Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays:
sizeAlgebraic = 6
sizeStates = 4
sizeConstants = 20
from math import *
from numpy import *

def createLegends():
    legend_states = [""] * sizeStates
    legend_rates = [""] * sizeStates
    legend_algebraic = [""] * sizeAlgebraic
    legend_voi = ""
    legend_constants = [""] * sizeConstants
    legend_voi = "time in component environment (ms)"
    legend_algebraic[3] = "Ca_i in component intracellular_ion_concentrations (uM)"
    legend_algebraic[0] = "mtime in component intracellular_ion_concentrations (dimensionless)"
    legend_states[0] = "xb in component crossbridges (dimensionless)"
    legend_states[1] = "TRPN in component troponin (dimensionless)"
    legend_constants[0] = "k_xb in component crossbridges (per_ms)"
    legend_constants[1] = "nperm in component crossbridges (dimensionless)"
    legend_constants[2] = "perm50 in component crossbridges (dimensionless)"
    legend_algebraic[1] = "permtot in component crossbridges (dimensionless)"
    legend_constants[3] = "Ca_50ref in component troponin (uM)"
    legend_constants[4] = "beta_1 in component troponin (dimensionless)"
    legend_constants[5] = "k_off in component troponin (per_ms)"
    legend_constants[6] = "n_TRPN in component troponin (dimensionless)"
    legend_constants[16] = "lambda_m in component filament_overlap (dimensionless)"
    legend_constants[17] = "Ca_50 in component troponin (uM)"
    legend_constants[14] = "lambda in component Myofilaments (dimensionless)"
    legend_constants[15] = "dlambdadt in component Myofilaments (per_ms)"
    legend_constants[19] = "overlap in component filament_overlap (dimensionless)"
    legend_constants[7] = "beta_0 in component filament_overlap (dimensionless)"
    legend_constants[18] = "lambda_s in component filament_overlap (dimensionless)"
    legend_constants[8] = "T_ref in component isometric_tension (kPa)"
    legend_algebraic[2] = "T_0 in component isometric_tension (kPa)"
    legend_algebraic[4] = "Q in component dynamic_stiffness (dimensionless)"
    legend_constants[9] = "a in component dynamic_stiffness (dimensionless)"
    legend_states[2] = "Q_1 in component dynamic_stiffness (dimensionless)"
    legend_states[3] = "Q_2 in component dynamic_stiffness (dimensionless)"
    legend_constants[10] = "A_1 in component dynamic_stiffness (dimensionless)"
    legend_constants[11] = "A_2 in component dynamic_stiffness (dimensionless)"
    legend_constants[12] = "alpha_1 in component dynamic_stiffness (per_ms)"
    legend_constants[13] = "alpha_2 in component dynamic_stiffness (per_ms)"
    legend_algebraic[5] = "Tension in component dynamic_stiffness (kPa)"
    legend_rates[0] = "d/dt xb in component crossbridges (dimensionless)"
    legend_rates[1] = "d/dt TRPN in component troponin (dimensionless)"
    legend_rates[2] = "d/dt Q_1 in component dynamic_stiffness (dimensionless)"
    legend_rates[3] = "d/dt Q_2 in component dynamic_stiffness (dimensionless)"
    return (legend_states, legend_algebraic, legend_voi, legend_constants)

def initConsts():
    constants = [0.0] * sizeConstants; states = [0.0] * sizeStates;
    states[0] = 0.00046
    states[1] = 0.0752
    constants[0] = 0.1
    constants[1] = 5
    constants[2] = 0.35
    constants[3] = 0.8
    constants[4] = -1.5
    constants[5] = 0.1
    constants[6] = 2
    constants[7] = 1.65
    constants[8] = 120
    constants[9] = 0.35
    states[2] = 0
    states[3] = 0
    constants[10] = -29
    constants[11] = 116
    constants[12] = 0.1
    constants[13] = 0.5
    constants[14] = 1.00000
    constants[15] = 0.00000
    constants[16] = custom_piecewise([greater(constants[14] , 1.20000), 1.20000 , True, constants[14]])
    constants[17] = constants[3]*(1.00000+constants[4]*(constants[16]-1.00000))
    constants[18] = custom_piecewise([greater_equal(constants[16] , 0.870000), 0.870000 , True, constants[16]])
    constants[19] = 1.00000+constants[7]*((constants[16]+constants[18])-1.87000)
    return (states, constants)

def computeRates(voi, states, constants):
    rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic
    rates[2] = constants[10]*constants[15]-constants[12]*states[2]
    rates[3] = constants[11]*constants[15]-constants[13]*states[3]
    algebraic[1] = power(power(states[1]/constants[2], constants[1]), 1.0/2)
    rates[0] = constants[0]*(algebraic[1]*(1.00000-states[0])-(1.00000/algebraic[1])*states[0])
    algebraic[0] = (voi-167.000*floor(voi/167.000))/1.00000
    algebraic[3] = custom_piecewise([greater_equal(algebraic[0] , 1.17000) & less(algebraic[0] , 30.8400), 1.00000*1.85358e-05*(power(algebraic[0], 3.00000))+-0.00159034*(power(algebraic[0], 2.00000))+0.0436459*(power(algebraic[0], 1.00000))+0.167079 , greater_equal(algebraic[0] , 30.8400), ((1.00000*-5.74585e-08*(power(algebraic[0], 3.00000))+3.11222e-05*(power(algebraic[0], 2.00000)))-0.00661849*(power(algebraic[0], 1.00000)))+0.720442 , True, 0.216000])
    rates[1] = constants[5]*((power(algebraic[3]/constants[17], constants[6]))*(1.00000-states[1])-states[1])
    return(rates)

def computeAlgebraic(constants, states, voi):
    algebraic = array([[0.0] * len(voi)] * sizeAlgebraic)
    states = array(states)
    voi = array(voi)
    algebraic[1] = power(power(states[1]/constants[2], constants[1]), 1.0/2)
    algebraic[0] = (voi-167.000*floor(voi/167.000))/1.00000
    algebraic[3] = custom_piecewise([greater_equal(algebraic[0] , 1.17000) & less(algebraic[0] , 30.8400), 1.00000*1.85358e-05*(power(algebraic[0], 3.00000))+-0.00159034*(power(algebraic[0], 2.00000))+0.0436459*(power(algebraic[0], 1.00000))+0.167079 , greater_equal(algebraic[0] , 30.8400), ((1.00000*-5.74585e-08*(power(algebraic[0], 3.00000))+3.11222e-05*(power(algebraic[0], 2.00000)))-0.00661849*(power(algebraic[0], 1.00000)))+0.720442 , True, 0.216000])
    algebraic[2] = constants[8]*states[0]*constants[19]
    algebraic[4] = states[2]+states[3]
    algebraic[5] = custom_piecewise([less(algebraic[4] , 0.00000), (algebraic[2]*(constants[9]*algebraic[4]+1.00000))/(1.00000-algebraic[4]) , True, (algebraic[2]*(1.00000+(constants[9]+2.00000)*algebraic[4]))/(1.00000+algebraic[4])])
    return algebraic

def custom_piecewise(cases):
    """Compute result of a piecewise function"""
    return select(cases[0::2],cases[1::2])

def solve_model():
    """Solve model with ODE solver"""
    from scipy.integrate import ode
    # Initialise constants and state variables
    (init_states, constants) = initConsts()

    # Set timespan to solve over
    voi = linspace(0, 10, 500)

    # Construct ODE object to solve
    r = ode(computeRates)
    r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1)
    r.set_initial_value(init_states, voi[0])
    r.set_f_params(constants)

    # Solve model
    states = array([[0.0] * len(voi)] * sizeStates)
    states[:,0] = init_states
    for (i,t) in enumerate(voi[1:]):
        if r.successful():
            r.integrate(t)
            states[:,i+1] = r.y
        else:
            break

    # Compute algebraic variables
    algebraic = computeAlgebraic(constants, states, voi)
    return (voi, states, algebraic)

def plot_model(voi, states, algebraic):
    """Plot variables against variable of integration"""
    import pylab
    (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends()
    pylab.figure(1)
    pylab.plot(voi,vstack((states,algebraic)).T)
    pylab.xlabel(legend_voi)
    pylab.legend(legend_states + legend_algebraic, loc='best')
    pylab.show()

if __name__ == "__main__":
    (voi, states, algebraic) = solve_model()
    plot_model(voi, states, algebraic)