] is Km_Na_i in component sodium_potassium_pump (millimolar). * CONSTANTS[18] is Km_K_o in component sodium_potassium_pump (millimolar). * CONSTANTS[19] is i_NaK_max in component sodium_potassium_pump (picoA_per_picoF). * ALGEBRAIC[43] is f_NaK in component sodium_potassium_pump (dimensionless). * CONSTANTS[40] is sigma in component sodium_potassium_pump (dimensionless). * CONSTANTS[20] is I_NaCa_max in component Na_Ca_exchanger_current (picoA_per_picoF). * CONSTANTS[21] is K_mNa in component Na_Ca_exchanger_current (millimolar). * CONSTANTS[22] is K_mCa in component Na_Ca_exchanger_current (millimolar). * CONSTANTS[23] is K_sat in component Na_Ca_exchanger_current (dimensionless). * CONSTANTS[24] is Ca_o in component standard_ionic_concentrations (millimolar). * CONSTANTS[25] is g_B_Na in component background_currents (nanoS_per_picoF). * CONSTANTS[26] is g_B_Ca in component background_currents (nanoS_per_picoF). * ALGEBRAIC[46] is E_Ca in component background_currents (millivolt). * CONSTANTS[27] is i_p_Ca_max in component Ca_pump_current (picoA_per_picoF). * ALGEBRAIC[48] is i_rel in component Ca_release_current_from_JSR (picoA_per_picoF). * CONSTANTS[28] is K_rel in component Ca_release_current_from_JSR (per_millisecond). * CONSTANTS[29] is V_rel in component Ca_release_current_from_JSR (micrometre_3). * STATES[17] is Ca_rel in component intracellular_ion_concentrations (millimolar). * STATES[18] is u in component Ca_release_current_from_JSR_u_gate (dimensionless). * STATES[19] is v in component Ca_release_current_from_JSR_v_gate (dimensionless). * STATES[20] is w in component Ca_release_current_from_JSR_w_gate (dimensionless). * CONSTANTS[41] is tau_u in component Ca_release_current_from_JSR_u_gate (millisecond). * ALGEBRAIC[50] is u_infinity in component Ca_release_current_from_JSR_u_gate (dimensionless). * ALGEBRAIC[51] is tau_v in component Ca_release_current_from_JSR_v_gate (millisecond). * ALGEBRAIC[52] is v_infinity in component Ca_release_current_from_JSR_v_gate (dimensionless). * ALGEBRAIC[53] is tau_w in component Ca_release_current_from_JSR_w_gate (millisecond). * ALGEBRAIC[54] is w_infinity in component Ca_release_current_from_JSR_w_gate (dimensionless). * ALGEBRAIC[55] is i_tr in component transfer_current_from_NSR_to_JSR (picoA_per_picoF). * CONSTANTS[30] is tau_tr in component transfer_current_from_NSR_to_JSR (millisecond). * STATES[21] is Ca_up in component intracellular_ion_concentrations (millimolar). * CONSTANTS[31] is I_up_max in component Ca_uptake_current_by_the_NSR (picoA_per_picoF). * ALGEBRAIC[56] is i_up in component Ca_uptake_current_by_the_NSR (picoA_per_picoF). * CONSTANTS[32] is K_up in component Ca_uptake_current_by_the_NSR (millimolar). * ALGEBRAIC[57] is i_up_leak in component Ca_leak_current_by_the_NSR (picoA_per_picoF). * CONSTANTS[33] is Ca_up_max in component Ca_leak_current_by_the_NSR (millimolar). * CONSTANTS[34] is CMDN_max in component Ca_buffers (millimolar). * CONSTANTS[35] is TRPN_max in component Ca_buffers (millimolar). * CONSTANTS[36] is CSQN_max in component Ca_buffers (millimolar). * STATES[25] is J_Ca_CMDN in component Ca_buffers (millimolar_per_millisecond). * STATES[26] is J_Ca_TRPN in component Ca_buffers (millimolar_per_millisecond). * STATES[27] is J_Ca_CSQN in component Ca_buffers (millimolar_per_millisecond). * STATES[22] is Ca_CMDN in component Ca_buffers (millimolar). * STATES[23] is Ca_TRPN in component Ca_buffers (millimolar). * STATES[24] is Ca_CSQN in component Ca_buffers (millimolar). * CONSTANTS[37] is V_i in component intracellular_ion_concentrations (micrometre_3). * CONSTANTS[38] is V_rel in component intracellular_ion_concentrations (micrometre_3). * CONSTANTS[39] is V_up in component intracellular_ion_concentrations (micrometre_3). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[2] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[4] is d/dt j in component fast_sodium_current_j_gate (dimensionless). * RATES[6] is d/dt oa in component transient_outward_K_current_oa_gate (dimensionless). * RATES[7] is d/dt oi in component transient_outward_K_current_oi_gate (dimensionless). * RATES[8] is d/dt ua in component ultrarapid_delayed_rectifier_K_current_ua_gate (dimensionless). * RATES[9] is d/dt ui in component ultrarapid_delayed_rectifier_K_current_ui_gate (dimensionless). * RATES[10] is d/dt xr in component rapid_delayed_rectifier_K_current_xr_gate (dimensionless). * RATES[11] is d/dt xs in component slow_delayed_rectifier_K_current_xs_gate (dimensionless). * RATES[13] is d/dt d in component sarcolemmal_Ca_current_d_gate (dimensionless). * RATES[14] is d/dt f in component sarcolemmal_Ca_current_f_gate (dimensionless). * RATES[15] is d/dt f_Ca in component sarcolemmal_Ca_current_f_Ca_gate (dimensionless). * RATES[18] is d/dt u in component Ca_release_current_from_JSR_u_gate (dimensionless). * RATES[19] is d/dt v in component Ca_release_current_from_JSR_v_gate (dimensionless). * RATES[20] is d/dt w in component Ca_release_current_from_JSR_w_gate (dimensionless). * RATES[22] is d/dt Ca_CMDN in component Ca_buffers (millimolar). * RATES[23] is d/dt Ca_TRPN in component Ca_buffers (millimolar). * RATES[24] is d/dt Ca_CSQN in component Ca_buffers (millimolar). * RATES[1] is d/dt Na_i in component intracellular_ion_concentrations (millimolar). * RATES[5] is d/dt K_i in component intracellular_ion_concentrations (millimolar). * RATES[16] is d/dt Cl_i in component intracellular_ion_concentrations (millimolar). * RATES[12] is d/dt Ca_i in component intracellular_ion_concentrations (millimolar). * RATES[21] is d/dt Ca_up in component intracellular_ion_concentrations (millimolar). * RATES[17] is d/dt Ca_rel in component intracellular_ion_concentrations (millimolar). * There are a total of 4 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -83.53; CONSTANTS[0] = 8.3143; CONSTANTS[1] = 310.0; CONSTANTS[2] = 96.4867; CONSTANTS[3] = 100.0; CONSTANTS[4] = -2900.0; CONSTANTS[5] = 7.8; STATES[1] = 11.75; CONSTANTS[6] = 140.0; STATES[2] = 0.001972; STATES[3] = 0.9791; STATES[4] = 0.9869; CONSTANTS[7] = 0.15; CONSTANTS[8] = 5.4; STATES[5] = 138.4; CONSTANTS[9] = 0.19824; STATES[6] = 0.07164; STATES[7] = 0.9980; STATES[8] = 0.05869; STATES[9] = 0.9987; CONSTANTS[10] = 0.06984; STATES[10] = 0.0000007433; CONSTANTS[11] = 0.0561; STATES[11] = 0.01791; CONSTANTS[12] = 0.24; STATES[12] = 0.0001024; STATES[13] = 0.000004757; STATES[14] = 0.9999; STATES[15] = 0.7484; CONSTANTS[13] = 2.0; CONSTANTS[14] = 0.3; STATES[16] = 29.26; CONSTANTS[15] = 132.0; CONSTANTS[16] = 0.0; CONSTANTS[17] = 10.0; CONSTANTS[18] = 1.5; CONSTANTS[19] = 0.6; CONSTANTS[20] = 1600.0; CONSTANTS[21] = 87.5; CONSTANTS[22] = 1.38; CONSTANTS[23] = 0.1; CONSTANTS[24] = 1.8; CONSTANTS[25] = 0.000674; CONSTANTS[26] = 0.00113; CONSTANTS[27] = 0.275; CONSTANTS[28] = 30.0; CONSTANTS[29] = 96.48; STATES[17] = 1.502; STATES[18] = 0.0; STATES[19] = 1.0; STATES[20] = 0.9993; CONSTANTS[30] = 180.0; STATES[21] = 1.502; CONSTANTS[31] = 0.005; CONSTANTS[32] = 0.00092; CONSTANTS[33] = 15.0; CONSTANTS[34] = 0.045; CONSTANTS[35] = 0.35; CONSTANTS[36] = 10.0; STATES[22] = 0.001856; STATES[23] = 0.007022; STATES[24] = 6.432; CONSTANTS[37] = 13668.0; CONSTANTS[38] = 96.48; CONSTANTS[39] = 1109.52; CONSTANTS[40] = (1.00000/7.00000)*(exp(CONSTANTS[6]/67.3000) - 1.00000); CONSTANTS[41] = 8.00000; STATES[25] = 0.1001; STATES[26] = 0.1001; STATES[27] = 0.1001; RATES[0] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[8] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[15] = 0.1001; RATES[18] = 0.1001; RATES[19] = 0.1001; RATES[20] = 0.1001; RATES[22] = 0.1001; RATES[23] = 0.1001; RATES[24] = 0.1001; RATES[1] = 0.1001; RATES[5] = 0.1001; RATES[16] = 0.1001; RATES[12] = 0.1001; RATES[21] = 0.1001; RATES[17] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[58]+ALGEBRAIC[59]+ALGEBRAIC[8]+ALGEBRAIC[60]+ALGEBRAIC[26]+ALGEBRAIC[31]+ALGEBRAIC[36]+ALGEBRAIC[61]+ALGEBRAIC[47]+ALGEBRAIC[44]+ALGEBRAIC[63]+ALGEBRAIC[45]+ALGEBRAIC[64]+CONSTANTS[4])/CONSTANTS[3]; resid[1] = RATES[2] - ALGEBRAIC[1]*(1.00000 - STATES[2]) - ALGEBRAIC[2]*STATES[2]; resid[2] = RATES[3] - ALGEBRAIC[3]*(1.00000 - STATES[3]) - ALGEBRAIC[4]*STATES[3]; resid[3] = RATES[4] - ALGEBRAIC[5]*(1.00000 - STATES[4]) - ALGEBRAIC[6]*STATES[4]; resid[4] = RATES[6] - (ALGEBRAIC[12] - STATES[6])/ALGEBRAIC[11]; resid[5] = RATES[7] - (ALGEBRAIC[16] - STATES[7])/ALGEBRAIC[15]; resid[6] = RATES[8] - (ALGEBRAIC[21] - STATES[8])/ALGEBRAIC[20]; resid[7] = RATES[9] - (ALGEBRAIC[25] - STATES[9])/ALGEBRAIC[24]; resid[8] = RATES[10] - (ALGEBRAIC[30] - STATES[10])/ALGEBRAIC[29]; resid[9] = RATES[11] - (ALGEBRAIC[35] - STATES[11])/ALGEBRAIC[34]; resid[10] = RATES[13] - (ALGEBRAIC[37] - STATES[13])/ALGEBRAIC[38]; resid[11] = RATES[14] - (ALGEBRAIC[39] - STATES[14])/ALGEBRAIC[40]; resid[12] = RATES[15] - (ALGEBRAIC[41] - STATES[15])/CONSTANTS[13]; resid[13] = RATES[18] - (ALGEBRAIC[50] - STATES[18])/CONSTANTS[41]; resid[14] = RATES[19] - (ALGEBRAIC[52] - STATES[19])/ALGEBRAIC[51]; resid[15] = RATES[20] - (ALGEBRAIC[54] - STATES[20])/ALGEBRAIC[53]; resid[16] = RATES[22] - 200.000*STATES[12]*(1.00000 - STATES[22]/CONSTANTS[34]) - 0.476000*(STATES[22]/CONSTANTS[34]); resid[17] = STATES[25] - RATES[22]; resid[18] = RATES[23] - 78.4000*STATES[12]*(1.00000 - STATES[23]/CONSTANTS[35]) - 0.392000*(STATES[23]/CONSTANTS[35]); resid[19] = STATES[26] - RATES[23]; resid[20] = RATES[24] - 0.480000*STATES[17]*(1.00000 - STATES[24]/CONSTANTS[36]) - 0.400000*(STATES[24]/CONSTANTS[36]); resid[21] = STATES[27] - RATES[24]; resid[22] = RATES[1] - ( -3.00000*ALGEBRAIC[63] - ( 3.00000*ALGEBRAIC[44]+ALGEBRAIC[45]+ALGEBRAIC[58]))/( CONSTANTS[37]*CONSTANTS[2]); resid[23] = RATES[5] - ( 2.00000*ALGEBRAIC[63] - (ALGEBRAIC[59]+ALGEBRAIC[8]+ALGEBRAIC[60]+ALGEBRAIC[26]+ALGEBRAIC[31]))/( CONSTANTS[37]*CONSTANTS[2]); resid[24] = RATES[16] - ALGEBRAIC[61]/( CONSTANTS[37]*CONSTANTS[2]); resid[25] = RATES[12] - (( 2.00000*ALGEBRAIC[44] - (ALGEBRAIC[47]+ALGEBRAIC[36]+ALGEBRAIC[64]))/( 2.00000*CONSTANTS[37]*CONSTANTS[2])+( CONSTANTS[39]*(ALGEBRAIC[57] - ALGEBRAIC[56])+ ALGEBRAIC[48]*CONSTANTS[38])/CONSTANTS[37]) - ( CONSTANTS[35]*STATES[26]+ CONSTANTS[34]*STATES[25]); resid[26] = RATES[21] - ALGEBRAIC[56] - (ALGEBRAIC[57]+ ALGEBRAIC[55]*(CONSTANTS[38]/CONSTANTS[39])); resid[27] = RATES[17] - ALGEBRAIC[55] - (ALGEBRAIC[48]+ 31.0000*STATES[27]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[62] = 1.00000 - pow(1.00000+pow(ALGEBRAIC[49]/1.10000e-10, 3.00000), -1.00000); } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[1] = 0.320000*((STATES[0]+47.1300)/(1.00000 - exp( -0.100000*(STATES[0]+47.1300)))); ALGEBRAIC[2] = 0.0800000*exp(STATES[0]/-11.0000); ALGEBRAIC[3] = (CONDVAR[0]<0.00000 ? 0.135000*exp((STATES[0]+80.0000)/-6.80000) : 0.00000); ALGEBRAIC[4] = (CONDVAR[1]<0.00000 ? 3.56000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.350000*STATES[0]) : 1.00000/( 0.130000*(1.00000+exp((STATES[0]+10.6600)/-11.1000)))); ALGEBRAIC[5] = (CONDVAR[2]<0.00000 ? (( -127140.*exp( 0.244400*STATES[0]) - 3.47400e-05*exp( -0.0439100*STATES[0]))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))))*(STATES[0]+37.7800) : 0.00000); ALGEBRAIC[6] = (CONDVAR[3]<0.00000 ? ( 0.121200*exp( -0.0105200*STATES[0]))/(1.00000+exp( -0.137800*(STATES[0]+40.1400))) : ( 0.300000*exp( -2.53500e-07*STATES[0]))/(1.00000+exp( -0.100000*(STATES[0]+32.0000)))); ALGEBRAIC[7] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[8]/STATES[5]); ALGEBRAIC[8] = CONSTANTS[9]*pow(STATES[6], 3.00000)*STATES[7]*(STATES[0] - ALGEBRAIC[7]); ALGEBRAIC[9] = 0.650000*pow(exp((STATES[0]+18.0000)/-8.50000)+exp((STATES[0] - 16.0000)/-59.0000), -1.00000); ALGEBRAIC[10] = 1.20000*pow(2.20000+exp((STATES[0]+75.0000)/18.0000), -1.00000); ALGEBRAIC[11] = pow(ALGEBRAIC[9]+ALGEBRAIC[10], -1.00000); ALGEBRAIC[12] = pow(1.00000+exp((STATES[0]+0.500000)/-10.5000), - (1.00000/3.00000)); ALGEBRAIC[13] = pow(6.20000+exp((STATES[0]+105.200)/9.85000), -1.00000); ALGEBRAIC[14] = pow(7.54000+exp((STATES[0] - 8.89000)/-12.8700), -1.00000); ALGEBRAIC[15] = pow(ALGEBRAIC[13]+ALGEBRAIC[14], -1.00000); ALGEBRAIC[16] = pow(1.00000+exp((STATES[0]+43.3770)/6.45000), -1.00000); ALGEBRAIC[18] = 1.47000*pow(exp((STATES[0]+33.2000)/-30.6300)+exp((STATES[0] - 27.6000)/-30.6500), -1.00000); ALGEBRAIC[19] = 0.420000*pow(exp((STATES[0]+26.6400)/2.49000)+exp((STATES[0]+44.4100)/20.3600), -1.00000); ALGEBRAIC[20] = pow(ALGEBRAIC[18]+ALGEBRAIC[19], -1.00000); ALGEBRAIC[21] = pow(1.00000+exp((STATES[0]+2.81000)/-9.49000), - (1.00000/3.00000)); ALGEBRAIC[22] = pow(21.0000+exp((STATES[0] - 185.000)/-28.0000), -1.00000); ALGEBRAIC[23] = exp((STATES[0] - 158.000)/16.0000); ALGEBRAIC[24] = pow(ALGEBRAIC[22]+ALGEBRAIC[23], -1.00000); ALGEBRAIC[25] = pow(1.00000+exp((STATES[0] - 99.4500)/27.4800), -1.00000); ALGEBRAIC[26] = CONSTANTS[10]*STATES[10]*(0.0700000+0.580000/(1.00000+exp((STATES[0]+15.0000)/22.4000)))*(STATES[0] - ALGEBRAIC[7]); ALGEBRAIC[27] = 0.0400000*((STATES[0] - 248.000)/(1.00000 - exp((STATES[0] - 248.000)/-28.0000))); ALGEBRAIC[28] = 0.0280000*((STATES[0]+163.000)/(exp((STATES[0]+163.000)/21.0000) - 1.00000)); ALGEBRAIC[29] = pow(ALGEBRAIC[27]+ALGEBRAIC[28], -1.00000); ALGEBRAIC[30] = pow(1.00000+exp((STATES[0]+7.65400)/-5.37700), -1.00000); ALGEBRAIC[31] = CONSTANTS[11]*pow(STATES[11], 2.00000)*(STATES[0] - ALGEBRAIC[7]); ALGEBRAIC[32] = 1.00000e-05*((STATES[0]+28.5000)/(1.00000 - exp((STATES[0]+28.5000)/-115.000))); ALGEBRAIC[33] = 0.000230000*((STATES[0]+28.5000)/(exp((STATES[0]+28.5000)/3.30000) - 1.00000)); ALGEBRAIC[34] = pow(ALGEBRAIC[32]+ALGEBRAIC[33], -1.00000); ALGEBRAIC[35] = pow(1.00000+exp((STATES[0] - 13.0000)/-12.0000), -0.500000); ALGEBRAIC[36] = CONSTANTS[12]*STATES[13]*STATES[14]*STATES[15]*(STATES[0] - 65.0000); ALGEBRAIC[37] = pow(1.00000+exp((STATES[0]+10.0000)/-6.00000), -1.00000); ALGEBRAIC[38] = (1.00000 - exp((STATES[0]+10.0000)/-6.24000))/( 0.0350000*(STATES[0]+10.0000)*(1.00000+exp((STATES[0]+10.0000)/-6.24000))); ALGEBRAIC[39] = pow(1.00000+exp((STATES[0]+24.6000)/6.20000), -1.00000); ALGEBRAIC[40] = 400.000*pow(1.00000+ 4.50000*exp( -0.000700000*pow(STATES[0] - 9.00000, 2.00000)), -1.00000); ALGEBRAIC[41] = 0.290000+ 0.800000*pow(1.00000+exp((STATES[12] - 0.000120000)/6.00000e-05), -1.00000); ALGEBRAIC[44] = ( CONSTANTS[20]*( exp(( 0.350000*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[24] - exp(( -0.650000*CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[6], 3.00000)*STATES[12]))/( (pow(CONSTANTS[21], 3.00000)+pow(CONSTANTS[6], 3.00000))*(CONSTANTS[22]+CONSTANTS[24])*(1.00000+ CONSTANTS[23]*exp(( -0.650000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])))); ALGEBRAIC[0] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[6]/STATES[1]); ALGEBRAIC[45] = CONSTANTS[25]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[47] = CONSTANTS[27]*(STATES[12]/(0.000500000+STATES[12])); ALGEBRAIC[48] = CONSTANTS[28]*pow(STATES[18], 2.00000)*STATES[19]*STATES[20]*(STATES[17] - STATES[12]); ALGEBRAIC[49] = 1.00000e-12*CONSTANTS[29]*ALGEBRAIC[48] - 5.00000e-13*( (1.00000/( 2.00000*CONSTANTS[2]))*ALGEBRAIC[36] - (1.00000/( 5.00000*CONSTANTS[2]))*ALGEBRAIC[44]); ALGEBRAIC[50] = pow(1.00000+exp((ALGEBRAIC[49] - 3.41750e-13)/-1.36700e-15), -1.00000); ALGEBRAIC[51] = 1.91000+ 2.09000*pow(1.00000+exp((ALGEBRAIC[49] - 3.41750e-13)/-1.36700e-15), -1.00000); ALGEBRAIC[52] = 1.00000 - pow(1.00000+exp((ALGEBRAIC[49] - 6.83500e-14)/-1.36700e-15), -1.00000); ALGEBRAIC[53] = (6.00000 - 6.00000*exp((STATES[0] - 7.90000)/-5.00000))/( (1.00000+ 0.300000*exp((STATES[0] - 7.90000)/-5.00000))*(STATES[0] - 7.90000)); ALGEBRAIC[54] = 1.00000 - pow(1.00000+exp((STATES[0] - 40.0000)/-17.0000), -1.00000); ALGEBRAIC[55] = (STATES[21] - STATES[17])/CONSTANTS[30]; ALGEBRAIC[56] = CONSTANTS[31]/(1.00000+CONSTANTS[32]/STATES[12]); ALGEBRAIC[57] = CONSTANTS[31]*(STATES[21]/CONSTANTS[33]); ALGEBRAIC[58] = CONSTANTS[5]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*(STATES[0] - ALGEBRAIC[0]); ALGEBRAIC[59] = ( CONSTANTS[7]*(STATES[0] - ALGEBRAIC[7]))/(1.00000+exp( 0.0700000*(STATES[0]+80.0000))); ALGEBRAIC[17] = 0.00855000+0.0779000/(1.00000+exp((STATES[0]+11.0000)/-16.0000)); ALGEBRAIC[60] = ALGEBRAIC[17]*pow(STATES[8], 3.00000)*STATES[9]*(STATES[0] - ALGEBRAIC[7]); ALGEBRAIC[42] = (( CONSTANTS[0]*CONSTANTS[1])/( -1.00000*CONSTANTS[2]))*log(CONSTANTS[15]/STATES[16]); ALGEBRAIC[61] = CONSTANTS[14]*CONSTANTS[16]*(STATES[0] - ALGEBRAIC[42]); ALGEBRAIC[43] = pow(1.00000+ 0.124500*exp( -0.100000*(( CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1])))+ 0.0365000*CONSTANTS[40]*exp(- (( CONSTANTS[2]*STATES[0])/( CONSTANTS[0]*CONSTANTS[1]))), -1.00000); ALGEBRAIC[63] = CONSTANTS[19]*ALGEBRAIC[43]*(1.00000/(1.00000+pow(CONSTANTS[17]/STATES[1], 1.50000)))*(CONSTANTS[8]/(CONSTANTS[8]+CONSTANTS[18])); ALGEBRAIC[46] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[24]/STATES[12]); ALGEBRAIC[64] = CONSTANTS[26]*(STATES[0] - ALGEBRAIC[46]); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[25] = 0.0; SI[26] = 0.0; SI[27] = 0.0; SI[22] = 1.0; SI[23] = 1.0; SI[24] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = STATES[0] - -40.0000; CONDVAR[1] = STATES[0] - -40.0000; CONDVAR[2] = STATES[0] - -40.0000; CONDVAR[3] = STATES[0] - -40.0000; }