# Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

```function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
% This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
[VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount()
% Used later when setting a global variable with the number of algebraic variables.
% Note: This is not the "main method".
algebraicVariableCount =7;
end
% There are a total of 2 entries in each of the rate and state variable arrays.
% There are a total of 2 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
% Create ALGEBRAIC of correct size
global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
% Initialise constants and state variables
[INIT_STATES, CONSTANTS] = initConsts;

% Set timespan to solve over
tspan = [0, 10];

% Set numerical accuracy options for ODE solver
options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

% Solve model with ODE solver
[VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

% Compute algebraic variables
[RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

% Plot state variables against variable of integration
[LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
figure();
plot(VOI, STATES);
xlabel(LEGEND_VOI);
l = legend(LEGEND_STATES);
set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
LEGEND_ALGEBRAIC(:,1) = strpad('V in component environment (millivolt)');
LEGEND_VOI = strpad('t in component environment (millisec)');
LEGEND_STATES(:,1) = strpad('m in component sodium_channel_m_gate (dimensionless)');
LEGEND_STATES(:,2) = strpad('h in component sodium_channel_h_gate (dimensionless)');
LEGEND_CONSTANTS(:,1) = strpad('g_Na in component sodium_channel (milliS_per_cm2)');
LEGEND_CONSTANTS(:,2) = strpad('E_Na in component sodium_channel (millivolt)');
LEGEND_ALGEBRAIC(:,2) = strpad('Na_conductance in component sodium_channel (milliS_per_cm2)');
LEGEND_ALGEBRAIC(:,5) = strpad('i_Na in component sodium_channel (microA_per_cm2)');
LEGEND_ALGEBRAIC(:,3) = strpad('alpha_m in component sodium_channel_m_gate (per_millisec)');
LEGEND_ALGEBRAIC(:,6) = strpad('beta_m in component sodium_channel_m_gate (per_millisec)');
LEGEND_ALGEBRAIC(:,4) = strpad('alpha_h in component sodium_channel_h_gate (per_millisec)');
LEGEND_ALGEBRAIC(:,7) = strpad('beta_h in component sodium_channel_h_gate (per_millisec)');
LEGEND_RATES(:,1) = strpad('d/dt m in component sodium_channel_m_gate (dimensionless)');
LEGEND_RATES(:,2) = strpad('d/dt h in component sodium_channel_h_gate (dimensionless)');
LEGEND_STATES  = LEGEND_STATES';
LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
LEGEND_RATES = LEGEND_RATES';
LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
STATES(:,1) = 0.05;
STATES(:,2) = 0.6;
CONSTANTS(:,1) = 120;
CONSTANTS(:,2) = 35;
if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
global algebraicVariableCount;
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
ALGEBRAIC = zeros(1, algebraicVariableCount);
utilOnes = 1;
else
statesRowCount = statesSize(1);
ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
RATES = zeros(statesRowCount, statesColumnCount);
utilOnes = ones(statesRowCount, 1);
end
ALGEBRAIC(:,1) = piecewise({VOI>5.00000&VOI<15.0000, 0.00000 },  - 85.0000);
ALGEBRAIC(:,3) = (  - 0.100000.*(ALGEBRAIC(:,1)+50.0000))./(exp( - (ALGEBRAIC(:,1)+50.0000)./10.0000) - 1.00000);
ALGEBRAIC(:,6) =  4.00000.*exp( - (ALGEBRAIC(:,1)+75.0000)./18.0000);
RATES(:,1) =  ALGEBRAIC(:,3).*(1.00000 - STATES(:,1)) -  ALGEBRAIC(:,6).*STATES(:,1);
ALGEBRAIC(:,4) =  0.0700000.*exp( - (ALGEBRAIC(:,1)+75.0000)./20.0000);
ALGEBRAIC(:,7) = 1.00000./(exp( - (ALGEBRAIC(:,1)+45.0000)./10.0000)+1.00000);
RATES(:,2) =  ALGEBRAIC(:,4).*(1.00000 - STATES(:,2)) -  ALGEBRAIC(:,7).*STATES(:,2);
RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
utilOnes = 1;
else
statesRowCount = statesSize(1);
utilOnes = ones(statesRowCount, 1);
end
ALGEBRAIC(:,1) = piecewise({VOI>5.00000&VOI<15.0000, 0.00000 },  - 85.0000);
ALGEBRAIC(:,3) = (  - 0.100000.*(ALGEBRAIC(:,1)+50.0000))./(exp( - (ALGEBRAIC(:,1)+50.0000)./10.0000) - 1.00000);
ALGEBRAIC(:,6) =  4.00000.*exp( - (ALGEBRAIC(:,1)+75.0000)./18.0000);
ALGEBRAIC(:,4) =  0.0700000.*exp( - (ALGEBRAIC(:,1)+75.0000)./20.0000);
ALGEBRAIC(:,7) = 1.00000./(exp( - (ALGEBRAIC(:,1)+45.0000)./10.0000)+1.00000);
ALGEBRAIC(:,2) =  CONSTANTS(:,1).*power(STATES(:,1), 3.00000).*STATES(:,2);
ALGEBRAIC(:,5) =  ALGEBRAIC(:,2).*(ALGEBRAIC(:,1) - CONSTANTS(:,2));
end

% Compute result of a piecewise function
function x = piecewise(cases, default)
set = [0];
for i = 1:2:length(cases)
if (length(cases{i+1}) == 1)
x(cases{i} & ~set,:) = cases{i+1};
else
x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set);
end
set = set | cases{i};
if(set), break, end
end
if (length(default) == 1)
x(~set,:) = default;
else
x(~set,:) = default(~set);
end
end

% Pad out or shorten strings to a set length
req_length = 160;
insize = size(strin,2);
if insize > req_length
strout = strin(1:req_length);
else
strout = [strin, blanks(req_length - insize)];
end
end

```
Source
Derived from workspace Models for the OpenCOR and PMR tutorial by Peter Hunter at changeset e5703023568b.
This exposure was expired.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: