Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 51 sizeStates = 13 sizeConstants = 58 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "t in component environment (ms)" legend_constants[0] = "R in component environment (mJ_per_mole_kelvin)" legend_constants[1] = "T in component environment (kelvin)" legend_constants[2] = "F in component environment (coulomb_per_mole)" legend_constants[48] = "V_tau in component environment (mV)" legend_constants[3] = "Ca_o in component environment (mM)" legend_constants[4] = "Na_o in component environment (mM)" legend_constants[5] = "K_o in component environment (mM)" legend_constants[49] = "vol_cyt in component environment (pl)" legend_constants[6] = "vol_pmu in component environment (pl)" legend_constants[7] = "fr_cyt in component environment (dimensionless)" legend_states[0] = "V in component Membrane (mV)" legend_algebraic[0] = "VD in component Membrane (dimensionless)" legend_constants[8] = "C_sp in component Membrane (pF_per_sqcm)" legend_states[1] = "Ca_i in component Cytosol (mM)" legend_states[2] = "Na_i in component Cytosol (mM)" legend_states[3] = "K_i in component Cytosol (mM)" legend_algebraic[2] = "V_Ca in component Membrane (dimensionless)" legend_algebraic[4] = "V_Na in component Membrane (dimensionless)" legend_algebraic[6] = "V_K in component Membrane (dimensionless)" legend_constants[55] = "A_pmu in component Membrane (sqcm)" legend_constants[9] = "SVR_pmu in component Membrane (per_cm)" legend_algebraic[40] = "J_Ca in component calcium_dynamics (mM_per_ms)" legend_algebraic[48] = "J_Na in component sodium_dynamics (mM_per_ms)" legend_algebraic[50] = "J_K in component potassium_dynamics (mM_per_ms)" legend_constants[10] = "atp in component Cytosol (mM)" legend_algebraic[39] = "J_ca in component calcium_dynamics (mM_per_ms)" legend_algebraic[19] = "I_CaL in component L_type_Ca_channel (pA)" legend_algebraic[34] = "I_pmca in component PMCA (pA)" legend_algebraic[38] = "I_xm in component NaCa (pA)" legend_algebraic[15] = "J_calb in component calcium_buffer_dynamics (mM_per_ms)" legend_algebraic[17] = "J_cam in component calcium_buffer_dynamics (mM_per_ms)" legend_algebraic[21] = "I_Na in component transient_Na_channel (pA)" legend_algebraic[22] = "I_Nalk in component Leak_Na_channel (pA)" legend_algebraic[23] = "I_NaHCN in component HCN_channel (pA)" legend_algebraic[46] = "I_nk in component sodium_pump (pA)" legend_algebraic[30] = "I_K in component potassium_dynamics (pA)" legend_algebraic[25] = "I_Ksk in component SK_K_channel (pA)" legend_algebraic[27] = "I_Kdr in component DR_K_channel (pA)" legend_algebraic[29] = "I_Kir in component IR_K_channel (pA)" legend_states[4] = "Calb in component calcium_buffer_dynamics (mM)" legend_states[5] = "Cam in component calcium_buffer_dynamics (mM)" legend_constants[11] = "Calbtot in component calcium_buffer_dynamics (mM)" legend_constants[12] = "Camtot in component calcium_buffer_dynamics (mM)" legend_algebraic[14] = "CaCalb in component calcium_buffer_dynamics (mM)" legend_algebraic[16] = "CaCam in component calcium_buffer_dynamics (mM)" legend_constants[13] = "kcal_1 in component calcium_buffer_dynamics (per_mM_ms)" legend_constants[14] = "kcal_2 in component calcium_buffer_dynamics (per_ms)" legend_algebraic[8] = "kcam_cb in component calcium_buffer_dynamics (per_ms)" legend_constants[15] = "kcam_cd in component calcium_buffer_dynamics (per_ms)" legend_algebraic[10] = "kcam_nb in component calcium_buffer_dynamics (per_ms)" legend_constants[16] = "kcam_nd in component calcium_buffer_dynamics (per_ms)" legend_algebraic[12] = "alpha_cam in component calcium_buffer_dynamics (per_ms)" legend_algebraic[13] = "beta_cam in component calcium_buffer_dynamics (per_ms)" legend_states[6] = "m_cal in component L_type_Ca_channel (dimensionless)" legend_algebraic[18] = "h_cal in component L_type_Ca_channel (dimensionless)" legend_constants[17] = "g_cal in component L_type_Ca_channel (pA_per_mM)" legend_constants[18] = "g_na in component transient_Na_channel (pA_per_mM)" legend_algebraic[20] = "O_na in component transient_Na_channel (dimensionless)" legend_states[7] = "m_na in component transient_Na_channel (dimensionless)" legend_states[8] = "h_na in component transient_Na_channel (dimensionless)" legend_constants[19] = "A_mna in component transient_Na_channel (per_ms)" legend_constants[20] = "B_mna in component transient_Na_channel (per_ms)" legend_constants[21] = "A_hna in component transient_Na_channel (per_ms)" legend_constants[22] = "B_hna in component transient_Na_channel (per_ms)" legend_constants[23] = "za_mna in component transient_Na_channel (dimensionless)" legend_constants[24] = "zb_mna in component transient_Na_channel (dimensionless)" legend_constants[25] = "za_hna in component transient_Na_channel (dimensionless)" legend_constants[26] = "zb_hna in component transient_Na_channel (dimensionless)" legend_constants[27] = "g_nalk in component Leak_Na_channel (pA_per_mM)" legend_constants[28] = "g_nahcn in component HCN_channel (pA_per_mM)" legend_states[9] = "O_hcn in component HCN_channel (dimensionless)" legend_algebraic[7] = "kf_hcn in component HCN_channel (per_ms)" legend_algebraic[11] = "kr_hcn in component HCN_channel (per_ms)" legend_algebraic[1] = "kf_free in component HCN_channel (per_ms)" legend_algebraic[3] = "kr_free in component HCN_channel (per_ms)" legend_algebraic[5] = "kf_bnd in component HCN_channel (per_ms)" legend_algebraic[9] = "kr_bnd in component HCN_channel (per_ms)" legend_constants[50] = "P_c in component HCN_channel (dimensionless)" legend_constants[51] = "P_o in component HCN_channel (dimensionless)" legend_constants[29] = "cAMP in component HCN_channel (mM)" legend_algebraic[24] = "O_sk in component SK_K_channel (dimensionless)" legend_constants[30] = "g_ksk in component SK_K_channel (pA_per_mM)" legend_algebraic[26] = "O_kdr in component DR_K_channel (dimensionless)" legend_states[10] = "m_kdr in component DR_K_channel (dimensionless)" legend_constants[31] = "g_kdr in component DR_K_channel (nS)" legend_algebraic[28] = "O_kir in component IR_K_channel (dimensionless)" legend_constants[32] = "g_kir in component IR_K_channel (nS)" legend_states[11] = "y_pc in component PMCA (dimensionless)" legend_algebraic[31] = "K_pmca in component PMCA (pA)" legend_constants[52] = "k_1pc in component PMCA (per_ms)" legend_constants[33] = "k_2pc in component PMCA (per_ms)" legend_constants[34] = "k_3pc in component PMCA (per_ms)" legend_constants[35] = "k_4pc in component PMCA (per_ms)" legend_algebraic[33] = "P_E1Spc in component PMCA (dimensionless)" legend_constants[53] = "P_E2Spc in component PMCA (dimensionless)" legend_algebraic[35] = "P_E1pc in component PMCA (dimensionless)" legend_constants[56] = "P_E2pc in component PMCA (dimensionless)" legend_algebraic[37] = "alpha_pc in component PMCA (per_ms)" legend_constants[57] = "beta_pc in component PMCA (per_ms)" legend_algebraic[32] = "K_pci in component PMCA (mM)" legend_constants[36] = "K_pco in component PMCA (mM)" legend_constants[37] = "k_pmca in component PMCA (dimensionless)" legend_constants[38] = "del in component NaCa (dimensionless)" legend_constants[39] = "k_xm in component NaCa (pA)" legend_algebraic[36] = "Dr in component NaCa (mM4)" legend_algebraic[41] = "Na_eff in component sodium_pump (mM)" legend_states[12] = "y_nk in component sodium_pump (dimensionless)" legend_algebraic[44] = "alpha_nk in component sodium_pump (per_ms)" legend_algebraic[49] = "beta_nk in component sodium_pump (per_ms)" legend_algebraic[42] = "P_E1Snk in component sodium_pump (dimensionless)" legend_algebraic[45] = "P_E2Snk in component sodium_pump (dimensionless)" legend_algebraic[43] = "P_E1Dnk in component sodium_pump (dimensionless)" legend_algebraic[47] = "P_E2Dnk in component sodium_pump (dimensionless)" legend_constants[54] = "k_1nk in component sodium_pump (per_ms)" legend_constants[40] = "k_2nk in component sodium_pump (per_ms)" legend_constants[41] = "k_3nk in component sodium_pump (per_ms)" legend_constants[42] = "k_4nk in component sodium_pump (per_ms)" legend_constants[43] = "K_nknai in component sodium_pump (mM)" legend_constants[44] = "K_nknao in component sodium_pump (mM)" legend_constants[45] = "K_nkki in component sodium_pump (mM)" legend_constants[46] = "K_nkko in component sodium_pump (mM)" legend_constants[47] = "k_nk in component sodium_pump (pA)" legend_rates[0] = "d/dt V in component Membrane (mV)" legend_rates[1] = "d/dt Ca_i in component Cytosol (mM)" legend_rates[2] = "d/dt Na_i in component Cytosol (mM)" legend_rates[3] = "d/dt K_i in component Cytosol (mM)" legend_rates[4] = "d/dt Calb in component calcium_buffer_dynamics (mM)" legend_rates[5] = "d/dt Cam in component calcium_buffer_dynamics (mM)" legend_rates[6] = "d/dt m_cal in component L_type_Ca_channel (dimensionless)" legend_rates[7] = "d/dt m_na in component transient_Na_channel (dimensionless)" legend_rates[8] = "d/dt h_na in component transient_Na_channel (dimensionless)" legend_rates[9] = "d/dt O_hcn in component HCN_channel (dimensionless)" legend_rates[10] = "d/dt m_kdr in component DR_K_channel (dimensionless)" legend_rates[11] = "d/dt y_pc in component PMCA (dimensionless)" legend_rates[12] = "d/dt y_nk in component sodium_pump (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 8314.472 constants[1] = 310.15 constants[2] = 96485.30929 constants[3] = 1.8 constants[4] = 137 constants[5] = 5.4 constants[6] = 5 constants[7] = 0.5 states[0] = -49.42 constants[8] = 0.9e6 states[1] = 0.000188 states[2] = 4.6876 states[3] = 126.05893 constants[9] = 1.6667e4 constants[10] = 2 states[4] = 0.0026 states[5] = 0.0222 constants[11] = 0.005 constants[12] = 0.0235 constants[13] = 10 constants[14] = 2e-3 constants[15] = 0.003 constants[16] = 3 states[6] = 0.006271 constants[17] = 2101.2 constants[18] = 907.68 states[7] = 0.0952 states[8] = 0.1848 constants[19] = 1.9651 constants[20] = 0.0424 constants[21] = 9.566e-5 constants[22] = 0.5296 constants[23] = 1.7127 constants[24] = 1.5581 constants[25] = -2.4317 constants[26] = -1.1868 constants[27] = 0.0053 constants[28] = 51.1 states[9] = 0.003 constants[29] = 1e-5 constants[30] = 2.2515 states[10] = 0.0932 constants[31] = 31.237 constants[32] = 13.816 states[11] = 0.483 constants[33] = 0.001 constants[34] = 0.001 constants[35] = 1 constants[36] = 2 constants[37] = 2.233 constants[38] = 0.35 constants[39] = 0.0166 states[12] = 0.6213 constants[40] = 0.04 constants[41] = 0.01 constants[42] = 0.165 constants[43] = 4.05 constants[44] = 69.8 constants[45] = 32.88 constants[46] = 0.258 constants[47] = 1085.7 constants[48] = (constants[0]*constants[1])/constants[2] constants[49] = constants[7]*constants[6] constants[50] = 1.00000/(1.00000+constants[29]/0.00116300) constants[51] = 1.00000/(1.00000+constants[29]/1.45000e-05) constants[52] = 1.00000/(1.00000+0.100000/constants[10]) constants[53] = 1.00000/(1.00000+constants[36]/constants[3]) constants[54] = 0.370000/(1.00000+0.0940000/constants[10]) constants[55] = (constants[9]*constants[6]*0.00100000*0.00100000*0.00100000)/1.00000 constants[56] = 1.00000-constants[53] constants[57] = constants[33]*constants[53]+constants[35]*constants[56] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[6] = (1.00000/(1.00000+exp(-(states[0]+15.0000)/7.00000))-states[6])/(7.68000*exp(-(power((states[0]+65.0000)/17.3300, 2.00000)))+0.723100) rates[10] = (1.00000/(1.00000+exp(-(states[0]+25.0000)/12.0000))-states[10])/(18.0000/(1.00000+exp((states[0]+39.0000)/8.00000))+1.00000) algebraic[0] = states[0]/constants[48] rates[7] = constants[19]*exp(constants[23]*algebraic[0])*(1.00000-states[7])-constants[20]*exp(-constants[24]*algebraic[0])*states[7] rates[8] = constants[21]*exp(constants[25]*algebraic[0])*(1.00000-states[8])-constants[22]*exp(-constants[26]*algebraic[0])*states[8] algebraic[1] = 0.00600000/(1.00000+exp((states[0]+87.7000)/6.45000)) algebraic[5] = 0.0268000/(1.00000+exp((states[0]+94.2000)/13.3000)) algebraic[7] = algebraic[1]*constants[50]+algebraic[5]*(1.00000-constants[50]) algebraic[3] = 0.0800000/(1.00000+exp(-(states[0]+51.7000)/7.00000)) algebraic[9] = 0.0800000/(1.00000+exp(-(states[0]+35.5000)/7.00000)) algebraic[11] = algebraic[3]*constants[51]+algebraic[9]*(1.00000-constants[51]) rates[9] = algebraic[7]*(1.00000-states[9])-algebraic[11]*states[9] algebraic[14] = constants[11]-states[4] algebraic[15] = constants[13]*states[4]*states[1]-constants[14]*algebraic[14] rates[4] = -algebraic[15] algebraic[16] = constants[12]-states[5] algebraic[8] = 12000.0*(power(states[1], 2.00000)) algebraic[10] = 3.70000e+06*(power(states[1], 2.00000)) algebraic[12] = algebraic[8]*algebraic[10]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16])) algebraic[13] = constants[15]*constants[16]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16])) algebraic[17] = algebraic[12]*states[5]-algebraic[13]*algebraic[16] rates[5] = -algebraic[17] algebraic[32] = (173.600/(1.00000+algebraic[16]/5.00000e-05)+6.40000)*1.00000e-05 algebraic[33] = 1.00000/(1.00000+algebraic[32]/states[1]) algebraic[35] = 1.00000-algebraic[33] algebraic[37] = constants[52]*algebraic[33]+constants[34]*algebraic[35] rates[11] = constants[57]*(1.00000-states[11])-algebraic[37]*states[11] algebraic[2] = 0.500000*log(constants[3]/states[1]) algebraic[18] = 0.000450000/(0.000450000+states[1]) algebraic[19] = (constants[17]*states[6]*algebraic[18]*(power(states[1]*constants[3], 1.0/2))*sinh(algebraic[0]-algebraic[2]))/(sinh(algebraic[0])/algebraic[0]) algebraic[31] = constants[37]*((10.5600*algebraic[16])/(algebraic[16]+5.00000e-05)+1.20000) algebraic[34] = algebraic[31]*(constants[52]*algebraic[33]*states[11]-constants[33]*constants[53]*(1.00000-states[11]))*1.00000 algebraic[36] = (1.00000+0.00100000*((power(states[2], 3.00000))*constants[3]+(power(constants[4], 3.00000))*states[1]))*(1.00000+states[1]/0.00690000) algebraic[38] = (constants[39]*((power(states[2], 3.00000))*constants[3]*exp(constants[38]*algebraic[0])-(power(constants[4], 3.00000))*states[1]*exp((constants[38]-1.00000)*algebraic[0])))/algebraic[36] algebraic[39] = (-1.00000/(2.00000*constants[2]*constants[49]))*((algebraic[19]+2.00000*algebraic[34])-2.00000*algebraic[38]) algebraic[40] = algebraic[39]-(algebraic[15]+4.00000*algebraic[17]) rates[1] = algebraic[40] algebraic[4] = log(constants[4]/states[2]) algebraic[20] = (power(states[7], 3.00000))*states[8] algebraic[21] = (constants[18]*algebraic[20]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[22] = (constants[27]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[23] = (constants[28]*states[9]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[42] = 1.00000/(1.00000+(constants[43]/states[2])*(1.00000+states[3]/constants[45])) algebraic[41] = constants[4]*exp(-0.820000*algebraic[0]) algebraic[45] = 1.00000/(1.00000+(constants[44]/algebraic[41])*(1.00000+constants[5]/constants[46])) algebraic[46] = constants[47]*(constants[54]*algebraic[42]*states[12]-constants[40]*algebraic[45]*(1.00000-states[12]))*1.00000 algebraic[48] = (-1.00000/(constants[2]*constants[49]))*(3.00000*algebraic[46]+3.00000*algebraic[38]+algebraic[21]+algebraic[22]+algebraic[23]) rates[2] = algebraic[48] algebraic[43] = 1.00000/(1.00000+(constants[45]/states[3])*(1.00000+states[2]/constants[43])) algebraic[44] = constants[54]*algebraic[42]+constants[41]*algebraic[43] algebraic[47] = 1.00000/(1.00000+(constants[46]/constants[5])*(1.00000+algebraic[41]/constants[44])) algebraic[49] = constants[40]*algebraic[45]+constants[42]*algebraic[47] rates[12] = algebraic[49]*(1.00000-states[12])-algebraic[44]*states[12] algebraic[6] = log(constants[5]/states[3]) algebraic[24] = (power(states[1], 4.20000))/(power(0.000350000, 4.20000)+power(states[1], 4.20000)) algebraic[25] = (constants[30]*algebraic[24]*(power(states[3]*constants[5], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[6])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[26] = power(states[10], 3.00000) algebraic[27] = constants[31]*algebraic[26]*(states[0]-algebraic[6]*constants[48]) algebraic[28] = 1.00000/(1.00000+exp((states[0]+85.0000)/12.1000)) algebraic[29] = constants[32]*algebraic[28]*(states[0]-algebraic[6]*constants[48]) algebraic[30] = algebraic[25]+algebraic[27]+algebraic[29] algebraic[50] = (-1.00000/(constants[2]*constants[49]))*(algebraic[30]-2.00000*algebraic[46]) rates[0] = ((constants[2]*constants[49])/(constants[8]*constants[55]))*(algebraic[48]+algebraic[50]+2.00000*algebraic[40]) rates[3] = algebraic[50] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = states[0]/constants[48] algebraic[1] = 0.00600000/(1.00000+exp((states[0]+87.7000)/6.45000)) algebraic[5] = 0.0268000/(1.00000+exp((states[0]+94.2000)/13.3000)) algebraic[7] = algebraic[1]*constants[50]+algebraic[5]*(1.00000-constants[50]) algebraic[3] = 0.0800000/(1.00000+exp(-(states[0]+51.7000)/7.00000)) algebraic[9] = 0.0800000/(1.00000+exp(-(states[0]+35.5000)/7.00000)) algebraic[11] = algebraic[3]*constants[51]+algebraic[9]*(1.00000-constants[51]) algebraic[14] = constants[11]-states[4] algebraic[15] = constants[13]*states[4]*states[1]-constants[14]*algebraic[14] algebraic[16] = constants[12]-states[5] algebraic[8] = 12000.0*(power(states[1], 2.00000)) algebraic[10] = 3.70000e+06*(power(states[1], 2.00000)) algebraic[12] = algebraic[8]*algebraic[10]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16])) algebraic[13] = constants[15]*constants[16]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16])) algebraic[17] = algebraic[12]*states[5]-algebraic[13]*algebraic[16] algebraic[32] = (173.600/(1.00000+algebraic[16]/5.00000e-05)+6.40000)*1.00000e-05 algebraic[33] = 1.00000/(1.00000+algebraic[32]/states[1]) algebraic[35] = 1.00000-algebraic[33] algebraic[37] = constants[52]*algebraic[33]+constants[34]*algebraic[35] algebraic[2] = 0.500000*log(constants[3]/states[1]) algebraic[18] = 0.000450000/(0.000450000+states[1]) algebraic[19] = (constants[17]*states[6]*algebraic[18]*(power(states[1]*constants[3], 1.0/2))*sinh(algebraic[0]-algebraic[2]))/(sinh(algebraic[0])/algebraic[0]) algebraic[31] = constants[37]*((10.5600*algebraic[16])/(algebraic[16]+5.00000e-05)+1.20000) algebraic[34] = algebraic[31]*(constants[52]*algebraic[33]*states[11]-constants[33]*constants[53]*(1.00000-states[11]))*1.00000 algebraic[36] = (1.00000+0.00100000*((power(states[2], 3.00000))*constants[3]+(power(constants[4], 3.00000))*states[1]))*(1.00000+states[1]/0.00690000) algebraic[38] = (constants[39]*((power(states[2], 3.00000))*constants[3]*exp(constants[38]*algebraic[0])-(power(constants[4], 3.00000))*states[1]*exp((constants[38]-1.00000)*algebraic[0])))/algebraic[36] algebraic[39] = (-1.00000/(2.00000*constants[2]*constants[49]))*((algebraic[19]+2.00000*algebraic[34])-2.00000*algebraic[38]) algebraic[40] = algebraic[39]-(algebraic[15]+4.00000*algebraic[17]) algebraic[4] = log(constants[4]/states[2]) algebraic[20] = (power(states[7], 3.00000))*states[8] algebraic[21] = (constants[18]*algebraic[20]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[22] = (constants[27]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[23] = (constants[28]*states[9]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[42] = 1.00000/(1.00000+(constants[43]/states[2])*(1.00000+states[3]/constants[45])) algebraic[41] = constants[4]*exp(-0.820000*algebraic[0]) algebraic[45] = 1.00000/(1.00000+(constants[44]/algebraic[41])*(1.00000+constants[5]/constants[46])) algebraic[46] = constants[47]*(constants[54]*algebraic[42]*states[12]-constants[40]*algebraic[45]*(1.00000-states[12]))*1.00000 algebraic[48] = (-1.00000/(constants[2]*constants[49]))*(3.00000*algebraic[46]+3.00000*algebraic[38]+algebraic[21]+algebraic[22]+algebraic[23]) algebraic[43] = 1.00000/(1.00000+(constants[45]/states[3])*(1.00000+states[2]/constants[43])) algebraic[44] = constants[54]*algebraic[42]+constants[41]*algebraic[43] algebraic[47] = 1.00000/(1.00000+(constants[46]/constants[5])*(1.00000+algebraic[41]/constants[44])) algebraic[49] = constants[40]*algebraic[45]+constants[42]*algebraic[47] algebraic[6] = log(constants[5]/states[3]) algebraic[24] = (power(states[1], 4.20000))/(power(0.000350000, 4.20000)+power(states[1], 4.20000)) algebraic[25] = (constants[30]*algebraic[24]*(power(states[3]*constants[5], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[6])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0])) algebraic[26] = power(states[10], 3.00000) algebraic[27] = constants[31]*algebraic[26]*(states[0]-algebraic[6]*constants[48]) algebraic[28] = 1.00000/(1.00000+exp((states[0]+85.0000)/12.1000)) algebraic[29] = constants[32]*algebraic[28]*(states[0]-algebraic[6]*constants[48]) algebraic[30] = algebraic[25]+algebraic[27]+algebraic[29] algebraic[50] = (-1.00000/(constants[2]*constants[49]))*(algebraic[30]-2.00000*algebraic[46]) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)