Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =5; end % There are a total of 1 entries in each of the rate and state variable arrays. % There are a total of 5 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_ALGEBRAIC(:,1) = strpad('V in component environment (millivolt)'); LEGEND_VOI = strpad('t in component environment (millisec)'); LEGEND_STATES(:,1) = strpad('n in component potassium_channel_n_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,4) = strpad('i_K in component potassium_channel (microA_per_cm2)'); LEGEND_CONSTANTS(:,1) = strpad('g_K in component potassium_channel (milliS_per_cm2)'); LEGEND_CONSTANTS(:,2) = strpad('Ki in component potassium_channel (mM)'); LEGEND_CONSTANTS(:,3) = strpad('Ko in component potassium_channel (mM)'); LEGEND_CONSTANTS(:,4) = strpad('RTF in component potassium_channel (millivolt)'); LEGEND_CONSTANTS(:,5) = strpad('E_K in component potassium_channel (millivolt)'); LEGEND_ALGEBRAIC(:,2) = strpad('K_conductance in component potassium_channel (milliS_per_cm2)'); LEGEND_ALGEBRAIC(:,3) = strpad('alpha_n in component potassium_channel_n_gate (per_millisec)'); LEGEND_ALGEBRAIC(:,5) = strpad('beta_n in component potassium_channel_n_gate (per_millisec)'); LEGEND_RATES(:,1) = strpad('d/dt n in component potassium_channel_n_gate (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0.325; CONSTANTS(:,1) = 36; CONSTANTS(:,2) = 90; CONSTANTS(:,3) = 3; CONSTANTS(:,4) = 25; CONSTANTS(:,5) = CONSTANTS(:,4).*log(CONSTANTS(:,3)./CONSTANTS(:,2)); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = piecewise({VOI>5.00000&VOI<15.0000, - 85.0000 }, 0.00000); ALGEBRAIC(:,3) = ( 0.0100000.*(ALGEBRAIC(:,1)+10.0000))./(exp((ALGEBRAIC(:,1)+10.0000)./10.0000) - 1.00000); ALGEBRAIC(:,5) = 0.125000.*exp(ALGEBRAIC(:,1)./80.0000); RATES(:,1) = ALGEBRAIC(:,3).*(1.00000 - STATES(:,1)) - ALGEBRAIC(:,5).*STATES(:,1); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = piecewise({VOI>5.00000&VOI<15.0000, - 85.0000 }, 0.00000); ALGEBRAIC(:,3) = ( 0.0100000.*(ALGEBRAIC(:,1)+10.0000))./(exp((ALGEBRAIC(:,1)+10.0000)./10.0000) - 1.00000); ALGEBRAIC(:,5) = 0.125000.*exp(ALGEBRAIC(:,1)./80.0000); ALGEBRAIC(:,2) = CONSTANTS(:,1).*power(STATES(:,1), 4.00000); ALGEBRAIC(:,4) = ALGEBRAIC(:,2).*(ALGEBRAIC(:,1) - CONSTANTS(:,5)); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end