Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays:
sizeAlgebraic = 51
sizeStates = 13
sizeConstants = 58
from math import *
from numpy import *

def createLegends():
    legend_states = [""] * sizeStates
    legend_rates = [""] * sizeStates
    legend_algebraic = [""] * sizeAlgebraic
    legend_voi = ""
    legend_constants = [""] * sizeConstants
    legend_voi = "t in component environment (ms)"
    legend_constants[0] = "R in component environment (mJ_per_mole_kelvin)"
    legend_constants[1] = "T in component environment (kelvin)"
    legend_constants[2] = "F in component environment (coulomb_per_mole)"
    legend_constants[48] = "V_tau in component environment (mV)"
    legend_constants[3] = "Ca_o in component environment (mM)"
    legend_constants[4] = "Na_o in component environment (mM)"
    legend_constants[5] = "K_o in component environment (mM)"
    legend_constants[49] = "vol_cyt in component environment (pl)"
    legend_constants[6] = "vol_pmu in component environment (pl)"
    legend_constants[7] = "fr_cyt in component environment (dimensionless)"
    legend_states[0] = "V in component Membrane (mV)"
    legend_algebraic[0] = "VD in component Membrane (dimensionless)"
    legend_constants[8] = "C_sp in component Membrane (pF_per_sqcm)"
    legend_states[1] = "Ca_i in component Cytosol (mM)"
    legend_states[2] = "Na_i in component Cytosol (mM)"
    legend_states[3] = "K_i in component Cytosol (mM)"
    legend_algebraic[2] = "V_Ca in component Membrane (dimensionless)"
    legend_algebraic[4] = "V_Na in component Membrane (dimensionless)"
    legend_algebraic[6] = "V_K in component Membrane (dimensionless)"
    legend_constants[55] = "A_pmu in component Membrane (sqcm)"
    legend_constants[9] = "SVR_pmu in component Membrane (per_cm)"
    legend_algebraic[40] = "J_Ca in component calcium_dynamics (mM_per_ms)"
    legend_algebraic[48] = "J_Na in component sodium_dynamics (mM_per_ms)"
    legend_algebraic[50] = "J_K in component potassium_dynamics (mM_per_ms)"
    legend_constants[10] = "atp in component Cytosol (mM)"
    legend_algebraic[39] = "J_ca in component calcium_dynamics (mM_per_ms)"
    legend_algebraic[19] = "I_CaL in component L_type_Ca_channel (pA)"
    legend_algebraic[34] = "I_pmca in component PMCA (pA)"
    legend_algebraic[38] = "I_xm in component NaCa (pA)"
    legend_algebraic[15] = "J_calb in component calcium_buffer_dynamics (mM_per_ms)"
    legend_algebraic[17] = "J_cam in component calcium_buffer_dynamics (mM_per_ms)"
    legend_algebraic[21] = "I_Na in component transient_Na_channel (pA)"
    legend_algebraic[22] = "I_Nalk in component Leak_Na_channel (pA)"
    legend_algebraic[23] = "I_NaHCN in component HCN_channel (pA)"
    legend_algebraic[46] = "I_nk in component sodium_pump (pA)"
    legend_algebraic[30] = "I_K in component potassium_dynamics (pA)"
    legend_algebraic[25] = "I_Ksk in component SK_K_channel (pA)"
    legend_algebraic[27] = "I_Kdr in component DR_K_channel (pA)"
    legend_algebraic[29] = "I_Kir in component IR_K_channel (pA)"
    legend_states[4] = "Calb in component calcium_buffer_dynamics (mM)"
    legend_states[5] = "Cam in component calcium_buffer_dynamics (mM)"
    legend_constants[11] = "Calbtot in component calcium_buffer_dynamics (mM)"
    legend_constants[12] = "Camtot in component calcium_buffer_dynamics (mM)"
    legend_algebraic[14] = "CaCalb in component calcium_buffer_dynamics (mM)"
    legend_algebraic[16] = "CaCam in component calcium_buffer_dynamics (mM)"
    legend_constants[13] = "kcal_1 in component calcium_buffer_dynamics (per_mM_ms)"
    legend_constants[14] = "kcal_2 in component calcium_buffer_dynamics (per_ms)"
    legend_algebraic[8] = "kcam_cb in component calcium_buffer_dynamics (per_ms)"
    legend_constants[15] = "kcam_cd in component calcium_buffer_dynamics (per_ms)"
    legend_algebraic[10] = "kcam_nb in component calcium_buffer_dynamics (per_ms)"
    legend_constants[16] = "kcam_nd in component calcium_buffer_dynamics (per_ms)"
    legend_algebraic[12] = "alpha_cam in component calcium_buffer_dynamics (per_ms)"
    legend_algebraic[13] = "beta_cam in component calcium_buffer_dynamics (per_ms)"
    legend_states[6] = "m_cal in component L_type_Ca_channel (dimensionless)"
    legend_algebraic[18] = "h_cal in component L_type_Ca_channel (dimensionless)"
    legend_constants[17] = "g_cal in component L_type_Ca_channel (pA_per_mM)"
    legend_constants[18] = "g_na in component transient_Na_channel (pA_per_mM)"
    legend_algebraic[20] = "O_na in component transient_Na_channel (dimensionless)"
    legend_states[7] = "m_na in component transient_Na_channel (dimensionless)"
    legend_states[8] = "h_na in component transient_Na_channel (dimensionless)"
    legend_constants[19] = "A_mna in component transient_Na_channel (per_ms)"
    legend_constants[20] = "B_mna in component transient_Na_channel (per_ms)"
    legend_constants[21] = "A_hna in component transient_Na_channel (per_ms)"
    legend_constants[22] = "B_hna in component transient_Na_channel (per_ms)"
    legend_constants[23] = "za_mna in component transient_Na_channel (dimensionless)"
    legend_constants[24] = "zb_mna in component transient_Na_channel (dimensionless)"
    legend_constants[25] = "za_hna in component transient_Na_channel (dimensionless)"
    legend_constants[26] = "zb_hna in component transient_Na_channel (dimensionless)"
    legend_constants[27] = "g_nalk in component Leak_Na_channel (pA_per_mM)"
    legend_constants[28] = "g_nahcn in component HCN_channel (pA_per_mM)"
    legend_states[9] = "O_hcn in component HCN_channel (dimensionless)"
    legend_algebraic[7] = "kf_hcn in component HCN_channel (per_ms)"
    legend_algebraic[11] = "kr_hcn in component HCN_channel (per_ms)"
    legend_algebraic[1] = "kf_free in component HCN_channel (per_ms)"
    legend_algebraic[3] = "kr_free in component HCN_channel (per_ms)"
    legend_algebraic[5] = "kf_bnd in component HCN_channel (per_ms)"
    legend_algebraic[9] = "kr_bnd in component HCN_channel (per_ms)"
    legend_constants[50] = "P_c in component HCN_channel (dimensionless)"
    legend_constants[51] = "P_o in component HCN_channel (dimensionless)"
    legend_constants[29] = "cAMP in component HCN_channel (mM)"
    legend_algebraic[24] = "O_sk in component SK_K_channel (dimensionless)"
    legend_constants[30] = "g_ksk in component SK_K_channel (pA_per_mM)"
    legend_algebraic[26] = "O_kdr in component DR_K_channel (dimensionless)"
    legend_states[10] = "m_kdr in component DR_K_channel (dimensionless)"
    legend_constants[31] = "g_kdr in component DR_K_channel (nS)"
    legend_algebraic[28] = "O_kir in component IR_K_channel (dimensionless)"
    legend_constants[32] = "g_kir in component IR_K_channel (nS)"
    legend_states[11] = "y_pc in component PMCA (dimensionless)"
    legend_algebraic[31] = "K_pmca in component PMCA (pA)"
    legend_constants[52] = "k_1pc in component PMCA (per_ms)"
    legend_constants[33] = "k_2pc in component PMCA (per_ms)"
    legend_constants[34] = "k_3pc in component PMCA (per_ms)"
    legend_constants[35] = "k_4pc in component PMCA (per_ms)"
    legend_algebraic[33] = "P_E1Spc in component PMCA (dimensionless)"
    legend_constants[53] = "P_E2Spc in component PMCA (dimensionless)"
    legend_algebraic[35] = "P_E1pc in component PMCA (dimensionless)"
    legend_constants[56] = "P_E2pc in component PMCA (dimensionless)"
    legend_algebraic[37] = "alpha_pc in component PMCA (per_ms)"
    legend_constants[57] = "beta_pc in component PMCA (per_ms)"
    legend_algebraic[32] = "K_pci in component PMCA (mM)"
    legend_constants[36] = "K_pco in component PMCA (mM)"
    legend_constants[37] = "k_pmca in component PMCA (dimensionless)"
    legend_constants[38] = "del in component NaCa (dimensionless)"
    legend_constants[39] = "k_xm in component NaCa (pA)"
    legend_algebraic[36] = "Dr in component NaCa (mM4)"
    legend_algebraic[41] = "Na_eff in component sodium_pump (mM)"
    legend_states[12] = "y_nk in component sodium_pump (dimensionless)"
    legend_algebraic[44] = "alpha_nk in component sodium_pump (per_ms)"
    legend_algebraic[49] = "beta_nk in component sodium_pump (per_ms)"
    legend_algebraic[42] = "P_E1Snk in component sodium_pump (dimensionless)"
    legend_algebraic[45] = "P_E2Snk in component sodium_pump (dimensionless)"
    legend_algebraic[43] = "P_E1Dnk in component sodium_pump (dimensionless)"
    legend_algebraic[47] = "P_E2Dnk in component sodium_pump (dimensionless)"
    legend_constants[54] = "k_1nk in component sodium_pump (per_ms)"
    legend_constants[40] = "k_2nk in component sodium_pump (per_ms)"
    legend_constants[41] = "k_3nk in component sodium_pump (per_ms)"
    legend_constants[42] = "k_4nk in component sodium_pump (per_ms)"
    legend_constants[43] = "K_nknai in component sodium_pump (mM)"
    legend_constants[44] = "K_nknao in component sodium_pump (mM)"
    legend_constants[45] = "K_nkki in component sodium_pump (mM)"
    legend_constants[46] = "K_nkko in component sodium_pump (mM)"
    legend_constants[47] = "k_nk in component sodium_pump (pA)"
    legend_rates[0] = "d/dt V in component Membrane (mV)"
    legend_rates[1] = "d/dt Ca_i in component Cytosol (mM)"
    legend_rates[2] = "d/dt Na_i in component Cytosol (mM)"
    legend_rates[3] = "d/dt K_i in component Cytosol (mM)"
    legend_rates[4] = "d/dt Calb in component calcium_buffer_dynamics (mM)"
    legend_rates[5] = "d/dt Cam in component calcium_buffer_dynamics (mM)"
    legend_rates[6] = "d/dt m_cal in component L_type_Ca_channel (dimensionless)"
    legend_rates[7] = "d/dt m_na in component transient_Na_channel (dimensionless)"
    legend_rates[8] = "d/dt h_na in component transient_Na_channel (dimensionless)"
    legend_rates[9] = "d/dt O_hcn in component HCN_channel (dimensionless)"
    legend_rates[10] = "d/dt m_kdr in component DR_K_channel (dimensionless)"
    legend_rates[11] = "d/dt y_pc in component PMCA (dimensionless)"
    legend_rates[12] = "d/dt y_nk in component sodium_pump (dimensionless)"
    return (legend_states, legend_algebraic, legend_voi, legend_constants)

def initConsts():
    constants = [0.0] * sizeConstants; states = [0.0] * sizeStates;
    constants[0] = 8314.472
    constants[1] = 310.15
    constants[2] = 96485.30929
    constants[3] = 1.8
    constants[4] = 137
    constants[5] = 5.4
    constants[6] = 5
    constants[7] = 0.5
    states[0] = -49.42
    constants[8] = 0.9e6
    states[1] = 0.000188
    states[2] = 4.6876
    states[3] = 126.05893
    constants[9] = 1.6667e4
    constants[10] = 2
    states[4] = 0.0026
    states[5] = 0.0222
    constants[11] = 0.005
    constants[12] = 0.0235
    constants[13] = 10
    constants[14] = 2e-3
    constants[15] = 0.003
    constants[16] = 3
    states[6] = 0.006271
    constants[17] = 2101.2
    constants[18] = 907.68
    states[7] = 0.0952
    states[8] = 0.1848
    constants[19] = 1.9651
    constants[20] = 0.0424
    constants[21] = 9.566e-5
    constants[22] = 0.5296
    constants[23] = 1.7127
    constants[24] = 1.5581
    constants[25] = -2.4317
    constants[26] = -1.1868
    constants[27] = 0.0053
    constants[28] = 51.1
    states[9] = 0.003
    constants[29] = 1e-5
    constants[30] = 2.2515
    states[10] = 0.0932
    constants[31] = 31.237
    constants[32] = 13.816
    states[11] = 0.483
    constants[33] = 0.001
    constants[34] = 0.001
    constants[35] = 1
    constants[36] = 2
    constants[37] = 2.233
    constants[38] = 0.35
    constants[39] = 0.0166
    states[12] = 0.6213
    constants[40] = 0.04
    constants[41] = 0.01
    constants[42] = 0.165
    constants[43] = 4.05
    constants[44] = 69.8
    constants[45] = 32.88
    constants[46] = 0.258
    constants[47] = 1085.7
    constants[48] = (constants[0]*constants[1])/constants[2]
    constants[49] = constants[7]*constants[6]
    constants[50] = 1.00000/(1.00000+constants[29]/0.00116300)
    constants[51] = 1.00000/(1.00000+constants[29]/1.45000e-05)
    constants[52] = 1.00000/(1.00000+0.100000/constants[10])
    constants[53] = 1.00000/(1.00000+constants[36]/constants[3])
    constants[54] = 0.370000/(1.00000+0.0940000/constants[10])
    constants[55] = (constants[9]*constants[6]*0.00100000*0.00100000*0.00100000)/1.00000
    constants[56] = 1.00000-constants[53]
    constants[57] = constants[33]*constants[53]+constants[35]*constants[56]
    return (states, constants)

def computeRates(voi, states, constants):
    rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic
    rates[6] = (1.00000/(1.00000+exp(-(states[0]+15.0000)/7.00000))-states[6])/(7.68000*exp(-(power((states[0]+65.0000)/17.3300, 2.00000)))+0.723100)
    rates[10] = (1.00000/(1.00000+exp(-(states[0]+25.0000)/12.0000))-states[10])/(18.0000/(1.00000+exp((states[0]+39.0000)/8.00000))+1.00000)
    algebraic[0] = states[0]/constants[48]
    rates[7] = constants[19]*exp(constants[23]*algebraic[0])*(1.00000-states[7])-constants[20]*exp(-constants[24]*algebraic[0])*states[7]
    rates[8] = constants[21]*exp(constants[25]*algebraic[0])*(1.00000-states[8])-constants[22]*exp(-constants[26]*algebraic[0])*states[8]
    algebraic[1] = 0.00600000/(1.00000+exp((states[0]+87.7000)/6.45000))
    algebraic[5] = 0.0268000/(1.00000+exp((states[0]+94.2000)/13.3000))
    algebraic[7] = algebraic[1]*constants[50]+algebraic[5]*(1.00000-constants[50])
    algebraic[3] = 0.0800000/(1.00000+exp(-(states[0]+51.7000)/7.00000))
    algebraic[9] = 0.0800000/(1.00000+exp(-(states[0]+35.5000)/7.00000))
    algebraic[11] = algebraic[3]*constants[51]+algebraic[9]*(1.00000-constants[51])
    rates[9] = algebraic[7]*(1.00000-states[9])-algebraic[11]*states[9]
    algebraic[14] = constants[11]-states[4]
    algebraic[15] = constants[13]*states[4]*states[1]-constants[14]*algebraic[14]
    rates[4] = -algebraic[15]
    algebraic[16] = constants[12]-states[5]
    algebraic[8] = 12000.0*(power(states[1], 2.00000))
    algebraic[10] = 3.70000e+06*(power(states[1], 2.00000))
    algebraic[12] = algebraic[8]*algebraic[10]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16]))
    algebraic[13] = constants[15]*constants[16]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16]))
    algebraic[17] = algebraic[12]*states[5]-algebraic[13]*algebraic[16]
    rates[5] = -algebraic[17]
    algebraic[32] = (173.600/(1.00000+algebraic[16]/5.00000e-05)+6.40000)*1.00000e-05
    algebraic[33] = 1.00000/(1.00000+algebraic[32]/states[1])
    algebraic[35] = 1.00000-algebraic[33]
    algebraic[37] = constants[52]*algebraic[33]+constants[34]*algebraic[35]
    rates[11] = constants[57]*(1.00000-states[11])-algebraic[37]*states[11]
    algebraic[2] = 0.500000*log(constants[3]/states[1])
    algebraic[18] = 0.000450000/(0.000450000+states[1])
    algebraic[19] = (constants[17]*states[6]*algebraic[18]*(power(states[1]*constants[3], 1.0/2))*sinh(algebraic[0]-algebraic[2]))/(sinh(algebraic[0])/algebraic[0])
    algebraic[31] = constants[37]*((10.5600*algebraic[16])/(algebraic[16]+5.00000e-05)+1.20000)
    algebraic[34] = algebraic[31]*(constants[52]*algebraic[33]*states[11]-constants[33]*constants[53]*(1.00000-states[11]))*1.00000
    algebraic[36] = (1.00000+0.00100000*((power(states[2], 3.00000))*constants[3]+(power(constants[4], 3.00000))*states[1]))*(1.00000+states[1]/0.00690000)
    algebraic[38] = (constants[39]*((power(states[2], 3.00000))*constants[3]*exp(constants[38]*algebraic[0])-(power(constants[4], 3.00000))*states[1]*exp((constants[38]-1.00000)*algebraic[0])))/algebraic[36]
    algebraic[39] = (-1.00000/(2.00000*constants[2]*constants[49]))*((algebraic[19]+2.00000*algebraic[34])-2.00000*algebraic[38])
    algebraic[40] = algebraic[39]-(algebraic[15]+4.00000*algebraic[17])
    rates[1] = algebraic[40]
    algebraic[4] = log(constants[4]/states[2])
    algebraic[20] = (power(states[7], 3.00000))*states[8]
    algebraic[21] = (constants[18]*algebraic[20]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[22] = (constants[27]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[23] = (constants[28]*states[9]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[42] = 1.00000/(1.00000+(constants[43]/states[2])*(1.00000+states[3]/constants[45]))
    algebraic[41] = constants[4]*exp(-0.820000*algebraic[0])
    algebraic[45] = 1.00000/(1.00000+(constants[44]/algebraic[41])*(1.00000+constants[5]/constants[46]))
    algebraic[46] = constants[47]*(constants[54]*algebraic[42]*states[12]-constants[40]*algebraic[45]*(1.00000-states[12]))*1.00000
    algebraic[48] = (-1.00000/(constants[2]*constants[49]))*(3.00000*algebraic[46]+3.00000*algebraic[38]+algebraic[21]+algebraic[22]+algebraic[23])
    rates[2] = algebraic[48]
    algebraic[43] = 1.00000/(1.00000+(constants[45]/states[3])*(1.00000+states[2]/constants[43]))
    algebraic[44] = constants[54]*algebraic[42]+constants[41]*algebraic[43]
    algebraic[47] = 1.00000/(1.00000+(constants[46]/constants[5])*(1.00000+algebraic[41]/constants[44]))
    algebraic[49] = constants[40]*algebraic[45]+constants[42]*algebraic[47]
    rates[12] = algebraic[49]*(1.00000-states[12])-algebraic[44]*states[12]
    algebraic[6] = log(constants[5]/states[3])
    algebraic[24] = (power(states[1], 4.20000))/(power(0.000350000, 4.20000)+power(states[1], 4.20000))
    algebraic[25] = (constants[30]*algebraic[24]*(power(states[3]*constants[5], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[6])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[26] = power(states[10], 3.00000)
    algebraic[27] = constants[31]*algebraic[26]*(states[0]-algebraic[6]*constants[48])
    algebraic[28] = 1.00000/(1.00000+exp((states[0]+85.0000)/12.1000))
    algebraic[29] = constants[32]*algebraic[28]*(states[0]-algebraic[6]*constants[48])
    algebraic[30] = algebraic[25]+algebraic[27]+algebraic[29]
    algebraic[50] = (-1.00000/(constants[2]*constants[49]))*(algebraic[30]-2.00000*algebraic[46])
    rates[0] = ((constants[2]*constants[49])/(constants[8]*constants[55]))*(algebraic[48]+algebraic[50]+2.00000*algebraic[40])
    rates[3] = algebraic[50]
    return(rates)

def computeAlgebraic(constants, states, voi):
    algebraic = array([[0.0] * len(voi)] * sizeAlgebraic)
    states = array(states)
    voi = array(voi)
    algebraic[0] = states[0]/constants[48]
    algebraic[1] = 0.00600000/(1.00000+exp((states[0]+87.7000)/6.45000))
    algebraic[5] = 0.0268000/(1.00000+exp((states[0]+94.2000)/13.3000))
    algebraic[7] = algebraic[1]*constants[50]+algebraic[5]*(1.00000-constants[50])
    algebraic[3] = 0.0800000/(1.00000+exp(-(states[0]+51.7000)/7.00000))
    algebraic[9] = 0.0800000/(1.00000+exp(-(states[0]+35.5000)/7.00000))
    algebraic[11] = algebraic[3]*constants[51]+algebraic[9]*(1.00000-constants[51])
    algebraic[14] = constants[11]-states[4]
    algebraic[15] = constants[13]*states[4]*states[1]-constants[14]*algebraic[14]
    algebraic[16] = constants[12]-states[5]
    algebraic[8] = 12000.0*(power(states[1], 2.00000))
    algebraic[10] = 3.70000e+06*(power(states[1], 2.00000))
    algebraic[12] = algebraic[8]*algebraic[10]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16]))
    algebraic[13] = constants[15]*constants[16]*(1.00000/(algebraic[8]+constants[16])+1.00000/(constants[15]+constants[16]))
    algebraic[17] = algebraic[12]*states[5]-algebraic[13]*algebraic[16]
    algebraic[32] = (173.600/(1.00000+algebraic[16]/5.00000e-05)+6.40000)*1.00000e-05
    algebraic[33] = 1.00000/(1.00000+algebraic[32]/states[1])
    algebraic[35] = 1.00000-algebraic[33]
    algebraic[37] = constants[52]*algebraic[33]+constants[34]*algebraic[35]
    algebraic[2] = 0.500000*log(constants[3]/states[1])
    algebraic[18] = 0.000450000/(0.000450000+states[1])
    algebraic[19] = (constants[17]*states[6]*algebraic[18]*(power(states[1]*constants[3], 1.0/2))*sinh(algebraic[0]-algebraic[2]))/(sinh(algebraic[0])/algebraic[0])
    algebraic[31] = constants[37]*((10.5600*algebraic[16])/(algebraic[16]+5.00000e-05)+1.20000)
    algebraic[34] = algebraic[31]*(constants[52]*algebraic[33]*states[11]-constants[33]*constants[53]*(1.00000-states[11]))*1.00000
    algebraic[36] = (1.00000+0.00100000*((power(states[2], 3.00000))*constants[3]+(power(constants[4], 3.00000))*states[1]))*(1.00000+states[1]/0.00690000)
    algebraic[38] = (constants[39]*((power(states[2], 3.00000))*constants[3]*exp(constants[38]*algebraic[0])-(power(constants[4], 3.00000))*states[1]*exp((constants[38]-1.00000)*algebraic[0])))/algebraic[36]
    algebraic[39] = (-1.00000/(2.00000*constants[2]*constants[49]))*((algebraic[19]+2.00000*algebraic[34])-2.00000*algebraic[38])
    algebraic[40] = algebraic[39]-(algebraic[15]+4.00000*algebraic[17])
    algebraic[4] = log(constants[4]/states[2])
    algebraic[20] = (power(states[7], 3.00000))*states[8]
    algebraic[21] = (constants[18]*algebraic[20]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[22] = (constants[27]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[23] = (constants[28]*states[9]*(power(states[2]*constants[4], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[4])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[42] = 1.00000/(1.00000+(constants[43]/states[2])*(1.00000+states[3]/constants[45]))
    algebraic[41] = constants[4]*exp(-0.820000*algebraic[0])
    algebraic[45] = 1.00000/(1.00000+(constants[44]/algebraic[41])*(1.00000+constants[5]/constants[46]))
    algebraic[46] = constants[47]*(constants[54]*algebraic[42]*states[12]-constants[40]*algebraic[45]*(1.00000-states[12]))*1.00000
    algebraic[48] = (-1.00000/(constants[2]*constants[49]))*(3.00000*algebraic[46]+3.00000*algebraic[38]+algebraic[21]+algebraic[22]+algebraic[23])
    algebraic[43] = 1.00000/(1.00000+(constants[45]/states[3])*(1.00000+states[2]/constants[43]))
    algebraic[44] = constants[54]*algebraic[42]+constants[41]*algebraic[43]
    algebraic[47] = 1.00000/(1.00000+(constants[46]/constants[5])*(1.00000+algebraic[41]/constants[44]))
    algebraic[49] = constants[40]*algebraic[45]+constants[42]*algebraic[47]
    algebraic[6] = log(constants[5]/states[3])
    algebraic[24] = (power(states[1], 4.20000))/(power(0.000350000, 4.20000)+power(states[1], 4.20000))
    algebraic[25] = (constants[30]*algebraic[24]*(power(states[3]*constants[5], 1.0/2))*sinh(0.500000*(algebraic[0]-algebraic[6])))/(sinh(0.500000*algebraic[0])/(0.500000*algebraic[0]))
    algebraic[26] = power(states[10], 3.00000)
    algebraic[27] = constants[31]*algebraic[26]*(states[0]-algebraic[6]*constants[48])
    algebraic[28] = 1.00000/(1.00000+exp((states[0]+85.0000)/12.1000))
    algebraic[29] = constants[32]*algebraic[28]*(states[0]-algebraic[6]*constants[48])
    algebraic[30] = algebraic[25]+algebraic[27]+algebraic[29]
    algebraic[50] = (-1.00000/(constants[2]*constants[49]))*(algebraic[30]-2.00000*algebraic[46])
    return algebraic

def solve_model():
    """Solve model with ODE solver"""
    from scipy.integrate import ode
    # Initialise constants and state variables
    (init_states, constants) = initConsts()

    # Set timespan to solve over
    voi = linspace(0, 10, 500)

    # Construct ODE object to solve
    r = ode(computeRates)
    r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1)
    r.set_initial_value(init_states, voi[0])
    r.set_f_params(constants)

    # Solve model
    states = array([[0.0] * len(voi)] * sizeStates)
    states[:,0] = init_states
    for (i,t) in enumerate(voi[1:]):
        if r.successful():
            r.integrate(t)
            states[:,i+1] = r.y
        else:
            break

    # Compute algebraic variables
    algebraic = computeAlgebraic(constants, states, voi)
    return (voi, states, algebraic)

def plot_model(voi, states, algebraic):
    """Plot variables against variable of integration"""
    import pylab
    (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends()
    pylab.figure(1)
    pylab.plot(voi,vstack((states,algebraic)).T)
    pylab.xlabel(legend_voi)
    pylab.legend(legend_states + legend_algebraic, loc='best')
    pylab.show()

if __name__ == "__main__":
    (voi, states, algebraic) = solve_model()
    plot_model(voi, states, algebraic)