Location: Purvis, Smith, Koizumi, Butera, 2007 @ 2ed8198e57a1 / purvis_smith_koizumi_butera_2007.cellml

Author:
pmr2.import <nobody@models.cellml.org>
Date:
2008-07-17 02:23 +1200
Desc:
committing version01 of purvis_smith_koizumi_butera_2007
Permanent Source URI:
http://models.cellml.org/workspace/purvis_smith_koizumi_butera_2007/rawfile/2ed8198e57a14d56ceb0badb6eaa3fae06cefdfa/purvis_smith_koizumi_butera_2007.cellml

<?xml version='1.0' encoding='utf-8'?>
<!--
This CellML file was generated on 17/07/2008 at 1:23:14 at p.m. using:

COR (0.9.31.979)
Copyright 2002-2008 Dr Alan Garny
http://COR.physiol.ox.ac.uk/ - COR@physiol.ox.ac.uk

CellML 1.0 was used to generate this model
http://www.CellML.org/
--><model xmlns="http://www.cellml.org/cellml/1.0#" xmlns:cmeta="http://www.cellml.org/metadata/1.0#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqs="http://www.cellml.org/bqs/1.0#" xmlns:cellml="http://www.cellml.org/cellml/1.0#" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:vCard="http://www.w3.org/2001/vcard-rdf/3.0#" cmeta:id="butera_koizumi_purvis_smith_2006" name="butera_koizumi_purvis_smith_2006">
	<documentation xmlns="http://cellml.org/tmp-documentation">
		<article>
			<articleinfo>
				<title>Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network</title>
				<author>
					<firstname>Geoffrey</firstname>
					<surname>Nunns</surname>
					<affiliation>
						<shortaffil>Bioengineering Institute, University of Auckland</shortaffil>
					</affiliation>
				</author>
			</articleinfo>
			<section id="sec_status">
				<title>Model Status</title>
				<para>
            This model is known to run in both PCEnv and COR. The published results cannot be replicated at this time, and further curation is needed. In addition to this, the paper describes a multi-cell network and uses this as a basis for its figures, this model reproduces a single cell of the pacemaker type, and FieldML will be needed to replicate the model data.  
          </para>
			</section>
			<sect1 id="sec_structure">
				<title>Model Structure</title>
				<para>
Abstract: The pre-Botzinger complex (pBC) is a vital subcircuit of the respiratory central pattern generator. Although the existence of neurons with pacemaker-like bursting properties in this network is not questioned, their role in network rhythmogenesis is unresolved. Modeling is ideally suited to address this debate because of the ease with which biophysical parameters of individual cells and network architecture can be manipulated. We modeled the parameter variability of experimental data from pBC bursting pacemaker and nonpacemaker neurons using a modified version of our previously developed pBC neuron and network models. To investigate the role of pacemakers in networkwide rhythmogenesis, we simulated networks of these neurons and varied the fraction of the population made up of pacemakers. For each number of pacemaker neurons, we varied the amount of tonic drive to the network and measured the frequency of synchronous networkwide bursting produced. Both excitatory networks with all-to-all coupling and sparsely connected networks were explored for several levels of synaptic coupling strength. Networks containing only nonpacemakers were able to produce networkwide bursting, but with a low probability of bursting and low input and output ranges. The results indicate that inclusion of pacemakers in an excitatory network increases robustness of the network by more than tripling the input and output ranges compared with networks containing no pacemakers. The largest increase in dynamic range occurs when the number of pacemakers in the network is greater than 20% of the population. Experimental tests of the model predictions are proposed.</para>

<informalfigure float="0" id="fig_reaction_diagram">
<mediaobject>
  <imageobject>
    <objectinfo>
      <title>model diagram</title>
    </objectinfo>
    <imagedata fileref="purvis_2007.png"/>
  </imageobject>
</mediaobject>
<caption>Schematic diagram depicting the relationships
of the active contraction framework proposed by Hunter
et al. (11). The model is driven by SL and sarcomere
velocity, and intracellular [Ca21]i. Inputs are in bold,
algebraic length dependencies are in italics, processes
described by differential equations are standard font.</caption>
</informalfigure>

				<para>
The complete original paper reference is cited below:
</para>
				<para>
					<ulink url="http://jn.physiology.org/cgi/content/abstract/97/2/1515">Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network</ulink>, L.K. Purvis, J.C. Smith, H. Koizumi, R.J. Butera 2007, <ulink url="http://jn.physiology.org/">
						<emphasis>Journal of Neurophysiology</emphasis>
					</ulink>, 97, 1515-1526.  (<ulink url="http://jn.physiology.org/cgi/content/full/97/2/1515">Full text</ulink> and <ulink url="http://jn.physiology.org/cgi/reprint/97/2/1515">PDF</ulink> versions of the article are available for Journal Members on the JN website.)  <ulink url="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;list_uids=17167061&amp;dopt=Abstract">PubMed ID: 17167061 </ulink>
				</para>
			
			</sect1>
		</article>
	</documentation>   <units name="millisecond">
      <unit units="second" prefix="milli"/>
   </units>
   <units name="millivolt">
      <unit units="volt" prefix="milli"/>
   </units>
   <units name="nanoA">
      <unit units="ampere" prefix="nano"/>
   </units>
   <units name="nanoS">
      <unit units="siemens" prefix="nano"/>
   </units>
   <units name="nanoF">
      <unit units="farad" prefix="nano"/>
   </units>
   <component name="environment">
      <variable units="millisecond" public_interface="out" name="time"/>
   </component>
   <component name="membrane">
      <variable units="millivolt" public_interface="out" name="V" initial_value="1"/>
      <variable units="nanoF" name="C" initial_value="0.021"/>
      <variable units="millisecond" public_interface="in" name="time"/>
      <variable units="nanoA" name="i_app" initial_value="0"/>
      <variable units="nanoA" public_interface="in" name="i_tonic_e"/>
      <variable units="nanoA" public_interface="in" name="i_Na"/>
      <variable units="nanoA" public_interface="in" name="i_NaP"/>
      <variable units="nanoA" public_interface="in" name="i_K"/>
      <variable units="nanoA" public_interface="in" name="i_leak"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <apply>
               <diff/>
               <bvar>
                  <ci>time</ci>
               </bvar>
               <ci>V</ci>
            </apply>
            <apply>
               <divide/>
               <apply>
                  <plus/>
                  <apply>
                     <minus/>
                     <apply>
                        <plus/>
                        <ci>i_Na</ci>
                        <ci>i_NaP</ci>
                        <ci>i_K</ci>
                        <ci>i_leak</ci>
                     </apply>
                  </apply>
                  <ci>i_tonic_e</ci>
                  <ci>i_app</ci>
               </apply>
               <ci>C</ci>
            </apply>
         </apply>
      </math>
   </component>
   <component name="fast_sodium_current">
      <variable units="nanoA" public_interface="out" name="i_Na"/>
      <variable units="millivolt" public_interface="out" name="E_Na" initial_value="50"/>
      <variable units="nanoS" name="g_Na" initial_value="28"/>
      <variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
      <variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
      <variable units="dimensionless" private_interface="in" name="m_infinity"/>
      <variable units="dimensionless" public_interface="in" name="n"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>i_Na</ci>
            <apply>
               <times/>
               <ci>g_Na</ci>
               <apply>
                  <power/>
                  <ci>m_infinity</ci>
                  <cn cellml:units="dimensionless">3</cn>
               </apply>
               <apply>
                  <minus/>
                  <cn cellml:units="dimensionless">1</cn>
                  <ci>n</ci>
               </apply>
               <apply>
                  <divide/>
                  <cn cellml:units="volt">1</cn>
                  <cn cellml:units="millivolt">1000</cn>
               </apply>
               <apply>
                  <minus/>
                  <ci>V</ci>
                  <ci>E_Na</ci>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="fast_sodium_current_m_gate">
      <variable units="dimensionless" public_interface="out" name="m_infinity"/>
      <variable units="millivolt" name="theta_m" initial_value="-34"/>
      <variable units="millivolt" name="omega_m" initial_value="-5"/>
      <variable units="millivolt" public_interface="in" name="V"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>m_infinity</ci>
            <apply>
               <divide/>
               <cn cellml:units="dimensionless">1</cn>
               <apply>
                  <plus/>
                  <cn cellml:units="dimensionless">1</cn>
                  <apply>
                     <exp/>
                     <apply>
                        <divide/>
                        <apply>
                           <minus/>
                           <ci>V</ci>
                           <ci>theta_m</ci>
                        </apply>
                        <ci>omega_m</ci>
                     </apply>
                  </apply>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="potassium_current">
      <variable units="nanoA" public_interface="out" name="i_K"/>
      <variable units="nanoS" name="g_K" initial_value="11.2"/>
      <variable units="millivolt" name="E_K" initial_value="-85"/>
      <variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
      <variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
      <variable units="dimensionless" public_interface="out" private_interface="in" name="n"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>i_K</ci>
            <apply>
               <times/>
               <ci>g_K</ci>
               <apply>
                  <power/>
                  <ci>n</ci>
                  <cn cellml:units="dimensionless">4</cn>
               </apply>
               <apply>
                  <divide/>
                  <cn cellml:units="volt">1</cn>
                  <cn cellml:units="millivolt">1000</cn>
               </apply>
               <apply>
                  <minus/>
                  <ci>V</ci>
                  <ci>E_K</ci>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="potassium_current_n_gate">
      <variable units="dimensionless" public_interface="out" name="n" initial_value="0.003"/>
      <variable units="dimensionless" name="n_infinity"/>
      <variable units="millisecond" name="tau_n"/>
      <variable units="millisecond" name="tau_n_max" initial_value="10"/>
      <variable units="millivolt" name="theta_n" initial_value="-29"/>
      <variable units="millivolt" name="omega_n" initial_value="-4"/>
      <variable units="millivolt" public_interface="in" name="V"/>
      <variable units="millisecond" public_interface="in" name="time"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <apply>
               <diff/>
               <bvar>
                  <ci>time</ci>
               </bvar>
               <ci>n</ci>
            </apply>
            <apply>
               <divide/>
               <apply>
                  <minus/>
                  <ci>n_infinity</ci>
                  <ci>n</ci>
               </apply>
               <ci>tau_n</ci>
            </apply>
         </apply>
         <apply>
            <eq/>
            <ci>n_infinity</ci>
            <apply>
               <divide/>
               <cn cellml:units="dimensionless">1</cn>
               <apply>
                  <plus/>
                  <cn cellml:units="dimensionless">1</cn>
                  <apply>
                     <exp/>
                     <apply>
                        <divide/>
                        <apply>
                           <minus/>
                           <ci>V</ci>
                           <ci>theta_n</ci>
                        </apply>
                        <ci>omega_n</ci>
                     </apply>
                  </apply>
               </apply>
            </apply>
         </apply>
         <apply>
            <eq/>
            <ci>tau_n</ci>
            <apply>
               <divide/>
               <ci>tau_n_max</ci>
               <apply>
                  <cosh/>
                  <apply>
                     <divide/>
                     <apply>
                        <minus/>
                        <ci>V</ci>
                        <ci>theta_n</ci>
                     </apply>
                     <apply>
                        <times/>
                        <cn cellml:units="dimensionless">2</cn>
                        <ci>omega_n</ci>
                     </apply>
                  </apply>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="persistent_sodium_current">
      <variable units="nanoA" public_interface="out" name="i_NaP"/>
      <variable units="nanoS" name="g_NaP" initial_value="2.44"/>
      <variable units="millisecond" public_interface="in" private_interface="out" name="time"/>
      <variable units="millivolt" public_interface="in" private_interface="out" name="V"/>
      <variable units="millivolt" public_interface="in" name="E_Na"/>
      <variable units="dimensionless" private_interface="in" name="m_infinity"/>
      <variable units="dimensionless" private_interface="in" name="h"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>i_NaP</ci>
            <apply>
               <times/>
               <ci>g_NaP</ci>
               <ci>m_infinity</ci>
               <ci>h</ci>
               <apply>
                  <divide/>
                  <cn cellml:units="volt">1</cn>
                  <cn cellml:units="millivolt">1000</cn>
               </apply>
               <apply>
                  <minus/>
                  <ci>V</ci>
                  <ci>E_Na</ci>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="persistent_sodium_current_m_gate">
      <variable units="dimensionless" public_interface="out" name="m_infinity"/>
      <variable units="millivolt" name="theta_m" initial_value="-45.1"/>
      <variable units="millivolt" name="omega_m" initial_value="-6"/>
      <variable units="millivolt" public_interface="in" name="V"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>m_infinity</ci>
            <apply>
               <divide/>
               <cn cellml:units="dimensionless">1</cn>
               <apply>
                  <plus/>
                  <cn cellml:units="dimensionless">1</cn>
                  <apply>
                     <exp/>
                     <apply>
                        <divide/>
                        <apply>
                           <minus/>
                           <ci>V</ci>
                           <ci>theta_m</ci>
                        </apply>
                        <ci>omega_m</ci>
                     </apply>
                  </apply>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="persistent_sodium_current_h_gate">
      <variable units="dimensionless" public_interface="out" name="h" initial_value="0.92"/>
      <variable units="dimensionless" name="h_infinity"/>
      <variable units="millisecond" name="tau_h"/>
      <variable units="millisecond" name="tau_h_max" initial_value="10000"/>
      <variable units="millivolt" name="theta_h" initial_value="-53"/>
      <variable units="millivolt" name="omega_h" initial_value="6"/>
      <variable units="millivolt" public_interface="in" name="V"/>
      <variable units="millisecond" public_interface="in" name="time"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <apply>
               <diff/>
               <bvar>
                  <ci>time</ci>
               </bvar>
               <ci>h</ci>
            </apply>
            <apply>
               <divide/>
               <apply>
                  <minus/>
                  <ci>h_infinity</ci>
                  <ci>h</ci>
               </apply>
               <ci>tau_h</ci>
            </apply>
         </apply>
         <apply>
            <eq/>
            <ci>h_infinity</ci>
            <apply>
               <divide/>
               <cn cellml:units="dimensionless">1</cn>
               <apply>
                  <plus/>
                  <cn cellml:units="dimensionless">1</cn>
                  <apply>
                     <exp/>
                     <apply>
                        <divide/>
                        <apply>
                           <minus/>
                           <ci>V</ci>
                           <ci>theta_h</ci>
                        </apply>
                        <ci>omega_h</ci>
                     </apply>
                  </apply>
               </apply>
            </apply>
         </apply>
         <apply>
            <eq/>
            <ci>tau_h</ci>
            <apply>
               <divide/>
               <ci>tau_h_max</ci>
               <apply>
                  <cosh/>
                  <apply>
                     <divide/>
                     <apply>
                        <minus/>
                        <ci>V</ci>
                        <ci>theta_h</ci>
                     </apply>
                     <apply>
                        <times/>
                        <cn cellml:units="dimensionless">2</cn>
                        <ci>omega_h</ci>
                     </apply>
                  </apply>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="leakage_current">
      <variable units="nanoA" public_interface="out" name="i_leak"/>
      <variable units="nanoS" name="g_leak" initial_value="2.2"/>
      <variable units="millivolt" name="E_leak" initial_value="-70"/>
      <variable units="millisecond" public_interface="in" name="time"/>
      <variable units="millivolt" public_interface="in" name="V"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>i_leak</ci>
            <apply>
               <times/>
               <ci>g_leak</ci>
               <apply>
                  <divide/>
                  <cn cellml:units="volt">1</cn>
                  <cn cellml:units="millivolt">1000</cn>
               </apply>
               <apply>
                  <minus/>
                  <ci>V</ci>
                  <ci>E_leak</ci>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <component name="tonic_current">
      <variable units="nanoA" public_interface="out" name="i_tonic_e"/>
      <variable units="nanoS" name="g_tonic_e" initial_value="0"/>
      <variable units="millivolt" name="E_syn_e" initial_value="0"/>
      <variable units="millisecond" public_interface="in" name="time"/>
      <variable units="millivolt" public_interface="in" name="V"/>
      <math xmlns="http://www.w3.org/1998/Math/MathML">
         <apply>
            <eq/>
            <ci>i_tonic_e</ci>
            <apply>
               <times/>
               <ci>g_tonic_e</ci>
               <apply>
                  <divide/>
                  <cn cellml:units="volt">1</cn>
                  <cn cellml:units="millivolt">1000</cn>
               </apply>
               <apply>
                  <minus/>
                  <ci>V</ci>
                  <ci>E_syn_e</ci>
               </apply>
            </apply>
         </apply>
      </math>
   </component>
   <group>
      <relationship_ref relationship="encapsulation"/>
      <component_ref component="fast_sodium_current">
         <component_ref component="fast_sodium_current_m_gate"/>
      </component_ref>
      <component_ref component="potassium_current">
         <component_ref component="potassium_current_n_gate"/>
      </component_ref>
      <component_ref component="persistent_sodium_current">
         <component_ref component="persistent_sodium_current_m_gate"/>
         <component_ref component="persistent_sodium_current_h_gate"/>
      </component_ref>
   </group>
   <connection>
      <map_components component_2="environment" component_1="membrane"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="environment" component_1="fast_sodium_current"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="environment" component_1="potassium_current"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="environment" component_1="persistent_sodium_current"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="environment" component_1="leakage_current"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="environment" component_1="tonic_current"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="membrane" component_1="fast_sodium_current"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="i_Na" variable_1="i_Na"/>
   </connection>
   <connection>
      <map_components component_2="membrane" component_1="potassium_current"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="i_K" variable_1="i_K"/>
   </connection>
   <connection>
      <map_components component_2="membrane" component_1="persistent_sodium_current"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="i_NaP" variable_1="i_NaP"/>
   </connection>
   <connection>
      <map_components component_2="membrane" component_1="leakage_current"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="i_leak" variable_1="i_leak"/>
   </connection>
   <connection>
      <map_components component_2="membrane" component_1="tonic_current"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="i_tonic_e" variable_1="i_tonic_e"/>
   </connection>
   <connection>
      <map_components component_2="persistent_sodium_current" component_1="fast_sodium_current"/>
      <map_variables variable_2="E_Na" variable_1="E_Na"/>
   </connection>
   <connection>
      <map_components component_2="potassium_current" component_1="fast_sodium_current"/>
      <map_variables variable_2="n" variable_1="n"/>
   </connection>
   <connection>
      <map_components component_2="fast_sodium_current_m_gate" component_1="fast_sodium_current"/>
      <map_variables variable_2="m_infinity" variable_1="m_infinity"/>
      <map_variables variable_2="V" variable_1="V"/>
   </connection>
   <connection>
      <map_components component_2="potassium_current_n_gate" component_1="potassium_current"/>
      <map_variables variable_2="n" variable_1="n"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>
   <connection>
      <map_components component_2="persistent_sodium_current_m_gate" component_1="persistent_sodium_current"/>
      <map_variables variable_2="m_infinity" variable_1="m_infinity"/>
      <map_variables variable_2="V" variable_1="V"/>
   </connection>
   <connection>
      <map_components component_2="persistent_sodium_current_h_gate" component_1="persistent_sodium_current"/>
      <map_variables variable_2="h" variable_1="h"/>
      <map_variables variable_2="V" variable_1="V"/>
      <map_variables variable_2="time" variable_1="time"/>
   </connection>

<rdf:RDF>
  <rdf:Seq rdf:about="rdf:#a31a27f1-8d0d-4c12-acc3-0f5f284495c3">
    <rdf:li rdf:resource="rdf:#6883b6c3-1f2c-47a2-be6a-33f4dac11825"/>
    <rdf:li rdf:resource="rdf:#d0466534-2574-45c1-93d4-b06916a8517d"/>
    <rdf:li rdf:resource="rdf:#e5686ae4-44ff-4059-9ba3-bdfb6cfd6f5a"/>
    <rdf:li rdf:resource="rdf:#a9d6950f-39d6-418f-80e8-6cca3e02ec86"/>
  </rdf:Seq>
  <rdf:Description rdf:about="rdf:#6883b6c3-1f2c-47a2-be6a-33f4dac11825">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#07b64d56-c35f-4125-abca-22214ca0f0e1"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#f1eaae36-1d5c-4463-841c-0bd928e359fa">
    <dc:title>Journal of Neurophysiology</dc:title>
  </rdf:Description>
  <rdf:Description rdf:about="">
    <dc:publisher/>
    <cmeta:comment rdf:resource="rdf:#836606f3-a256-4757-af19-14063d7c256c"/>
    <dcterms:created rdf:resource="rdf:#39952cc5-9a4a-437f-a2b0-cdea41823ff3"/>
    <dc:creator rdf:resource="rdf:#cab31d81-29f6-4974-8065-ff676a5aa3ba"/>
    <cmeta:modification rdf:resource="rdf:#8ae6a4f0-367c-49ee-95c5-97b96c210838"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a56bbf02-0cfc-404e-b4a4-68710b74ec4c">
    <rdf:type rdf:resource="http://imc.org/vCard/3.0#internet"/>
    <rdf:value>gnunns1@jhem.jhu.edu</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#d0466534-2574-45c1-93d4-b06916a8517d">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#ce8152ab-6065-4ad2-9d04-bd05c01a278f"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#e5686ae4-44ff-4059-9ba3-bdfb6cfd6f5a">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#c5787d75-fd3f-45ea-9653-3b2d525c453e"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8ae6a4f0-367c-49ee-95c5-97b96c210838">
    <dcterms:modified rdf:resource="rdf:#d6026876-a3d9-4e84-99fc-f0355c92ecd6"/>
    <rdf:value>Fixed "not exactly equivalent but dimensionally equivalent" errors.</rdf:value>
    <cmeta:modifier rdf:resource="rdf:#ffdf0b4f-9983-4c29-8590-bf359e415b0e"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#3ef6993b-ccaa-4d49-bc36-c70ba08ae73a">
    <dc:creator rdf:resource="rdf:#35161228-ae68-46ea-9fbb-609c6b8a366e"/>
    <rdf:value>This CellML model is known to run in both PCEnv and COR, the units have been checked and are consistent. The CellML model can recreate the published results for the single cell. However, in addition to the single cell model, this publication also describes a multicellular network, and it uses the simulation results from this model as a basis for its figures. Alone, CellML can not describe this kind of model. Instead we will need to embed the current CellML model within a FieldML or openCMISS framework (or other such modelling frameworks) in order to fully implement the multicellular network description.</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#c5787d75-fd3f-45ea-9653-3b2d525c453e">
    <vCard:Given>H</vCard:Given>
    <vCard:Family>Koizumi</vCard:Family>
    <vCard:Other/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#39952cc5-9a4a-437f-a2b0-cdea41823ff3">
    <dcterms:W3CDTF>2008-07-17T00:00:00+00:00</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#d6026876-a3d9-4e84-99fc-f0355c92ecd6">
    <dcterms:W3CDTF>2008-07-17T14:19:05+12:00</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#558ec226-3208-4a42-ba75-28bbd34c8ead">
    <vCard:FN>Geoff Nunns</vCard:FN>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a3b824d2-cadf-4b58-a030-0c5cb3dfa391">
    <vCard:Given>Geoffrey</vCard:Given>
    <vCard:Family>Nunns</vCard:Family>
    <vCard:Other>Rogan</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#07b64d56-c35f-4125-abca-22214ca0f0e1">
    <vCard:Given>Liston</vCard:Given>
    <vCard:Family>Purvis</vCard:Family>
    <vCard:Other>K</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#8a3958af-263f-4655-8c42-9e5d656acd8a">
    <dc:creator rdf:resource="rdf:#a31a27f1-8d0d-4c12-acc3-0f5f284495c3"/>
    <dc:title>Intrinsic Bursters Increase the Robustness of Rythm Generation in an Excitatory Network</dc:title>
    <bqs:volume>97</bqs:volume>
    <bqs:first_page>1515</bqs:first_page>
    <bqs:Journal rdf:resource="rdf:#f1eaae36-1d5c-4463-841c-0bd928e359fa"/>
    <dcterms:issued rdf:resource="rdf:#ee716159-c10f-48c7-9cc1-bfed7f9a8e1e"/>
    <bqs:last_page>1526</bqs:last_page>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ce8152ab-6065-4ad2-9d04-bd05c01a278f">
    <vCard:Given>Jeffrey</vCard:Given>
    <vCard:Family>Smith</vCard:Family>
    <vCard:Other>C</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#129a9084-4f6f-4c34-8176-2abb3d2f2f70">
    <vCard:Orgname>Auckland Bioengineering Institute</vCard:Orgname>
    <vCard:Orgunit>CellML Team</vCard:Orgunit>
  </rdf:Description>
  <rdf:Description rdf:about="#butera_koizumi_purvis_smith_2006">
    <bqs:reference rdf:resource="rdf:#7a3ba441-d864-453f-97ad-0fd20652301d"/>
    <cmeta:comment rdf:resource="rdf:#3ef6993b-ccaa-4d49-bc36-c70ba08ae73a"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ee716159-c10f-48c7-9cc1-bfed7f9a8e1e">
    <dcterms:W3CDTF>2007-00-00 00:00</dcterms:W3CDTF>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#836606f3-a256-4757-af19-14063d7c256c">
    <dc:creator rdf:resource="rdf:#558ec226-3208-4a42-ba75-28bbd34c8ead"/>
    <rdf:value>This CellML model is known to run in both PCEnv and COR, the units have been checked and are consistent. The CellML model can recreate the published results for the single cell. However, in addition to the single cell model, this publication also describes a multicellular network, and it uses the simulation results from this model as a basis for its figures. Alone, CellML can not describe this kind of model. Instead we will need to embed the current CellML model within a FieldML or openCMISS framework (or other such modelling frameworks) in order to fully implement the multicellular network description.</rdf:value>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#27cc4d46-d48b-48f3-83a2-131574320632">
    <vCard:Given>Geoffrey</vCard:Given>
    <vCard:Family>Nunns</vCard:Family>
    <vCard:Other>Rogan</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#afd12d3d-5a5e-4dd5-b5a7-abf5d8089a5a">
    <vCard:Given>Robert</vCard:Given>
    <vCard:Family>Butera</vCard:Family>
    <vCard:Other>J</vCard:Other>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#a9d6950f-39d6-418f-80e8-6cca3e02ec86">
    <rdf:type rdf:resource="http://www.cellml.org/bqs/1.0#Person"/>
    <vCard:N rdf:resource="rdf:#afd12d3d-5a5e-4dd5-b5a7-abf5d8089a5a"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#7a3ba441-d864-453f-97ad-0fd20652301d">
    <bqs:Pubmed_id>17167061</bqs:Pubmed_id>
    <bqs:JournalArticle rdf:resource="rdf:#8a3958af-263f-4655-8c42-9e5d656acd8a"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#cab31d81-29f6-4974-8065-ff676a5aa3ba">
    <vCard:ORG rdf:resource="rdf:#129a9084-4f6f-4c34-8176-2abb3d2f2f70"/>
    <vCard:EMAIL rdf:resource="rdf:#a56bbf02-0cfc-404e-b4a4-68710b74ec4c"/>
    <vCard:N rdf:resource="rdf:#a3b824d2-cadf-4b58-a030-0c5cb3dfa391"/>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#35161228-ae68-46ea-9fbb-609c6b8a366e">
    <vCard:FN>Geoff Nunns</vCard:FN>
  </rdf:Description>
  <rdf:Description rdf:about="rdf:#ffdf0b4f-9983-4c29-8590-bf359e415b0e">
    <vCard:N rdf:resource="rdf:#27cc4d46-d48b-48f3-83a2-131574320632"/>
  </rdf:Description>
</rdf:RDF>
</model>