# Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

```function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
% This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
[VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount()
% Used later when setting a global variable with the number of algebraic variables.
% Note: This is not the "main method".
algebraicVariableCount =5;
end
% There are a total of 1 entries in each of the rate and state variable arrays.
% There are a total of 5 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
% Create ALGEBRAIC of correct size
global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
% Initialise constants and state variables
[INIT_STATES, CONSTANTS] = initConsts;

% Set timespan to solve over
tspan = [0, 10];

% Set numerical accuracy options for ODE solver
options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

% Solve model with ODE solver
[VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

% Compute algebraic variables
[RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

% Plot state variables against variable of integration
[LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
figure();
plot(VOI, STATES);
xlabel(LEGEND_VOI);
l = legend(LEGEND_STATES);
set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
LEGEND_ALGEBRAIC(:,1) = strpad('V in component environment (millivolt)');
LEGEND_VOI = strpad('t in component environment (millisec)');
LEGEND_STATES(:,1) = strpad('n in component potassium_channel_n_gate (dimensionless)');
LEGEND_ALGEBRAIC(:,4) = strpad('i_K in component potassium_channel (microA_per_cm2)');
LEGEND_CONSTANTS(:,1) = strpad('g_K in component potassium_channel (milliS_per_cm2)');
LEGEND_CONSTANTS(:,2) = strpad('Ki in component potassium_channel (mM)');
LEGEND_CONSTANTS(:,3) = strpad('Ko in component potassium_channel (mM)');
LEGEND_CONSTANTS(:,4) = strpad('RTF in component potassium_channel (millivolt)');
LEGEND_CONSTANTS(:,5) = strpad('E_K in component potassium_channel (millivolt)');
LEGEND_ALGEBRAIC(:,2) = strpad('K_conductance in component potassium_channel (milliS_per_cm2)');
LEGEND_ALGEBRAIC(:,3) = strpad('alpha_n in component potassium_channel_n_gate (per_millisec)');
LEGEND_ALGEBRAIC(:,5) = strpad('beta_n in component potassium_channel_n_gate (per_millisec)');
LEGEND_RATES(:,1) = strpad('d/dt n in component potassium_channel_n_gate (dimensionless)');
LEGEND_STATES  = LEGEND_STATES';
LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
LEGEND_RATES = LEGEND_RATES';
LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
STATES(:,1) = 0.325;
CONSTANTS(:,1) = 36;
CONSTANTS(:,2) = 90;
CONSTANTS(:,3) = 3;
CONSTANTS(:,4) = 25;
CONSTANTS(:,5) =  CONSTANTS(:,4).*log(CONSTANTS(:,3)./CONSTANTS(:,2));
if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
global algebraicVariableCount;
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
ALGEBRAIC = zeros(1, algebraicVariableCount);
utilOnes = 1;
else
statesRowCount = statesSize(1);
ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
RATES = zeros(statesRowCount, statesColumnCount);
utilOnes = ones(statesRowCount, 1);
end
ALGEBRAIC(:,1) = piecewise({VOI>5.00000&VOI<15.0000,  - 85.0000 }, 0.00000);
ALGEBRAIC(:,3) = ( 0.0100000.*(ALGEBRAIC(:,1)+10.0000))./(exp((ALGEBRAIC(:,1)+10.0000)./10.0000) - 1.00000);
ALGEBRAIC(:,5) =  0.125000.*exp(ALGEBRAIC(:,1)./80.0000);
RATES(:,1) =  ALGEBRAIC(:,3).*(1.00000 - STATES(:,1)) -  ALGEBRAIC(:,5).*STATES(:,1);
RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
utilOnes = 1;
else
statesRowCount = statesSize(1);
utilOnes = ones(statesRowCount, 1);
end
ALGEBRAIC(:,1) = piecewise({VOI>5.00000&VOI<15.0000,  - 85.0000 }, 0.00000);
ALGEBRAIC(:,3) = ( 0.0100000.*(ALGEBRAIC(:,1)+10.0000))./(exp((ALGEBRAIC(:,1)+10.0000)./10.0000) - 1.00000);
ALGEBRAIC(:,5) =  0.125000.*exp(ALGEBRAIC(:,1)./80.0000);
ALGEBRAIC(:,2) =  CONSTANTS(:,1).*power(STATES(:,1), 4.00000);
ALGEBRAIC(:,4) =  ALGEBRAIC(:,2).*(ALGEBRAIC(:,1) - CONSTANTS(:,5));
end

% Compute result of a piecewise function
function x = piecewise(cases, default)
set = [0];
for i = 1:2:length(cases)
if (length(cases{i+1}) == 1)
x(cases{i} & ~set,:) = cases{i+1};
else
x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set);
end
set = set | cases{i};
if(set), break, end
end
if (length(default) == 1)
x(~set,:) = default;
else
x(~set,:) = default(~set);
end
end

% Pad out or shorten strings to a set length
req_length = 160;
insize = size(strin,2);
if insize > req_length
strout = strin(1:req_length);
else
strout = [strin, blanks(req_length - insize)];
end
end

```
Source
Derived from workspace Models for the OpenCOR and PMR tutorial by Peter Hunter at changeset 97073ce481e4.
This exposure was expired. A more up-to-date exposure is available, or view related resources.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: