Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 118 sizeStates = 39 sizeConstants = 111 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "t in component environment (millisecond)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "R in component membrane (joule_per_kmole_kelvin)" legend_constants[1] = "T in component membrane (kelvin)" legend_constants[2] = "Frdy in component membrane (coulomb_per_mole)" legend_constants[95] = "FoRT in component membrane (per_milliV)" legend_constants[3] = "C_mem in component membrane (farad)" legend_algebraic[96] = "I_Na_tot_junc in component Sodium_Concentrations (picoA_per_picoF)" legend_algebraic[102] = "I_Na_tot_sl in component Sodium_Concentrations (picoA_per_picoF)" legend_algebraic[57] = "I_ClCa in component Ca_Activated_Cl_Current (picoA_per_picoF)" legend_algebraic[58] = "I_Cl_Bk in component Background_Cl_Current (picoA_per_picoF)" legend_algebraic[111] = "I_Ca_tot_junc in component Calcium_Concentrations (picoA_per_picoF)" legend_algebraic[114] = "I_Ca_tot_sl in component Calcium_Concentrations (picoA_per_picoF)" legend_algebraic[108] = "I_K_tot in component Potassium_Concentrations (picoA_per_picoF)" legend_algebraic[103] = "I_Na_tot in component membrane (picoA_per_picoF)" legend_algebraic[59] = "I_Cl_tot in component membrane (picoA_per_picoF)" legend_algebraic[116] = "I_Ca_tot in component membrane (picoA_per_picoF)" legend_algebraic[117] = "I_tot in component membrane (picoA_per_picoF)" legend_algebraic[10] = "I_Stim in component membrane (picoA_per_picoF)" legend_constants[4] = "I_Stim_Start in component membrane (millisecond)" legend_constants[5] = "I_Stim_End in component membrane (millisecond)" legend_constants[6] = "I_Stim_Amplitude in component membrane (picoA_per_picoF)" legend_constants[7] = "I_Stim_Period in component membrane (millisecond)" legend_constants[8] = "I_Stim_PulseDuration in component membrane (millisecond)" legend_constants[9] = "F_junc in component membrane (dimensionless)" legend_constants[96] = "F_sl in component membrane (dimensionless)" legend_constants[10] = "F_junc_Ca_L in component membrane (dimensionless)" legend_constants[97] = "F_sl_Ca_L in component membrane (dimensionless)" legend_constants[98] = "V_cell in component membrane (litre)" legend_constants[11] = "Length_cell in component membrane (decimetre)" legend_constants[12] = "Radius_cell in component membrane (decimetre)" legend_constants[100] = "V_myo in component membrane (litre)" legend_constants[103] = "V_sl in component membrane (litre)" legend_constants[104] = "V_sr in component membrane (litre)" legend_constants[105] = "V_junc in component membrane (litre)" legend_constants[13] = "J_Ca_juncsl in component membrane (L_per_millis)" legend_constants[14] = "J_Ca_slmyo in component membrane (L_per_millis)" legend_constants[15] = "J_Na_juncsl in component membrane (L_per_millis)" legend_constants[16] = "J_Na_slmyo in component membrane (L_per_millis)" legend_algebraic[94] = "I_Na_junc in component Fast_Na_Current (picoA_per_picoF)" legend_algebraic[98] = "I_Na_sl in component Fast_Na_Current (picoA_per_picoF)" legend_algebraic[99] = "I_Na in component Fast_Na_Current (picoA_per_picoF)" legend_algebraic[97] = "E_Na_sl in component Nerst_Potentials (millivolt)" legend_algebraic[93] = "E_Na_junc in component Nerst_Potentials (millivolt)" legend_constants[17] = "G_Na in component Fast_Na_Current (milliS_per_microF)" legend_states[1] = "m in component Fast_Na_Current (dimensionless)" legend_algebraic[0] = "m_ss in component Fast_Na_Current (dimensionless)" legend_algebraic[12] = "tau_m in component Fast_Na_Current (millisecond)" legend_algebraic[1] = "a_h in component Fast_Na_Current (dimensionless)" legend_algebraic[13] = "b_h in component Fast_Na_Current (dimensionless)" legend_algebraic[26] = "tau_h in component Fast_Na_Current (millisecond)" legend_states[2] = "h in component Fast_Na_Current (dimensionless)" legend_algebraic[33] = "h_ss in component Fast_Na_Current (dimensionless)" legend_algebraic[2] = "a_j in component Fast_Na_Current (dimensionless)" legend_algebraic[14] = "b_j in component Fast_Na_Current (dimensionless)" legend_algebraic[27] = "tau_j in component Fast_Na_Current (millisecond)" legend_states[3] = "j in component Fast_Na_Current (dimensionless)" legend_algebraic[34] = "j_ss in component Fast_Na_Current (dimensionless)" legend_algebraic[95] = "I_Na_Bk_junc in component Background_Na_Current (picoA_per_picoF)" legend_algebraic[100] = "I_Na_Bk_sl in component Background_Na_Current (picoA_per_picoF)" legend_algebraic[101] = "I_Na_Bk in component Background_Na_Current (picoA_per_picoF)" legend_constants[18] = "G_Na_B in component Background_Na_Current (milliS_per_microF)" legend_constants[19] = "Na_o in component Sodium_Concentrations (millimolar)" legend_constants[99] = "sigma in component Na_K_Pump_Current (dimensionless)" legend_algebraic[24] = "f_NaK in component Na_K_Pump_Current (dimensionless)" legend_algebraic[31] = "I_NaK_junc in component Na_K_Pump_Current (picoA_per_picoF)" legend_algebraic[38] = "I_NaK_sl in component Na_K_Pump_Current (picoA_per_picoF)" legend_algebraic[43] = "I_NaK in component Na_K_Pump_Current (picoA_per_picoF)" legend_constants[20] = "Ibar_NaK in component Na_K_Pump_Current (picoA_per_picoF)" legend_constants[21] = "K_o in component Potassium_Concentrations (millimolar)" legend_states[4] = "Na_j in component Sodium_Concentrations (millimolar)" legend_states[5] = "Na_sl in component Sodium_Concentrations (millimolar)" legend_constants[22] = "Km_Ko in component Na_K_Pump_Current (millimolar)" legend_constants[23] = "Km_Naip in component Na_K_Pump_Current (millimolar)" legend_algebraic[3] = "x_r_ss in component Rapidly_Activating_K_Current (dimensionless)" legend_states[6] = "x_Kr in component Rapidly_Activating_K_Current (dimensionless)" legend_algebraic[44] = "r_Kr in component Rapidly_Activating_K_Current (dimensionless)" legend_constants[101] = "E_K in component Nerst_Potentials (millivolt)" legend_constants[24] = "G_Kr in component Rapidly_Activating_K_Current (milliS_per_microF)" legend_algebraic[15] = "tau_xr in component Rapidly_Activating_K_Current (millisecond)" legend_algebraic[45] = "I_Kr in component Rapidly_Activating_K_Current (picoA_per_picoF)" legend_algebraic[4] = "x_s_ss in component Slowly_Activating_K_Current (dimensionless)" legend_algebraic[16] = "tau_xs in component Slowly_Activating_K_Current (millisecond)" legend_states[7] = "x_Ks in component Slowly_Activating_K_Current (dimensionless)" legend_algebraic[104] = "E_Ks in component Nerst_Potentials (millivolt)" legend_constants[25] = "G_Ks_junc in component Slowly_Activating_K_Current (milliS_per_microF)" legend_constants[26] = "G_Ks_sl in component Slowly_Activating_K_Current (milliS_per_microF)" legend_algebraic[105] = "I_Ks_junc in component Slowly_Activating_K_Current (picoA_per_picoF)" legend_algebraic[106] = "I_Ks_sl in component Slowly_Activating_K_Current (picoA_per_picoF)" legend_algebraic[107] = "I_Ks in component Slowly_Activating_K_Current (picoA_per_picoF)" legend_algebraic[46] = "kp_Kp in component Plateau_K_Current (dimensionless)" legend_constants[27] = "G_Kp in component Plateau_K_Current (milliS_per_microF)" legend_algebraic[47] = "I_Kp in component Plateau_K_Current (picoA_per_picoF)" legend_algebraic[5] = "x_to_ss in component Transient_Outward_K_Current (dimensionless)" legend_algebraic[6] = "y_to_ss in component Transient_Outward_K_Current (dimensionless)" legend_algebraic[17] = "tau_x_tos in component Transient_Outward_K_Current (millisecond)" legend_algebraic[18] = "tau_y_tos in component Transient_Outward_K_Current (millisecond)" legend_algebraic[19] = "tau_x_tof in component Transient_Outward_K_Current (millisecond)" legend_algebraic[20] = "tau_y_tof in component Transient_Outward_K_Current (millisecond)" legend_states[8] = "x_to_s in component Transient_Outward_K_Current (dimensionless)" legend_states[9] = "y_to_s in component Transient_Outward_K_Current (dimensionless)" legend_states[10] = "x_to_f in component Transient_Outward_K_Current (dimensionless)" legend_states[11] = "y_to_f in component Transient_Outward_K_Current (dimensionless)" legend_constants[28] = "G_to_s in component Transient_Outward_K_Current (milliS_per_microF)" legend_constants[29] = "G_to_f in component Transient_Outward_K_Current (milliS_per_microF)" legend_algebraic[48] = "I_to_s in component Transient_Outward_K_Current (picoA_per_picoF)" legend_algebraic[49] = "I_to_f in component Transient_Outward_K_Current (picoA_per_picoF)" legend_algebraic[50] = "I_to in component Transient_Outward_K_Current (picoA_per_picoF)" legend_algebraic[51] = "a_K1 in component Inward_Rectifier_K_Current (dimensionless)" legend_algebraic[52] = "b_K1 in component Inward_Rectifier_K_Current (dimensionless)" legend_algebraic[53] = "K1_ss in component Inward_Rectifier_K_Current (dimensionless)" legend_algebraic[54] = "I_K1 in component Inward_Rectifier_K_Current (picoA_per_picoF)" legend_constants[30] = "G_K1 in component Inward_Rectifier_K_Current (milliS_per_microF)" legend_algebraic[55] = "I_ClCa_junc in component Ca_Activated_Cl_Current (picoA_per_picoF)" legend_algebraic[56] = "I_ClCa_sl in component Ca_Activated_Cl_Current (picoA_per_picoF)" legend_states[12] = "Ca_j in component Calcium_Concentrations (millimolar)" legend_states[13] = "Ca_sl in component Calcium_Concentrations (millimolar)" legend_constants[102] = "E_Cl in component Nerst_Potentials (millivolt)" legend_constants[31] = "G_ClCa in component Ca_Activated_Cl_Current (milliS_per_microF)" legend_constants[32] = "Kd_ClCa in component Ca_Activated_Cl_Current (millimolar)" legend_constants[33] = "G_Cl_B in component Background_Cl_Current (milliS_per_microF)" legend_algebraic[7] = "d_ss in component L_Type_Calcium_Current (dimensionless)" legend_algebraic[21] = "alpha_d in component L_Type_Calcium_Current (millisecond)" legend_algebraic[28] = "beta_d in component L_Type_Calcium_Current (dimensionless)" legend_algebraic[35] = "gamma_d in component L_Type_Calcium_Current (millisecond)" legend_algebraic[40] = "tau_d in component L_Type_Calcium_Current (millisecond)" legend_algebraic[8] = "f_ss in component L_Type_Calcium_Current (dimensionless)" legend_algebraic[22] = "alpha_f in component L_Type_Calcium_Current (millisecond)" legend_algebraic[29] = "beta_f in component L_Type_Calcium_Current (millisecond)" legend_algebraic[36] = "gamma_f in component L_Type_Calcium_Current (millisecond)" legend_algebraic[41] = "tau_f in component L_Type_Calcium_Current (millisecond)" legend_algebraic[9] = "f_2_ss in component L_Type_Calcium_Current (dimensionless)" legend_algebraic[23] = "alpha_f_2 in component L_Type_Calcium_Current (millisecond)" legend_algebraic[30] = "beta_f_2 in component L_Type_Calcium_Current (millisecond)" legend_algebraic[37] = "gamma_f_2 in component L_Type_Calcium_Current (millisecond)" legend_algebraic[42] = "tau_f_2 in component L_Type_Calcium_Current (millisecond)" legend_states[14] = "d in component L_Type_Calcium_Current (dimensionless)" legend_states[15] = "f in component L_Type_Calcium_Current (dimensionless)" legend_states[16] = "f_2 in component L_Type_Calcium_Current (dimensionless)" legend_states[17] = "f_Ca_B_j in component L_Type_Calcium_Current (dimensionless)" legend_states[18] = "f_Ca_B_sl in component L_Type_Calcium_Current (dimensionless)" legend_constants[34] = "K_i in component Potassium_Concentrations (millimolar)" legend_constants[35] = "Ca_o in component Calcium_Concentrations (millimolar)" legend_algebraic[60] = "Ibar_Ca_j in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[61] = "Ibar_Ca_sl in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[62] = "Ibar_K in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[63] = "Ibar_Na_j in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[64] = "Ibar_Na_sl in component L_Type_Calcium_Current (picoA_per_picoF)" legend_constants[36] = "p_Ca in component L_Type_Calcium_Current (litre_per_farad_millisecond)" legend_constants[37] = "p_Na in component L_Type_Calcium_Current (litre_per_farad_millisecond)" legend_constants[38] = "p_K in component L_Type_Calcium_Current (litre_per_farad_millisecond)" legend_algebraic[65] = "I_Ca_junc in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[66] = "I_Ca_sl in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[67] = "I_Ca in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[69] = "I_Ca_Na_junc in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[70] = "I_Ca_Na_sl in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[72] = "I_Ca_Na in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[68] = "I_Ca_K in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[74] = "I_Ca_L in component L_Type_Calcium_Current (picoA_per_picoF)" legend_algebraic[71] = "Ka_junc in component Na_Ca_Exchanger_Current (dimensionless)" legend_algebraic[73] = "Ka_sl in component Na_Ca_Exchanger_Current (dimensionless)" legend_constants[39] = "Kd_act in component Na_Ca_Exchanger_Current (millimolar)" legend_constants[40] = "Km_Ca_i in component Na_Ca_Exchanger_Current (millimolar)" legend_constants[41] = "Km_Ca_o in component Na_Ca_Exchanger_Current (millimolar)" legend_constants[42] = "Km_Na_i in component Na_Ca_Exchanger_Current (millimolar)" legend_constants[43] = "Km_Na_o in component Na_Ca_Exchanger_Current (millimolar)" legend_constants[44] = "k_sat in component Na_Ca_Exchanger_Current (dimensionless)" legend_constants[45] = "nu in component Na_Ca_Exchanger_Current (dimensionless)" legend_algebraic[75] = "s1_junc in component Na_Ca_Exchanger_Current (millimolar4)" legend_algebraic[77] = "s2_junc in component Na_Ca_Exchanger_Current (millimolar4)" legend_algebraic[79] = "s3_junc in component Na_Ca_Exchanger_Current (millimolar4)" legend_algebraic[76] = "s1_sl in component Na_Ca_Exchanger_Current (millimolar4)" legend_algebraic[78] = "s2_sl in component Na_Ca_Exchanger_Current (millimolar4)" legend_algebraic[80] = "s3_sl in component Na_Ca_Exchanger_Current (millimolar4)" legend_constants[46] = "Ibar_NCX in component Na_Ca_Exchanger_Current (picoA_per_picoF)" legend_algebraic[82] = "I_ncx_sl in component Na_Ca_Exchanger_Current (picoA_per_picoF)" legend_algebraic[81] = "I_ncx_junc in component Na_Ca_Exchanger_Current (picoA_per_picoF)" legend_algebraic[84] = "I_ncx in component Na_Ca_Exchanger_Current (picoA_per_picoF)" legend_constants[47] = "Km_P_Ca in component Sarcolemmal_Ca_Pump_Current (millimolar)" legend_constants[48] = "Ibar_PMCA in component Sarcolemmal_Ca_Pump_Current (picoA_per_picoF)" legend_algebraic[83] = "I_pCa_junc in component Sarcolemmal_Ca_Pump_Current (picoA_per_picoF)" legend_algebraic[85] = "I_pCa_sl in component Sarcolemmal_Ca_Pump_Current (picoA_per_picoF)" legend_algebraic[87] = "I_pCa in component Sarcolemmal_Ca_Pump_Current (picoA_per_picoF)" legend_algebraic[112] = "E_Ca_sl in component Nerst_Potentials (millivolt)" legend_algebraic[109] = "E_Ca_junc in component Nerst_Potentials (millivolt)" legend_constants[49] = "G_Ca_B in component Background_Ca_Current (milliS_per_microF)" legend_algebraic[113] = "I_Ca_Bk_sl in component Background_Ca_Current (picoA_per_picoF)" legend_algebraic[110] = "I_Ca_Bk_junc in component Background_Ca_Current (picoA_per_picoF)" legend_algebraic[115] = "I_Ca_Bk in component Background_Ca_Current (picoA_per_picoF)" legend_constants[50] = "Max_SR in component SR_Fluxes (dimensionless)" legend_constants[51] = "Min_SR in component SR_Fluxes (dimensionless)" legend_states[19] = "Ca_SR in component Calcium_Concentrations (millimolar)" legend_constants[52] = "ec50_SR in component SR_Fluxes (millimolar)" legend_algebraic[11] = "k_Ca_SR in component SR_Fluxes (dimensionless)" legend_constants[53] = "ko_Ca in component SR_Fluxes (per_milliM2_per_millis)" legend_algebraic[25] = "ko_SR_Ca in component SR_Fluxes (per_milliM2_per_millis)" legend_constants[54] = "ki_Ca in component SR_Fluxes (per_milliM_per_millis)" legend_algebraic[32] = "ki_SR_Ca in component SR_Fluxes (per_milliM_per_millis)" legend_constants[55] = "ki_m in component SR_Fluxes (per_millis)" legend_constants[56] = "ko_m in component SR_Fluxes (per_millis)" legend_constants[57] = "ks in component SR_Fluxes (per_millis)" legend_constants[58] = "Km_f in component SR_Fluxes (millimolar)" legend_constants[59] = "Km_r in component SR_Fluxes (millimolar)" legend_algebraic[86] = "J_SR_Ca_rel in component SR_Fluxes (milliM_per_millis)" legend_algebraic[89] = "J_SR_leak in component SR_Fluxes (milliM_per_millis)" legend_algebraic[88] = "J_ser_Ca in component SR_Fluxes (milliM_per_millis)" legend_algebraic[39] = "RI in component SR_Fluxes (dimensionless)" legend_states[20] = "Ry_Rr in component SR_Fluxes (dimensionless)" legend_states[21] = "Ry_Ro in component SR_Fluxes (dimensionless)" legend_states[22] = "Ry_Ri in component SR_Fluxes (dimensionless)" legend_states[23] = "Ca_i in component Calcium_Concentrations (millimolar)" legend_constants[60] = "V_max_SR_CaP in component SR_Fluxes (milliM_per_millis)" legend_constants[61] = "hill_SR_CaP in component SR_Fluxes (dimensionless)" legend_constants[62] = "Mg_i in component Magnesium_Concentrations (millimolar)" legend_states[24] = "TnC_l in component Cytosolic_Ca_Buffers (millimolar)" legend_states[25] = "TnC_h_c in component Cytosolic_Ca_Buffers (millimolar)" legend_states[26] = "TnC_h_m in component Cytosolic_Ca_Buffers (millimolar)" legend_states[27] = "CaM in component Cytosolic_Ca_Buffers (millimolar)" legend_states[28] = "Myo_c in component Cytosolic_Ca_Buffers (millimolar)" legend_states[29] = "Myo_m in component Cytosolic_Ca_Buffers (millimolar)" legend_states[30] = "SRB in component Cytosolic_Ca_Buffers (millimolar)" legend_constants[63] = "k_off_TnC_l in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[64] = "k_off_TnC_h_Ca in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[65] = "k_off_TnC_h_Mg in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[66] = "k_off_CaM in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[67] = "k_off_myo_Ca in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[68] = "k_off_myo_Mg in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[69] = "k_off_SR in component Cytosolic_Ca_Buffers (per_millis)" legend_constants[70] = "k_on_TnC_l in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[71] = "k_on_TnC_h_Ca in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[72] = "k_on_TnC_h_Mg in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[73] = "k_on_CaM in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[74] = "k_on_myo_Ca in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[75] = "k_on_myo_Mg in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[76] = "k_on_SR in component Cytosolic_Ca_Buffers (per_milliM_per_millis)" legend_constants[77] = "B_max_TnC_low in component Cytosolic_Ca_Buffers (millimolar)" legend_constants[78] = "B_max_TnC_high in component Cytosolic_Ca_Buffers (millimolar)" legend_constants[79] = "B_max_CaM in component Cytosolic_Ca_Buffers (millimolar)" legend_constants[80] = "B_max_myosin in component Cytosolic_Ca_Buffers (millimolar)" legend_constants[81] = "B_max_SR in component Cytosolic_Ca_Buffers (millimolar)" legend_algebraic[92] = "J_Ca_B_cytosol in component Cytosolic_Ca_Buffers (milliM_per_millis)" legend_constants[106] = "B_max_SL_low_j in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_constants[107] = "B_max_SL_low_sl in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_constants[108] = "B_max_SL_high_j in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_constants[109] = "B_max_SL_high_sl in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_constants[82] = "k_off_sl_l in component Junctional_and_SL_Ca_Buffers (per_millis)" legend_constants[83] = "k_off_sl_h in component Junctional_and_SL_Ca_Buffers (per_millis)" legend_constants[84] = "k_on_sl_l in component Junctional_and_SL_Ca_Buffers (per_milliM_per_millis)" legend_constants[85] = "k_on_sl_h in component Junctional_and_SL_Ca_Buffers (per_milliM_per_millis)" legend_states[31] = "SLL_j in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_states[32] = "SLL_sl in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_states[33] = "SLH_j in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_states[34] = "SLH_sl in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_algebraic[90] = "J_Ca_B_junction in component Junctional_and_SL_Ca_Buffers (milliM_per_millis)" legend_algebraic[91] = "J_Ca_B_sl in component Junctional_and_SL_Ca_Buffers (milliM_per_millis)" legend_constants[86] = "B_max_Na_j in component Sodium_Concentrations (millimolar)" legend_constants[87] = "B_max_Na_sl in component Sodium_Concentrations (millimolar)" legend_constants[88] = "k_off_Na in component Sodium_Concentrations (per_millis)" legend_constants[89] = "k_on_Na in component Sodium_Concentrations (per_milliM_per_millis)" legend_states[35] = "Na_i in component Sodium_Concentrations (millimolar)" legend_states[36] = "Na_B_j in component Sodium_Concentrations (millimolar)" legend_states[37] = "Na_B_sl in component Sodium_Concentrations (millimolar)" legend_constants[110] = "B_max_csqn in component Calcium_Concentrations (millimolar)" legend_states[38] = "Csqn_b in component Calcium_Concentrations (millimolar)" legend_constants[90] = "k_off_csqn in component Calcium_Concentrations (per_millis)" legend_constants[91] = "k_on_csqn in component Calcium_Concentrations (per_milliM_per_millis)" legend_constants[92] = "Cl_i in component Chlorine_Concentrations (millimolar)" legend_constants[93] = "Cl_o in component Chlorine_Concentrations (millimolar)" legend_constants[94] = "p_Na_K in component Nerst_Potentials (dimensionless)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[1] = "d/dt m in component Fast_Na_Current (dimensionless)" legend_rates[2] = "d/dt h in component Fast_Na_Current (dimensionless)" legend_rates[3] = "d/dt j in component Fast_Na_Current (dimensionless)" legend_rates[6] = "d/dt x_Kr in component Rapidly_Activating_K_Current (dimensionless)" legend_rates[7] = "d/dt x_Ks in component Slowly_Activating_K_Current (dimensionless)" legend_rates[8] = "d/dt x_to_s in component Transient_Outward_K_Current (dimensionless)" legend_rates[9] = "d/dt y_to_s in component Transient_Outward_K_Current (dimensionless)" legend_rates[10] = "d/dt x_to_f in component Transient_Outward_K_Current (dimensionless)" legend_rates[11] = "d/dt y_to_f in component Transient_Outward_K_Current (dimensionless)" legend_rates[14] = "d/dt d in component L_Type_Calcium_Current (dimensionless)" legend_rates[15] = "d/dt f in component L_Type_Calcium_Current (dimensionless)" legend_rates[16] = "d/dt f_2 in component L_Type_Calcium_Current (dimensionless)" legend_rates[17] = "d/dt f_Ca_B_j in component L_Type_Calcium_Current (dimensionless)" legend_rates[18] = "d/dt f_Ca_B_sl in component L_Type_Calcium_Current (dimensionless)" legend_rates[20] = "d/dt Ry_Rr in component SR_Fluxes (dimensionless)" legend_rates[21] = "d/dt Ry_Ro in component SR_Fluxes (dimensionless)" legend_rates[22] = "d/dt Ry_Ri in component SR_Fluxes (dimensionless)" legend_rates[24] = "d/dt TnC_l in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[25] = "d/dt TnC_h_c in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[26] = "d/dt TnC_h_m in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[27] = "d/dt CaM in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[28] = "d/dt Myo_c in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[29] = "d/dt Myo_m in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[30] = "d/dt SRB in component Cytosolic_Ca_Buffers (millimolar)" legend_rates[31] = "d/dt SLL_j in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_rates[32] = "d/dt SLL_sl in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_rates[33] = "d/dt SLH_j in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_rates[34] = "d/dt SLH_sl in component Junctional_and_SL_Ca_Buffers (millimolar)" legend_rates[4] = "d/dt Na_j in component Sodium_Concentrations (millimolar)" legend_rates[36] = "d/dt Na_B_j in component Sodium_Concentrations (millimolar)" legend_rates[5] = "d/dt Na_sl in component Sodium_Concentrations (millimolar)" legend_rates[37] = "d/dt Na_B_sl in component Sodium_Concentrations (millimolar)" legend_rates[35] = "d/dt Na_i in component Sodium_Concentrations (millimolar)" legend_rates[38] = "d/dt Csqn_b in component Calcium_Concentrations (millimolar)" legend_rates[12] = "d/dt Ca_j in component Calcium_Concentrations (millimolar)" legend_rates[13] = "d/dt Ca_sl in component Calcium_Concentrations (millimolar)" legend_rates[23] = "d/dt Ca_i in component Calcium_Concentrations (millimolar)" legend_rates[19] = "d/dt Ca_SR in component Calcium_Concentrations (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -8.410546e1 constants[0] = 8314 constants[1] = 310 constants[2] = 96485 constants[3] = 1.381e-10 constants[4] = 0 constants[5] = 100000 constants[6] = 40 constants[7] = 1000 constants[8] = 1 constants[9] = 0.11 constants[10] = 0.9 constants[11] = 100e-5 constants[12] = 10.25e-5 constants[13] = 8.2413e-13 constants[14] = 3.7243e-12 constants[15] = 1.8313e-14 constants[16] = 1.6386e-12 constants[17] = 18.86 states[1] = 2.176608e-3 states[2] = 7.126555e-1 states[3] = 7.119893e-1 constants[18] = 0.597e-3 constants[19] = 140 constants[20] = 0.99 constants[21] = 5.4 states[4] = 1.00211e1 states[5] = 1.001974e1 constants[22] = 1.5 constants[23] = 11 states[6] = 1.896559e-2 constants[24] = 0.035 states[7] = 3.55636e-3 constants[25] = 0.0035 constants[26] = 0.0035 constants[27] = 0.002 states[8] = 3.592503e-4 states[9] = 8.161309e-1 states[10] = 3.592405e-4 states[11] = 9.999976e-1 constants[28] = 3.7596e-2 constants[29] = 1.404e-3 constants[30] = 0.57153 states[12] = 2.048633e-4 states[13] = 1.188246e-4 constants[31] = 0.054813 constants[32] = 100e-3 constants[33] = 9e-3 states[14] = 1.879996e-6 states[15] = 9.789409e-1 states[16] = 9.993986e-1 states[17] = 2.861794e-2 states[18] = 1.69833e-2 constants[34] = 138 constants[35] = 1.8 constants[36] = 1.9887e-4 constants[37] = 3.0375e-9 constants[38] = 5.4675e-8 constants[39] = 0.15e-3 constants[40] = 3.59e-3 constants[41] = 1.3 constants[42] = 12.29 constants[43] = 87.5 constants[44] = 0.32 constants[45] = 0.27 constants[46] = 4.5 constants[47] = 0.5e-3 constants[48] = 0.0673 constants[49] = 5.513e-4 constants[50] = 15 constants[51] = 1 states[19] = 6.138856e-1 constants[52] = 0.45 constants[53] = 10 constants[54] = 0.5 constants[55] = 0.005 constants[56] = 0.06 constants[57] = 25 constants[58] = 0.246e-3 constants[59] = 1.7 states[20] = 8.888214e-1 states[21] = 1.149876e-6 states[22] = 1.43831e-7 states[23] = 9.719632e-5 constants[60] = 5.3114e-3 constants[61] = 1.787 constants[62] = 1 states[24] = 9.811535e-3 states[25] = 1.225802e-1 states[26] = 8.128604e-3 states[27] = 3.288063e-4 states[28] = 2.522168e-3 states[29] = 1.369514e-1 states[30] = 2.38683e-3 constants[63] = 19.6e-3 constants[64] = 0.032e-3 constants[65] = 3.33e-3 constants[66] = 238e-3 constants[67] = 0.46e-3 constants[68] = 0.057e-3 constants[69] = 60e-3 constants[70] = 32.7 constants[71] = 2.37 constants[72] = 3e-3 constants[73] = 34 constants[74] = 13.8 constants[75] = 0.0157 constants[76] = 100 constants[77] = 70e-3 constants[78] = 140e-3 constants[79] = 24e-3 constants[80] = 140e-3 constants[81] = 17.1e-3 constants[82] = 1.3 constants[83] = 30e-3 constants[84] = 100 constants[85] = 100 states[31] = 8.606485e-3 states[32] = 1.101044e-2 states[33] = 8.078504e-2 states[34] = 1.238366e-1 constants[86] = 7.561 constants[87] = 1.65 constants[88] = 1e-3 constants[89] = 0.1e-3 states[35] = 1.001989e1 states[36] = 3.785209e0 states[37] = 8.259271e-1 states[38] = 1.262853 constants[90] = 65 constants[91] = 100 constants[92] = 15 constants[93] = 150 constants[94] = 0.01833 constants[95] = constants[2]/(constants[0]*constants[1]) constants[96] = 1.00000-constants[9] constants[97] = 1.00000-constants[10] constants[98] = pi*(power(constants[12], 2.00000))*constants[11] constants[99] = (exp(constants[19]/67.3000)-1.00000)/7.00000 constants[100] = 0.650000*constants[98] constants[101] = (1.00000/constants[95])*log(constants[21]/constants[34]) constants[102] = (1.00000/constants[95])*log(constants[92]/constants[93]) constants[103] = 0.0200000*constants[98] constants[104] = 0.0350000*constants[98] constants[105] = 0.000539000*constants[98] constants[106] = (0.000460000*constants[100])/constants[105] constants[107] = (0.0374000*constants[100])/constants[103] constants[108] = (0.000165000*constants[100])/constants[105] constants[109] = (0.0134000*constants[100])/constants[103] constants[110] = (0.140000*constants[100])/constants[104] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[17] = 1.70000*states[12]*(1.00000-states[17])-0.0119000*states[17] rates[18] = 1.70000*states[13]*(1.00000-states[18])-0.0119000*states[18] rates[35] = (constants[16]/constants[100])*(states[5]-states[35]) algebraic[0] = 1.00000/(power(1.00000+exp(-(56.8600+states[0])/9.03000), 2.00000)) algebraic[12] = 0.129200*exp(-(power((states[0]+45.7900)/15.5400, 2.00000)))+0.0648700*exp(-(power((states[0]-4.82300)/51.1200, 2.00000))) rates[1] = (algebraic[0]-states[1])/algebraic[12] algebraic[3] = 1.00000/(1.00000+exp(-(states[0]+10.0000)/5.00000)) algebraic[15] = 3300.00/((1.00000+exp((-22.0000-states[0])/9.00000))*(1.00000+exp((states[0]+11.0000)/9.00000)))+230.000/(1.00000+exp((states[0]+40.0000)/20.0000)) rates[6] = (algebraic[3]-states[6])/algebraic[15] algebraic[4] = 1.00000/(1.00000+exp(-(states[0]+3.80000)/14.2500)) algebraic[16] = 990.100/(1.00000+exp(-(states[0]+2.43600)/14.1200)) rates[7] = (algebraic[4]-states[7])/algebraic[16] algebraic[5] = 1.00000/(1.00000+exp(-(states[0]-19.0000)/13.0000)) algebraic[17] = 9.00000/(1.00000+exp((states[0]+3.00000)/15.0000))+0.500000 rates[8] = (algebraic[5]-states[8])/algebraic[17] algebraic[6] = 1.00000/(1.00000+exp((states[0]+19.5000)/5.00000)) algebraic[18] = 800.000/(1.00000+exp((states[0]+60.0000)/10.0000))+30.0000 rates[9] = (algebraic[6]-states[9])/algebraic[18] algebraic[19] = 8.50000*exp(-(power((states[0]+45.0000)/50.0000, 2.00000)))+0.500000 rates[10] = (algebraic[5]-states[10])/algebraic[19] algebraic[20] = 85.0000*exp(-(power(states[0]+40.0000, 2.00000))/220.000)+7.00000 rates[11] = (algebraic[6]-states[11])/algebraic[20] algebraic[11] = constants[50]-(constants[50]-constants[51])/(1.00000+power(constants[52]/states[19], 2.50000)) algebraic[25] = constants[53]/algebraic[11] algebraic[32] = constants[54]*algebraic[11] rates[21] = (algebraic[25]*(power(states[12], 2.00000))*states[20]-constants[56]*states[21])-(algebraic[32]*states[12]*states[21]-constants[55]*states[22]) algebraic[1] = custom_piecewise([greater_equal(states[0] , -40.0000), 0.00000 , True, 0.0570000*exp(-(states[0]+80.0000)/6.80000)]) algebraic[13] = custom_piecewise([greater_equal(states[0] , -40.0000), 5.92310/(1.00000+exp(-(states[0]+10.6600)/11.1000)) , True, 2.70000*exp(0.0790000*states[0])+310000.*exp(0.348500*states[0])]) algebraic[26] = 1.00000/(algebraic[1]+algebraic[13]) algebraic[33] = 1.00000/(power(1.00000+exp((states[0]+71.5500)/7.43000), 2.00000)) rates[2] = (algebraic[33]-states[2])/algebraic[26] algebraic[2] = custom_piecewise([greater_equal(states[0] , -40.0000), 0.00000 , True, ((-25428.0*exp(0.244400*states[0])-6.94800e-06*exp(-0.0439100*states[0]))*(states[0]+37.7800))/(1.00000+exp(0.311000*(states[0]+79.2300)))]) algebraic[14] = custom_piecewise([greater_equal(states[0] , -40.0000), (0.600000*exp(0.0570000*states[0]))/(1.00000+exp(-0.100000*(states[0]+32.0000))) , True, (0.0242400*exp(-0.0105200*states[0]))/(1.00000+exp(-0.137800*(states[0]+40.1400)))]) algebraic[27] = 1.00000/(algebraic[2]+algebraic[14]) algebraic[34] = 1.00000/(power(1.00000+exp((states[0]+71.5500)/7.43000), 2.00000)) rates[3] = (algebraic[34]-states[3])/algebraic[27] algebraic[39] = ((1.00000-states[20])-states[21])-states[22] rates[20] = (constants[55]*algebraic[39]-algebraic[32]*states[12]*states[20])-(algebraic[25]*(power(states[12], 2.00000))*states[20]-constants[56]*states[21]) rates[22] = (algebraic[32]*states[12]*states[21]-constants[55]*states[22])-(constants[56]*states[22]-algebraic[25]*(power(states[12], 2.00000))*algebraic[39]) algebraic[7] = 1.00000/(1.00000+exp(-(states[0]+5.00000)/6.00000)) algebraic[21] = 1.40000/(1.00000+exp((-35.0000-states[0])/13.0000))+0.250000 algebraic[28] = 1.40000/(1.00000+exp((states[0]+5.00000)/5.00000)) algebraic[35] = 1.00000/(1.00000+exp((50.0000-states[0])/20.0000)) algebraic[40] = algebraic[21]*algebraic[28]+algebraic[35] rates[14] = (algebraic[7]-states[14])/algebraic[40] algebraic[8] = 1.00000/(1.00000+exp((states[0]+20.0000)/7.00000)) algebraic[22] = 1102.50*exp(-(power((states[0]+27.0000)/15.0000, 2.00000))) algebraic[29] = 200.000/(1.00000+exp((13.0000-states[0])/10.0000)) algebraic[36] = 180.000/(1.00000+exp((states[0]+30.0000)/10.0000))+20.0000 algebraic[41] = algebraic[22]+algebraic[29]+algebraic[36] rates[15] = (algebraic[8]-states[15])/algebraic[41] algebraic[9] = 0.670000/(1.00000+exp((states[0]+35.0000)/7.00000))+0.330000 algebraic[23] = 300.000*exp(-(power(states[0]+25.0000, 2.00000))/170.000) algebraic[30] = 31.0000/(1.00000+exp((25.0000-states[0])/10.0000)) algebraic[37] = 16.0000/(1.00000+exp((states[0]+30.0000)/10.0000)) algebraic[42] = algebraic[23]+algebraic[30]+algebraic[37] rates[16] = (algebraic[9]-states[16])/algebraic[42] rates[24] = constants[70]*states[23]*(constants[77]-states[24])-constants[63]*states[24] rates[31] = constants[84]*states[12]*(constants[106]-states[31])-constants[82]*states[31] rates[25] = constants[71]*states[23]*((constants[78]-states[25])-states[26])-constants[64]*states[25] rates[38] = constants[91]*states[19]*(constants[110]-states[38])-constants[90]*states[38] rates[32] = constants[84]*states[13]*(constants[107]-states[32])-constants[82]*states[32] rates[26] = constants[72]*constants[62]*((constants[78]-states[25])-states[26])-constants[65]*states[26] algebraic[86] = constants[57]*states[21]*(states[19]-states[12]) algebraic[89] = 5.34800e-06*(states[19]-states[12]) algebraic[88] = (constants[60]*(power(states[23]/constants[58], constants[61])-power(states[19]/constants[59], constants[61])))/(1.00000+power(states[23]/constants[58], constants[61])+power(states[19]/constants[59], constants[61])) rates[19] = (algebraic[88]-((algebraic[89]*constants[100])/constants[104]+algebraic[86]))-rates[38] rates[33] = constants[85]*states[12]*(constants[108]-states[33])-constants[83]*states[33] rates[27] = constants[73]*states[23]*(constants[79]-states[27])-constants[66]*states[27] rates[34] = constants[85]*states[13]*(constants[109]-states[34])-constants[83]*states[34] rates[28] = constants[74]*states[23]*((constants[80]-states[28])-states[29])-constants[67]*states[28] rates[29] = constants[75]*constants[62]*((constants[80]-states[28])-states[29])-constants[68]*states[29] rates[30] = constants[76]*states[23]*(constants[81]-states[30])-constants[69]*states[30] rates[36] = constants[89]*states[4]*(constants[86]-states[36])-constants[88]*states[36] rates[37] = constants[89]*states[5]*(constants[87]-states[37])-constants[88]*states[37] algebraic[92] = rates[24]+rates[25]+rates[26]+rates[27]+rates[28]+rates[29]+rates[30] rates[23] = ((-algebraic[88]*constants[104])/constants[100]-algebraic[92])+(constants[14]/constants[100])*(states[13]-states[23]) algebraic[93] = (1.00000/constants[95])*log(constants[19]/states[4]) algebraic[94] = constants[9]*constants[17]*(power(states[1], 3.00000))*states[2]*states[3]*(states[0]-algebraic[93]) algebraic[95] = constants[9]*constants[18]*(states[0]-algebraic[93]) algebraic[24] = 1.00000/(1.00000+0.124500*exp(-0.100000*states[0]*constants[95])+0.0365000*constants[99]*exp(-states[0]*constants[95])) algebraic[31] = (constants[9]*constants[20]*algebraic[24]*constants[21])/((1.00000+power(constants[23]/states[4], 4.00000))*(constants[21]+constants[22])) algebraic[63] = (constants[37]*states[0]*constants[2]*constants[95]*(states[4]*exp(states[0]*constants[95])-constants[19]))/(exp(states[0]*constants[95])-1.00000) algebraic[69] = constants[10]*algebraic[63]*states[14]*states[15]*states[16]*(1.00000-states[17]) algebraic[71] = 1.00000/(1.00000+power(constants[39]/states[12], 2.00000)) algebraic[75] = exp(constants[45]*states[0]*constants[95])*(power(states[4], 3.00000))*constants[35] algebraic[77] = exp((constants[45]-1.00000)*states[0]*constants[95])*(power(constants[19], 3.00000))*states[12] algebraic[79] = constants[40]*(power(constants[19], 3.00000))*(1.00000+power(states[4]/constants[42], 3.00000))+(power(constants[43], 3.00000))*states[12]*(1.00000+states[12]/constants[40])+constants[41]*(power(states[4], 3.00000))+(power(states[4], 3.00000))*constants[35]+(power(constants[19], 3.00000))*states[12] algebraic[81] = (constants[9]*constants[46]*algebraic[71]*(algebraic[75]-algebraic[77]))/(algebraic[79]*(1.00000+constants[44]*exp((constants[45]-1.00000)*states[0]*constants[95]))) algebraic[96] = algebraic[94]+algebraic[95]+3.00000*algebraic[81]+3.00000*algebraic[31]+algebraic[69] rates[4] = ((-algebraic[96]*constants[3])/(constants[105]*constants[2])+(constants[15]/constants[105])*(states[5]-states[4]))-rates[36] algebraic[97] = (1.00000/constants[95])*log(constants[19]/states[5]) algebraic[98] = constants[96]*constants[17]*(power(states[1], 3.00000))*states[2]*states[3]*(states[0]-algebraic[97]) algebraic[100] = constants[96]*constants[18]*(states[0]-algebraic[97]) algebraic[38] = (constants[96]*constants[20]*algebraic[24]*constants[21])/((1.00000+power(constants[23]/states[5], 4.00000))*(constants[21]+constants[22])) algebraic[64] = (constants[37]*states[0]*constants[2]*constants[95]*(states[5]*exp(states[0]*constants[95])-constants[19]))/(exp(states[0]*constants[95])-1.00000) algebraic[70] = constants[97]*algebraic[64]*states[14]*states[15]*states[16]*(1.00000-states[18]) algebraic[73] = 1.00000/(1.00000+power(constants[39]/states[13], 2.00000)) algebraic[76] = exp(constants[45]*states[0]*constants[95])*(power(states[5], 3.00000))*constants[35] algebraic[78] = exp((constants[45]-1.00000)*states[0]*constants[95])*(power(constants[19], 3.00000))*states[13] algebraic[80] = constants[40]*(power(constants[19], 3.00000))*(1.00000+power(states[5]/constants[42], 3.00000))+(power(constants[43], 3.00000))*states[13]*(1.00000+states[13]/constants[40])+constants[41]*(power(states[5], 3.00000))+(power(states[5], 3.00000))*constants[35]+(power(constants[19], 3.00000))*states[13] algebraic[82] = (constants[96]*constants[46]*algebraic[73]*(algebraic[76]-algebraic[78]))/(algebraic[80]*(1.00000+constants[44]*exp((constants[45]-1.00000)*states[0]*constants[95]))) algebraic[102] = algebraic[98]+algebraic[100]+3.00000*algebraic[82]+3.00000*algebraic[38]+algebraic[70] rates[5] = ((-algebraic[102]*constants[3])/(constants[103]*constants[2])+(constants[15]/constants[103])*(states[4]-states[5])+(constants[16]/constants[103])*(states[35]-states[5]))-rates[37] algebraic[60] = (constants[36]*states[0]*constants[2]*constants[95]*(states[12]*exp(2.00000*states[0]*constants[95])-constants[35]))/(exp(2.00000*states[0]*constants[95])-1.00000) algebraic[65] = constants[10]*algebraic[60]*states[14]*states[15]*states[16]*(1.00000-states[17]) algebraic[83] = (constants[9]*constants[48]*(power(states[12], 1.60000)))/(power(constants[47], 1.60000)+power(states[12], 1.60000)) algebraic[109] = (1.00000/(2.00000*constants[95]))*log(constants[35]/states[12]) algebraic[110] = constants[9]*constants[49]*(states[0]-algebraic[109]) algebraic[111] = (algebraic[65]+algebraic[110]+algebraic[83])-2.00000*algebraic[81] algebraic[90] = rates[31]+rates[33] rates[12] = (((-algebraic[111]*constants[3])/(constants[105]*2.00000*constants[2])+(constants[13]/constants[105])*(states[13]-states[12]))-algebraic[90])+(algebraic[86]*constants[104])/constants[105]+(algebraic[89]*constants[100])/constants[105] algebraic[61] = (constants[36]*states[0]*constants[2]*constants[95]*(states[13]*exp(2.00000*states[0]*constants[95])-constants[35]))/(exp(2.00000*states[0]*constants[95])-1.00000) algebraic[66] = constants[97]*algebraic[61]*states[14]*states[15]*states[16]*(1.00000-states[18]) algebraic[85] = (constants[96]*constants[48]*(power(states[13], 1.60000)))/(power(constants[47], 1.60000)+power(states[13], 1.60000)) algebraic[112] = (1.00000/(2.00000*constants[95]))*log(constants[35]/states[13]) algebraic[113] = constants[96]*constants[49]*(states[0]-algebraic[112]) algebraic[114] = (algebraic[66]+algebraic[113]+algebraic[85])-2.00000*algebraic[82] algebraic[91] = rates[32]+rates[34] rates[13] = ((-algebraic[114]*constants[3])/(constants[103]*2.00000*constants[2])+(constants[13]/constants[103])*(states[12]-states[13])+(constants[14]/constants[103])*(states[23]-states[13]))-algebraic[91] algebraic[43] = algebraic[31]+algebraic[38] algebraic[44] = 1.00000/(1.00000+exp((states[0]+74.0000)/24.0000)) algebraic[45] = constants[24]*(power(constants[21]/5.40000, 1.0/2))*states[6]*algebraic[44]*(states[0]-constants[101]) algebraic[104] = (1.00000/constants[95])*log((constants[21]+constants[94]*constants[19])/(constants[34]+constants[94]*states[35])) algebraic[105] = constants[9]*constants[25]*(power(states[7], 2.00000))*(states[0]-algebraic[104]) algebraic[106] = constants[96]*constants[26]*(power(states[7], 2.00000))*(states[0]-algebraic[104]) algebraic[107] = algebraic[105]+algebraic[106] algebraic[46] = 1.00000/(1.00000+exp(7.48800-states[0]/5.98000)) algebraic[47] = constants[27]*algebraic[46]*(states[0]-constants[101]) algebraic[48] = constants[28]*states[8]*states[9]*(states[0]-constants[101]) algebraic[49] = constants[29]*states[10]*states[11]*(states[0]-constants[101]) algebraic[50] = algebraic[48]+algebraic[49] algebraic[51] = 4.09380/(1.00000+exp(0.121650*((states[0]-constants[101])-49.9344))) algebraic[52] = (15.7197*exp(0.0673900*((states[0]-constants[101])-3.25710))+exp(0.0617500*((states[0]-constants[101])-594.310)))/(1.00000+exp(-0.162850*((states[0]-constants[101])+14.2067))) algebraic[53] = algebraic[51]/(algebraic[51]+algebraic[52]) algebraic[54] = constants[30]*(power(constants[21]/5.40000, 1.0/2))*algebraic[53]*(states[0]-constants[101]) algebraic[62] = (constants[38]*states[0]*constants[2]*constants[95]*(constants[34]*exp(states[0]*constants[95])-constants[21]))/(exp(states[0]*constants[95])-1.00000) algebraic[68] = algebraic[62]*states[14]*states[15]*states[16]*(constants[10]*(1.00000-states[17])+constants[97]*(1.00000-states[18])) algebraic[108] = ((algebraic[50]+algebraic[45]+algebraic[107]+algebraic[54])-2.00000*algebraic[43])+algebraic[68]+algebraic[47] algebraic[103] = algebraic[96]+algebraic[102] algebraic[55] = ((constants[9]*constants[31])/(1.00000+constants[32]/states[12]))*(states[0]-constants[102]) algebraic[56] = ((constants[96]*constants[31])/(1.00000+constants[32]/states[13]))*(states[0]-constants[102]) algebraic[57] = algebraic[55]+algebraic[56] algebraic[58] = constants[33]*(states[0]-constants[102]) algebraic[59] = algebraic[57]+algebraic[58] algebraic[116] = algebraic[111]+algebraic[114] algebraic[117] = algebraic[103]+algebraic[59]+algebraic[116]+algebraic[108] algebraic[10] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[7])*constants[7] , constants[8]), constants[6] , True, 0.00000]) rates[0] = -(algebraic[117]-algebraic[10]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = 1.00000/(power(1.00000+exp(-(56.8600+states[0])/9.03000), 2.00000)) algebraic[12] = 0.129200*exp(-(power((states[0]+45.7900)/15.5400, 2.00000)))+0.0648700*exp(-(power((states[0]-4.82300)/51.1200, 2.00000))) algebraic[3] = 1.00000/(1.00000+exp(-(states[0]+10.0000)/5.00000)) algebraic[15] = 3300.00/((1.00000+exp((-22.0000-states[0])/9.00000))*(1.00000+exp((states[0]+11.0000)/9.00000)))+230.000/(1.00000+exp((states[0]+40.0000)/20.0000)) algebraic[4] = 1.00000/(1.00000+exp(-(states[0]+3.80000)/14.2500)) algebraic[16] = 990.100/(1.00000+exp(-(states[0]+2.43600)/14.1200)) algebraic[5] = 1.00000/(1.00000+exp(-(states[0]-19.0000)/13.0000)) algebraic[17] = 9.00000/(1.00000+exp((states[0]+3.00000)/15.0000))+0.500000 algebraic[6] = 1.00000/(1.00000+exp((states[0]+19.5000)/5.00000)) algebraic[18] = 800.000/(1.00000+exp((states[0]+60.0000)/10.0000))+30.0000 algebraic[19] = 8.50000*exp(-(power((states[0]+45.0000)/50.0000, 2.00000)))+0.500000 algebraic[20] = 85.0000*exp(-(power(states[0]+40.0000, 2.00000))/220.000)+7.00000 algebraic[11] = constants[50]-(constants[50]-constants[51])/(1.00000+power(constants[52]/states[19], 2.50000)) algebraic[25] = constants[53]/algebraic[11] algebraic[32] = constants[54]*algebraic[11] algebraic[1] = custom_piecewise([greater_equal(states[0] , -40.0000), 0.00000 , True, 0.0570000*exp(-(states[0]+80.0000)/6.80000)]) algebraic[13] = custom_piecewise([greater_equal(states[0] , -40.0000), 5.92310/(1.00000+exp(-(states[0]+10.6600)/11.1000)) , True, 2.70000*exp(0.0790000*states[0])+310000.*exp(0.348500*states[0])]) algebraic[26] = 1.00000/(algebraic[1]+algebraic[13]) algebraic[33] = 1.00000/(power(1.00000+exp((states[0]+71.5500)/7.43000), 2.00000)) algebraic[2] = custom_piecewise([greater_equal(states[0] , -40.0000), 0.00000 , True, ((-25428.0*exp(0.244400*states[0])-6.94800e-06*exp(-0.0439100*states[0]))*(states[0]+37.7800))/(1.00000+exp(0.311000*(states[0]+79.2300)))]) algebraic[14] = custom_piecewise([greater_equal(states[0] , -40.0000), (0.600000*exp(0.0570000*states[0]))/(1.00000+exp(-0.100000*(states[0]+32.0000))) , True, (0.0242400*exp(-0.0105200*states[0]))/(1.00000+exp(-0.137800*(states[0]+40.1400)))]) algebraic[27] = 1.00000/(algebraic[2]+algebraic[14]) algebraic[34] = 1.00000/(power(1.00000+exp((states[0]+71.5500)/7.43000), 2.00000)) algebraic[39] = ((1.00000-states[20])-states[21])-states[22] algebraic[7] = 1.00000/(1.00000+exp(-(states[0]+5.00000)/6.00000)) algebraic[21] = 1.40000/(1.00000+exp((-35.0000-states[0])/13.0000))+0.250000 algebraic[28] = 1.40000/(1.00000+exp((states[0]+5.00000)/5.00000)) algebraic[35] = 1.00000/(1.00000+exp((50.0000-states[0])/20.0000)) algebraic[40] = algebraic[21]*algebraic[28]+algebraic[35] algebraic[8] = 1.00000/(1.00000+exp((states[0]+20.0000)/7.00000)) algebraic[22] = 1102.50*exp(-(power((states[0]+27.0000)/15.0000, 2.00000))) algebraic[29] = 200.000/(1.00000+exp((13.0000-states[0])/10.0000)) algebraic[36] = 180.000/(1.00000+exp((states[0]+30.0000)/10.0000))+20.0000 algebraic[41] = algebraic[22]+algebraic[29]+algebraic[36] algebraic[9] = 0.670000/(1.00000+exp((states[0]+35.0000)/7.00000))+0.330000 algebraic[23] = 300.000*exp(-(power(states[0]+25.0000, 2.00000))/170.000) algebraic[30] = 31.0000/(1.00000+exp((25.0000-states[0])/10.0000)) algebraic[37] = 16.0000/(1.00000+exp((states[0]+30.0000)/10.0000)) algebraic[42] = algebraic[23]+algebraic[30]+algebraic[37] algebraic[86] = constants[57]*states[21]*(states[19]-states[12]) algebraic[89] = 5.34800e-06*(states[19]-states[12]) algebraic[88] = (constants[60]*(power(states[23]/constants[58], constants[61])-power(states[19]/constants[59], constants[61])))/(1.00000+power(states[23]/constants[58], constants[61])+power(states[19]/constants[59], constants[61])) algebraic[92] = rates[24]+rates[25]+rates[26]+rates[27]+rates[28]+rates[29]+rates[30] algebraic[93] = (1.00000/constants[95])*log(constants[19]/states[4]) algebraic[94] = constants[9]*constants[17]*(power(states[1], 3.00000))*states[2]*states[3]*(states[0]-algebraic[93]) algebraic[95] = constants[9]*constants[18]*(states[0]-algebraic[93]) algebraic[24] = 1.00000/(1.00000+0.124500*exp(-0.100000*states[0]*constants[95])+0.0365000*constants[99]*exp(-states[0]*constants[95])) algebraic[31] = (constants[9]*constants[20]*algebraic[24]*constants[21])/((1.00000+power(constants[23]/states[4], 4.00000))*(constants[21]+constants[22])) algebraic[63] = (constants[37]*states[0]*constants[2]*constants[95]*(states[4]*exp(states[0]*constants[95])-constants[19]))/(exp(states[0]*constants[95])-1.00000) algebraic[69] = constants[10]*algebraic[63]*states[14]*states[15]*states[16]*(1.00000-states[17]) algebraic[71] = 1.00000/(1.00000+power(constants[39]/states[12], 2.00000)) algebraic[75] = exp(constants[45]*states[0]*constants[95])*(power(states[4], 3.00000))*constants[35] algebraic[77] = exp((constants[45]-1.00000)*states[0]*constants[95])*(power(constants[19], 3.00000))*states[12] algebraic[79] = constants[40]*(power(constants[19], 3.00000))*(1.00000+power(states[4]/constants[42], 3.00000))+(power(constants[43], 3.00000))*states[12]*(1.00000+states[12]/constants[40])+constants[41]*(power(states[4], 3.00000))+(power(states[4], 3.00000))*constants[35]+(power(constants[19], 3.00000))*states[12] algebraic[81] = (constants[9]*constants[46]*algebraic[71]*(algebraic[75]-algebraic[77]))/(algebraic[79]*(1.00000+constants[44]*exp((constants[45]-1.00000)*states[0]*constants[95]))) algebraic[96] = algebraic[94]+algebraic[95]+3.00000*algebraic[81]+3.00000*algebraic[31]+algebraic[69] algebraic[97] = (1.00000/constants[95])*log(constants[19]/states[5]) algebraic[98] = constants[96]*constants[17]*(power(states[1], 3.00000))*states[2]*states[3]*(states[0]-algebraic[97]) algebraic[100] = constants[96]*constants[18]*(states[0]-algebraic[97]) algebraic[38] = (constants[96]*constants[20]*algebraic[24]*constants[21])/((1.00000+power(constants[23]/states[5], 4.00000))*(constants[21]+constants[22])) algebraic[64] = (constants[37]*states[0]*constants[2]*constants[95]*(states[5]*exp(states[0]*constants[95])-constants[19]))/(exp(states[0]*constants[95])-1.00000) algebraic[70] = constants[97]*algebraic[64]*states[14]*states[15]*states[16]*(1.00000-states[18]) algebraic[73] = 1.00000/(1.00000+power(constants[39]/states[13], 2.00000)) algebraic[76] = exp(constants[45]*states[0]*constants[95])*(power(states[5], 3.00000))*constants[35] algebraic[78] = exp((constants[45]-1.00000)*states[0]*constants[95])*(power(constants[19], 3.00000))*states[13] algebraic[80] = constants[40]*(power(constants[19], 3.00000))*(1.00000+power(states[5]/constants[42], 3.00000))+(power(constants[43], 3.00000))*states[13]*(1.00000+states[13]/constants[40])+constants[41]*(power(states[5], 3.00000))+(power(states[5], 3.00000))*constants[35]+(power(constants[19], 3.00000))*states[13] algebraic[82] = (constants[96]*constants[46]*algebraic[73]*(algebraic[76]-algebraic[78]))/(algebraic[80]*(1.00000+constants[44]*exp((constants[45]-1.00000)*states[0]*constants[95]))) algebraic[102] = algebraic[98]+algebraic[100]+3.00000*algebraic[82]+3.00000*algebraic[38]+algebraic[70] algebraic[60] = (constants[36]*states[0]*constants[2]*constants[95]*(states[12]*exp(2.00000*states[0]*constants[95])-constants[35]))/(exp(2.00000*states[0]*constants[95])-1.00000) algebraic[65] = constants[10]*algebraic[60]*states[14]*states[15]*states[16]*(1.00000-states[17]) algebraic[83] = (constants[9]*constants[48]*(power(states[12], 1.60000)))/(power(constants[47], 1.60000)+power(states[12], 1.60000)) algebraic[109] = (1.00000/(2.00000*constants[95]))*log(constants[35]/states[12]) algebraic[110] = constants[9]*constants[49]*(states[0]-algebraic[109]) algebraic[111] = (algebraic[65]+algebraic[110]+algebraic[83])-2.00000*algebraic[81] algebraic[90] = rates[31]+rates[33] algebraic[61] = (constants[36]*states[0]*constants[2]*constants[95]*(states[13]*exp(2.00000*states[0]*constants[95])-constants[35]))/(exp(2.00000*states[0]*constants[95])-1.00000) algebraic[66] = constants[97]*algebraic[61]*states[14]*states[15]*states[16]*(1.00000-states[18]) algebraic[85] = (constants[96]*constants[48]*(power(states[13], 1.60000)))/(power(constants[47], 1.60000)+power(states[13], 1.60000)) algebraic[112] = (1.00000/(2.00000*constants[95]))*log(constants[35]/states[13]) algebraic[113] = constants[96]*constants[49]*(states[0]-algebraic[112]) algebraic[114] = (algebraic[66]+algebraic[113]+algebraic[85])-2.00000*algebraic[82] algebraic[91] = rates[32]+rates[34] algebraic[43] = algebraic[31]+algebraic[38] algebraic[44] = 1.00000/(1.00000+exp((states[0]+74.0000)/24.0000)) algebraic[45] = constants[24]*(power(constants[21]/5.40000, 1.0/2))*states[6]*algebraic[44]*(states[0]-constants[101]) algebraic[104] = (1.00000/constants[95])*log((constants[21]+constants[94]*constants[19])/(constants[34]+constants[94]*states[35])) algebraic[105] = constants[9]*constants[25]*(power(states[7], 2.00000))*(states[0]-algebraic[104]) algebraic[106] = constants[96]*constants[26]*(power(states[7], 2.00000))*(states[0]-algebraic[104]) algebraic[107] = algebraic[105]+algebraic[106] algebraic[46] = 1.00000/(1.00000+exp(7.48800-states[0]/5.98000)) algebraic[47] = constants[27]*algebraic[46]*(states[0]-constants[101]) algebraic[48] = constants[28]*states[8]*states[9]*(states[0]-constants[101]) algebraic[49] = constants[29]*states[10]*states[11]*(states[0]-constants[101]) algebraic[50] = algebraic[48]+algebraic[49] algebraic[51] = 4.09380/(1.00000+exp(0.121650*((states[0]-constants[101])-49.9344))) algebraic[52] = (15.7197*exp(0.0673900*((states[0]-constants[101])-3.25710))+exp(0.0617500*((states[0]-constants[101])-594.310)))/(1.00000+exp(-0.162850*((states[0]-constants[101])+14.2067))) algebraic[53] = algebraic[51]/(algebraic[51]+algebraic[52]) algebraic[54] = constants[30]*(power(constants[21]/5.40000, 1.0/2))*algebraic[53]*(states[0]-constants[101]) algebraic[62] = (constants[38]*states[0]*constants[2]*constants[95]*(constants[34]*exp(states[0]*constants[95])-constants[21]))/(exp(states[0]*constants[95])-1.00000) algebraic[68] = algebraic[62]*states[14]*states[15]*states[16]*(constants[10]*(1.00000-states[17])+constants[97]*(1.00000-states[18])) algebraic[108] = ((algebraic[50]+algebraic[45]+algebraic[107]+algebraic[54])-2.00000*algebraic[43])+algebraic[68]+algebraic[47] algebraic[103] = algebraic[96]+algebraic[102] algebraic[55] = ((constants[9]*constants[31])/(1.00000+constants[32]/states[12]))*(states[0]-constants[102]) algebraic[56] = ((constants[96]*constants[31])/(1.00000+constants[32]/states[13]))*(states[0]-constants[102]) algebraic[57] = algebraic[55]+algebraic[56] algebraic[58] = constants[33]*(states[0]-constants[102]) algebraic[59] = algebraic[57]+algebraic[58] algebraic[116] = algebraic[111]+algebraic[114] algebraic[117] = algebraic[103]+algebraic[59]+algebraic[116]+algebraic[108] algebraic[10] = custom_piecewise([greater_equal(voi , constants[4]) & less_equal(voi , constants[5]) & less_equal((voi-constants[4])-floor((voi-constants[4])/constants[7])*constants[7] , constants[8]), constants[6] , True, 0.00000]) algebraic[67] = algebraic[65]+algebraic[66] algebraic[72] = algebraic[69]+algebraic[70] algebraic[74] = algebraic[67]+algebraic[68]+algebraic[72] algebraic[84] = algebraic[81]+algebraic[82] algebraic[87] = algebraic[83]+algebraic[85] algebraic[99] = algebraic[94]+algebraic[98] algebraic[101] = algebraic[95]+algebraic[100] algebraic[115] = algebraic[110]+algebraic[113] return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)