Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 71 entries in the algebraic variable array. There are a total of 41 entries in each of the rate and state variable arrays. There are a total of 73 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is Cm in component membrane (microF_per_cm2). * CONSTANTS[1] is Vmyo in component membrane (microlitre). * CONSTANTS[2] is VJSR in component membrane (microlitre). * CONSTANTS[3] is VNSR in component membrane (microlitre). * CONSTANTS[4] is Vss in component membrane (microlitre). * CONSTANTS[5] is Acap in component membrane (cm2). * CONSTANTS[6] is Ko in component membrane (micromolar). * CONSTANTS[7] is Nao in component membrane (micromolar). * CONSTANTS[8] is Cao in component membrane (micromolar). * CONSTANTS[9] is R in component membrane (joule_per_mole_kelvin). * CONSTANTS[10] is T in component membrane (kelvin). * CONSTANTS[11] is F in component membrane (coulomb_per_millimole). * ALGEBRAIC[0] is i_stim in component membrane (picoA_per_picoF). * ALGEBRAIC[46] is i_CaL in component L_type_calcium_current (picoA_per_picoF). * ALGEBRAIC[48] is i_pCa in component calcium_pump_current (picoA_per_picoF). * ALGEBRAIC[50] is i_NaCa in component sodium_calcium_exchange_current (picoA_per_picoF). * ALGEBRAIC[54] is i_Cab in component calcium_background_current (picoA_per_picoF). * ALGEBRAIC[57] is i_Na in component fast_sodium_current (picoA_per_picoF). * ALGEBRAIC[58] is i_Nab in component sodium_background_current (picoA_per_picoF). * ALGEBRAIC[68] is i_NaK in component sodium_potassium_pump_current (picoA_per_picoF). * ALGEBRAIC[60] is i_Kto_f in component fast_transient_outward_potassium_current (picoA_per_picoF). * ALGEBRAIC[61] is i_Kto_s in component slow_transient_outward_potassium_current (picoA_per_picoF). * ALGEBRAIC[62] is i_K1 in component time_independent_potassium_current (picoA_per_picoF). * ALGEBRAIC[63] is i_Ks in component slow_delayed_rectifier_potassium_current (picoA_per_picoF). * ALGEBRAIC[64] is i_Kur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (picoA_per_picoF). * ALGEBRAIC[65] is i_Kss in component non_inactivating_steady_state_potassium_current (picoA_per_picoF). * ALGEBRAIC[70] is i_ClCa in component calcium_activated_chloride_current (picoA_per_picoF). * ALGEBRAIC[66] is i_Kr in component rapid_delayed_rectifier_potassium_current (picoA_per_picoF). * CONSTANTS[12] is stim_start in component membrane (millisecond). * CONSTANTS[13] is stim_end in component membrane (millisecond). * CONSTANTS[14] is stim_period in component membrane (millisecond). * CONSTANTS[15] is stim_duration in component membrane (millisecond). * CONSTANTS[16] is stim_amplitude in component membrane (picoA_per_picoF). * STATES[1] is Cai in component calcium_concentration (micromolar). * STATES[2] is Cass in component calcium_concentration (micromolar). * STATES[3] is CaJSR in component calcium_concentration (micromolar). * STATES[4] is CaNSR in component calcium_concentration (micromolar). * ALGEBRAIC[11] is Bi in component calcium_concentration (dimensionless). * ALGEBRAIC[24] is Bss in component calcium_concentration (dimensionless). * ALGEBRAIC[29] is BJSR in component calcium_concentration (dimensionless). * CONSTANTS[17] is CMDN_tot in component calcium_concentration (micromolar). * CONSTANTS[18] is CSQN_tot in component calcium_concentration (micromolar). * CONSTANTS[19] is Km_CMDN in component calcium_concentration (micromolar). * CONSTANTS[20] is Km_CSQN in component calcium_concentration (micromolar). * ALGEBRAIC[40] is J_leak in component calcium_fluxes (micromolar_per_millisecond). * ALGEBRAIC[33] is J_rel in component calcium_fluxes (micromolar_per_millisecond). * ALGEBRAIC[42] is J_up in component calcium_fluxes (micromolar_per_millisecond). * ALGEBRAIC[36] is J_tr in component calcium_fluxes (micromolar_per_millisecond). * ALGEBRAIC[44] is J_trpn in component calcium_fluxes (micromolar_per_millisecond). * ALGEBRAIC[38] is J_xfer in component calcium_fluxes (micromolar_per_millisecond). * CONSTANTS[21] is k_plus_htrpn in component calcium_fluxes (per_micromolar_millisecond). * CONSTANTS[22] is k_minus_htrpn in component calcium_fluxes (per_millisecond). * CONSTANTS[23] is k_plus_ltrpn in component calcium_fluxes (per_micromolar_millisecond). * CONSTANTS[24] is k_minus_ltrpn in component calcium_fluxes (per_millisecond). * STATES[5] is P_RyR in component calcium_fluxes (dimensionless). * CONSTANTS[25] is v1 in component calcium_fluxes (per_millisecond). * CONSTANTS[26] is tau_tr in component calcium_fluxes (millisecond). * CONSTANTS[27] is v2 in component calcium_fluxes (per_millisecond). * CONSTANTS[28] is tau_xfer in component calcium_fluxes (millisecond). * CONSTANTS[29] is v3 in component calcium_fluxes (micromolar_per_millisecond). * CONSTANTS[30] is Km_up in component calcium_fluxes (micromolar). * CONSTANTS[31] is LTRPN_tot in component calcium_buffering (micromolar). * CONSTANTS[32] is HTRPN_tot in component calcium_buffering (micromolar). * STATES[6] is LTRPN_Ca in component calcium_buffering (micromolar). * STATES[7] is HTRPN_Ca in component calcium_buffering (micromolar). * CONSTANTS[33] is i_CaL_max in component L_type_calcium_current (picoA_per_picoF). * STATES[8] is P_O1 in component ryanodine_receptors (dimensionless). * STATES[9] is P_O2 in component ryanodine_receptors (dimensionless). * ALGEBRAIC[1] is P_C1 in component ryanodine_receptors (dimensionless). * STATES[10] is P_C2 in component ryanodine_receptors (dimensionless). * CONSTANTS[34] is k_plus_a in component ryanodine_receptors (micromolar4_per_millisecond). * CONSTANTS[35] is k_minus_a in component ryanodine_receptors (per_millisecond). * CONSTANTS[36] is k_plus_b in component ryanodine_receptors (micromolar3_per_millisecond). * CONSTANTS[37] is k_minus_b in component ryanodine_receptors (per_millisecond). * CONSTANTS[38] is k_plus_c in component ryanodine_receptors (per_millisecond). * CONSTANTS[39] is k_minus_c in component ryanodine_receptors (per_millisecond). * CONSTANTS[40] is m in component ryanodine_receptors (dimensionless). * CONSTANTS[41] is n in component ryanodine_receptors (dimensionless). * CONSTANTS[42] is E_CaL in component L_type_calcium_current (millivolt). * CONSTANTS[43] is g_CaL in component L_type_calcium_current (milliS_per_microF). * STATES[11] is O in component L_type_calcium_current (dimensionless). * ALGEBRAIC[2] is C1 in component L_type_calcium_current (dimensionless). * STATES[12] is C2 in component L_type_calcium_current (dimensionless). * STATES[13] is C3 in component L_type_calcium_current (dimensionless). * STATES[14] is C4 in component L_type_calcium_current (dimensionless). * STATES[15] is I1 in component L_type_calcium_current (dimensionless). * STATES[16] is I2 in component L_type_calcium_current (dimensionless). * STATES[17] is I3 in component L_type_calcium_current (dimensionless). * ALGEBRAIC[12] is alpha in component L_type_calcium_current (per_millisecond). * ALGEBRAIC[25] is beta in component L_type_calcium_current (per_millisecond). * ALGEBRAIC[30] is gamma in component L_type_calcium_current (per_millisecond). * ALGEBRAIC[34] is Kpcf in component L_type_calcium_current (per_millisecond). * CONSTANTS[44] is Kpcb in component L_type_calcium_current (per_millisecond). * CONSTANTS[45] is Kpc_max in component L_type_calcium_current (per_millisecond). * CONSTANTS[46] is Kpc_half in component L_type_calcium_current (micromolar). * CONSTANTS[47] is i_pCa_max in component calcium_pump_current (picoA_per_picoF). * CONSTANTS[48] is Km_pCa in component calcium_pump_current (micromolar). * CONSTANTS[49] is k_NaCa in component sodium_calcium_exchange_current (picoA_per_picoF). * CONSTANTS[50] is K_mNa in component sodium_calcium_exchange_current (micromolar). * CONSTANTS[51] is K_mCa in component sodium_calcium_exchange_current (micromolar). * CONSTANTS[52] is k_sat in component sodium_calcium_exchange_current (dimensionless). * CONSTANTS[53] is eta in component sodium_calcium_exchange_current (dimensionless). * STATES[18] is Nai in component sodium_concentration (micromolar). * CONSTANTS[54] is g_Cab in component calcium_background_current (milliS_per_microF). * ALGEBRAIC[52] is E_CaN in component calcium_background_current (millivolt). * ALGEBRAIC[56] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[55] is g_Na in component fast_sodium_current (milliS_per_microF). * STATES[19] is O_Na in component fast_sodium_current (dimensionless). * STATES[20] is C_Na1 in component fast_sodium_current (dimensionless). * STATES[21] is C_Na2 in component fast_sodium_current (dimensionless). * ALGEBRAIC[3] is C_Na3 in component fast_sodium_current (dimensionless). * STATES[22] is I1_Na in component fast_sodium_current (dimensionless). * STATES[23] is I2_Na in component fast_sodium_current (dimensionless). * STATES[24] is IF_Na in component fast_sodium_current (dimensionless). * STATES[25] is IC_Na2 in component fast_sodium_current (dimensionless). * STATES[26] is IC_Na3 in component fast_sodium_current (dimensionless). * ALGEBRAIC[13] is alpha_Na11 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[35] is beta_Na11 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[26] is alpha_Na12 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[37] is beta_Na12 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[31] is alpha_Na13 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[39] is beta_Na13 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[41] is alpha_Na3 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[43] is beta_Na3 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[45] is alpha_Na2 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[47] is beta_Na2 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[49] is alpha_Na4 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[51] is beta_Na4 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[53] is alpha_Na5 in component fast_sodium_current (per_millisecond). * ALGEBRAIC[55] is beta_Na5 in component fast_sodium_current (per_millisecond). * STATES[27] is Ki in component potassium_concentration (micromolar). * CONSTANTS[56] is g_Nab in component sodium_background_current (milliS_per_microF). * ALGEBRAIC[59] is E_K in component fast_transient_outward_potassium_current (millivolt). * CONSTANTS[57] is g_Kto_f in component fast_transient_outward_potassium_current (milliS_per_microF). * STATES[28] is ato_f in component fast_transient_outward_potassium_current (dimensionless). * STATES[29] is ito_f in component fast_transient_outward_potassium_current (dimensionless). * ALGEBRAIC[4] is alpha_a in component fast_transient_outward_potassium_current (per_millisecond). * ALGEBRAIC[14] is beta_a in component fast_transient_outward_potassium_current (per_millisecond). * ALGEBRAIC[5] is alpha_i in component fast_transient_outward_potassium_current (per_millisecond). * ALGEBRAIC[15] is beta_i in component fast_transient_outward_potassium_current (per_millisecond). * ALGEBRAIC[6] is ass in component slow_transient_outward_potassium_current (dimensionless). * ALGEBRAIC[7] is iss in component slow_transient_outward_potassium_current (dimensionless). * CONSTANTS[58] is g_Kto_s in component slow_transient_outward_potassium_current (milliS_per_microF). * STATES[30] is ato_s in component slow_transient_outward_potassium_current (dimensionless). * STATES[31] is ito_s in component slow_transient_outward_potassium_current (dimensionless). * ALGEBRAIC[16] is tau_ta_s in component slow_transient_outward_potassium_current (millisecond). * ALGEBRAIC[17] is tau_ti_s in component slow_transient_outward_potassium_current (millisecond). * CONSTANTS[59] is g_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF). * STATES[32] is nKs in component slow_delayed_rectifier_potassium_current (dimensionless). * ALGEBRAIC[8] is alpha_n in component slow_delayed_rectifier_potassium_current (per_millisecond). * ALGEBRAIC[18] is beta_n in component slow_delayed_rectifier_potassium_current (per_millisecond). * CONSTANTS[60] is g_Kur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (milliS_per_microF). * STATES[33] is aur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (dimensionless). * STATES[34] is iur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (dimensionless). * ALGEBRAIC[19] is tau_aur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (millisecond). * ALGEBRAIC[20] is tau_iur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (millisecond). * CONSTANTS[61] is g_Kss in component non_inactivating_steady_state_potassium_current (milliS_per_microF). * STATES[35] is aKss in component non_inactivating_steady_state_potassium_current (dimensionless). * STATES[36] is iKss in component non_inactivating_steady_state_potassium_current (dimensionless). * ALGEBRAIC[21] is tau_Kss in component non_inactivating_steady_state_potassium_current (millisecond). * CONSTANTS[62] is g_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF). * STATES[37] is O_K in component rapid_delayed_rectifier_potassium_current (dimensionless). * STATES[38] is C_K1 in component rapid_delayed_rectifier_potassium_current (dimensionless). * STATES[39] is C_K2 in component rapid_delayed_rectifier_potassium_current (dimensionless). * ALGEBRAIC[9] is C_K0 in component rapid_delayed_rectifier_potassium_current (dimensionless). * STATES[40] is I_K in component rapid_delayed_rectifier_potassium_current (dimensionless). * ALGEBRAIC[22] is alpha_a0 in component rapid_delayed_rectifier_potassium_current (per_millisecond). * ALGEBRAIC[27] is beta_a0 in component rapid_delayed_rectifier_potassium_current (per_millisecond). * CONSTANTS[63] is kb in component rapid_delayed_rectifier_potassium_current (per_millisecond). * CONSTANTS[64] is kf in component rapid_delayed_rectifier_potassium_current (per_millisecond). * ALGEBRAIC[10] is alpha_a1 in component rapid_delayed_rectifier_potassium_current (per_millisecond). * ALGEBRAIC[23] is beta_a1 in component rapid_delayed_rectifier_potassium_current (per_millisecond). * ALGEBRAIC[28] is alpha_i in component rapid_delayed_rectifier_potassium_current (per_millisecond). * ALGEBRAIC[32] is beta_i in component rapid_delayed_rectifier_potassium_current (per_millisecond). * CONSTANTS[65] is i_NaK_max in component sodium_potassium_pump_current (picoA_per_picoF). * CONSTANTS[66] is Km_Nai in component sodium_potassium_pump_current (micromolar). * CONSTANTS[67] is Km_Ko in component sodium_potassium_pump_current (micromolar). * ALGEBRAIC[67] is f_NaK in component sodium_potassium_pump_current (dimensionless). * CONSTANTS[71] is sigma in component sodium_potassium_pump_current (dimensionless). * CONSTANTS[68] is g_ClCa in component calcium_activated_chloride_current (milliS_per_microF). * ALGEBRAIC[69] is O_ClCa in component calcium_activated_chloride_current (dimensionless). * CONSTANTS[69] is E_Cl in component calcium_activated_chloride_current (millivolt). * CONSTANTS[70] is Km_Cl in component calcium_activated_chloride_current (micromolar). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[1] is d/dt Cai in component calcium_concentration (micromolar). * RATES[2] is d/dt Cass in component calcium_concentration (micromolar). * RATES[3] is d/dt CaJSR in component calcium_concentration (micromolar). * RATES[4] is d/dt CaNSR in component calcium_concentration (micromolar). * RATES[5] is d/dt P_RyR in component calcium_fluxes (dimensionless). * RATES[6] is d/dt LTRPN_Ca in component calcium_buffering (micromolar). * RATES[7] is d/dt HTRPN_Ca in component calcium_buffering (micromolar). * RATES[8] is d/dt P_O1 in component ryanodine_receptors (dimensionless). * RATES[9] is d/dt P_O2 in component ryanodine_receptors (dimensionless). * RATES[10] is d/dt P_C2 in component ryanodine_receptors (dimensionless). * RATES[11] is d/dt O in component L_type_calcium_current (dimensionless). * RATES[12] is d/dt C2 in component L_type_calcium_current (dimensionless). * RATES[13] is d/dt C3 in component L_type_calcium_current (dimensionless). * RATES[14] is d/dt C4 in component L_type_calcium_current (dimensionless). * RATES[15] is d/dt I1 in component L_type_calcium_current (dimensionless). * RATES[16] is d/dt I2 in component L_type_calcium_current (dimensionless). * RATES[17] is d/dt I3 in component L_type_calcium_current (dimensionless). * RATES[18] is d/dt Nai in component sodium_concentration (micromolar). * RATES[21] is d/dt C_Na2 in component fast_sodium_current (dimensionless). * RATES[20] is d/dt C_Na1 in component fast_sodium_current (dimensionless). * RATES[19] is d/dt O_Na in component fast_sodium_current (dimensionless). * RATES[24] is d/dt IF_Na in component fast_sodium_current (dimensionless). * RATES[22] is d/dt I1_Na in component fast_sodium_current (dimensionless). * RATES[23] is d/dt I2_Na in component fast_sodium_current (dimensionless). * RATES[25] is d/dt IC_Na2 in component fast_sodium_current (dimensionless). * RATES[26] is d/dt IC_Na3 in component fast_sodium_current (dimensionless). * RATES[27] is d/dt Ki in component potassium_concentration (micromolar). * RATES[28] is d/dt ato_f in component fast_transient_outward_potassium_current (dimensionless). * RATES[29] is d/dt ito_f in component fast_transient_outward_potassium_current (dimensionless). * RATES[30] is d/dt ato_s in component slow_transient_outward_potassium_current (dimensionless). * RATES[31] is d/dt ito_s in component slow_transient_outward_potassium_current (dimensionless). * RATES[32] is d/dt nKs in component slow_delayed_rectifier_potassium_current (dimensionless). * RATES[33] is d/dt aur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (dimensionless). * RATES[34] is d/dt iur in component ultra_rapidly_activating_delayed_rectifier_potassium_current (dimensionless). * RATES[35] is d/dt aKss in component non_inactivating_steady_state_potassium_current (dimensionless). * RATES[36] is d/dt iKss in component non_inactivating_steady_state_potassium_current (dimensionless). * RATES[39] is d/dt C_K2 in component rapid_delayed_rectifier_potassium_current (dimensionless). * RATES[38] is d/dt C_K1 in component rapid_delayed_rectifier_potassium_current (dimensionless). * RATES[37] is d/dt O_K in component rapid_delayed_rectifier_potassium_current (dimensionless). * RATES[40] is d/dt I_K in component rapid_delayed_rectifier_potassium_current (dimensionless). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -82.4202; CONSTANTS[0] = 1; CONSTANTS[1] = 25.84e-6; CONSTANTS[2] = 0.12e-6; CONSTANTS[3] = 2.098e-6; CONSTANTS[4] = 1.485e-9; CONSTANTS[5] = 1.534e-4; CONSTANTS[6] = 5400; CONSTANTS[7] = 140000; CONSTANTS[8] = 1800; CONSTANTS[9] = 8.314; CONSTANTS[10] = 298; CONSTANTS[11] = 96.5; CONSTANTS[12] = 20; CONSTANTS[13] = 100000; CONSTANTS[14] = 71.43; CONSTANTS[15] = 0.5; CONSTANTS[16] = -80; STATES[1] = 0.115001; STATES[2] = 0.115001; STATES[3] = 1299.5; STATES[4] = 1299.5; CONSTANTS[17] = 50; CONSTANTS[18] = 15000; CONSTANTS[19] = 0.238; CONSTANTS[20] = 800; CONSTANTS[21] = 0.00237; CONSTANTS[22] = 3.2e-5; CONSTANTS[23] = 0.0327; CONSTANTS[24] = 0.0196; STATES[5] = 0; CONSTANTS[25] = 4.5; CONSTANTS[26] = 20; CONSTANTS[27] = 1.74e-5; CONSTANTS[28] = 8; CONSTANTS[29] = 0.45; CONSTANTS[30] = 0.5; CONSTANTS[31] = 70; CONSTANTS[32] = 140; STATES[6] = 11.2684; STATES[7] = 125.29; CONSTANTS[33] = 7; STATES[8] = 0.149102e-4; STATES[9] = 0.951726e-10; STATES[10] = 0.16774e-3; CONSTANTS[34] = 0.006075; CONSTANTS[35] = 0.07125; CONSTANTS[36] = 0.00405; CONSTANTS[37] = 0.965; CONSTANTS[38] = 0.009; CONSTANTS[39] = 0.0008; CONSTANTS[40] = 3; CONSTANTS[41] = 4; CONSTANTS[42] = 63; CONSTANTS[43] = 0.1729; STATES[11] = 0.930308e-18; STATES[12] = 0.124216e-3; STATES[13] = 0.578679e-8; STATES[14] = 0.119816e-12; STATES[15] = 0.497923e-18; STATES[16] = 0.345847e-13; STATES[17] = 0.185106e-13; CONSTANTS[44] = 0.0005; CONSTANTS[45] = 0.23324; CONSTANTS[46] = 20; CONSTANTS[47] = 1; CONSTANTS[48] = 0.5; CONSTANTS[49] = 292.8; CONSTANTS[50] = 87500; CONSTANTS[51] = 1380; CONSTANTS[52] = 0.1; CONSTANTS[53] = 0.35; STATES[18] = 14237.1; CONSTANTS[54] = 0.000367; CONSTANTS[55] = 13; STATES[19] = 0.713483e-6; STATES[20] = 0.279132e-3; STATES[21] = 0.020752; STATES[22] = 0.673345e-6; STATES[23] = 0.155787e-8; STATES[24] = 0.153176e-3; STATES[25] = 0.0113879; STATES[26] = 0.34278; STATES[27] = 143720; CONSTANTS[56] = 0.0026; CONSTANTS[57] = 0.4067; STATES[28] = 0.265563e-2; STATES[29] = 0.999977; CONSTANTS[58] = 0; STATES[30] = 0.417069e-3; STATES[31] = 0.998543; CONSTANTS[59] = 0.00575; STATES[32] = 0.262753e-3; CONSTANTS[60] = 0.16; STATES[33] = 0.417069e-3; STATES[34] = 0.998543; CONSTANTS[61] = 0.05; STATES[35] = 0.417069e-3; STATES[36] = 1; CONSTANTS[62] = 0.078; STATES[37] = 0.175298e-3; STATES[38] = 0.992513e-3; STATES[39] = 0.641229e-3; STATES[40] = 0.319129e-4; CONSTANTS[63] = 0.036778; CONSTANTS[64] = 0.023761; CONSTANTS[65] = 0.88; CONSTANTS[66] = 21000; CONSTANTS[67] = 1500; CONSTANTS[68] = 10; CONSTANTS[69] = -40; CONSTANTS[70] = 10; CONSTANTS[71] = (1.00000/7.00000)*(exp(CONSTANTS[7]/67300.0) - 1.00000); CONSTANTS[72] = 0.00000; } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { RATES[36] = CONSTANTS[72]; RATES[6] = CONSTANTS[23]*STATES[1]*(CONSTANTS[31] - STATES[6]) - CONSTANTS[24]*STATES[6]; RATES[7] = CONSTANTS[21]*STATES[1]*(CONSTANTS[32] - STATES[7]) - CONSTANTS[22]*STATES[7]; RATES[9] = CONSTANTS[36]*pow(STATES[2], CONSTANTS[40])*STATES[8] - CONSTANTS[37]*STATES[9]; RATES[10] = CONSTANTS[38]*STATES[8] - CONSTANTS[39]*STATES[10]; ALGEBRAIC[1] = 1.00000 - (STATES[10]+STATES[8]+STATES[9]); RATES[8] = ( CONSTANTS[34]*pow(STATES[2], CONSTANTS[41])*ALGEBRAIC[1]+ CONSTANTS[37]*STATES[9]+ CONSTANTS[39]*STATES[10]) - ( CONSTANTS[35]*STATES[8]+ CONSTANTS[36]*pow(STATES[2], CONSTANTS[40])*STATES[8]+ CONSTANTS[38]*STATES[8]); ALGEBRAIC[4] = 0.180640*exp( 0.0357700*(STATES[0]+30.0000)); ALGEBRAIC[14] = 0.395600*exp( - 0.0623700*(STATES[0]+30.0000)); RATES[28] = ALGEBRAIC[4]*(1.00000 - STATES[28]) - ALGEBRAIC[14]*STATES[28]; ALGEBRAIC[5] = ( 0.000152000*exp(- (STATES[0]+13.5000)/7.00000))/( 0.00670830*exp(- (STATES[0]+33.5000)/7.00000)+1.00000); ALGEBRAIC[15] = ( 0.000950000*exp((STATES[0]+33.5000)/7.00000))/( 0.0513350*exp((STATES[0]+33.5000)/7.00000)+1.00000); RATES[29] = ALGEBRAIC[5]*(1.00000 - STATES[29]) - ALGEBRAIC[15]*STATES[29]; ALGEBRAIC[6] = 1.00000/(1.00000+exp(- (STATES[0]+22.5000)/7.70000)); ALGEBRAIC[16] = 0.493000*exp( - 0.0629000*STATES[0])+2.05800; RATES[30] = (ALGEBRAIC[6] - STATES[30])/ALGEBRAIC[16]; ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+45.2000)/5.70000)); ALGEBRAIC[17] = 270.000+1050.00/(1.00000+exp((STATES[0]+45.2000)/5.70000)); RATES[31] = (ALGEBRAIC[7] - STATES[31])/ALGEBRAIC[17]; ALGEBRAIC[8] = ( 4.81333e-06*(STATES[0]+26.5000))/(1.00000 - exp( - 0.128000*(STATES[0]+26.5000))); ALGEBRAIC[18] = 9.53333e-05*exp( - 0.0380000*(STATES[0]+26.5000)); RATES[32] = ALGEBRAIC[8]*(1.00000 - STATES[32]) - ALGEBRAIC[18]*STATES[32]; ALGEBRAIC[19] = 0.493000*exp( - 0.0629000*STATES[0])+2.05800; RATES[33] = (ALGEBRAIC[6] - STATES[33])/ALGEBRAIC[19]; ALGEBRAIC[20] = 1200.00 - 170.000/(1.00000+exp((STATES[0]+45.2000)/5.70000)); RATES[34] = (ALGEBRAIC[7] - STATES[34])/ALGEBRAIC[20]; ALGEBRAIC[21] = 39.3000*exp( - 0.0862000*STATES[0])+13.1700; RATES[35] = (ALGEBRAIC[6] - STATES[35])/ALGEBRAIC[21]; ALGEBRAIC[10] = 0.0137330*exp( 0.0381980*STATES[0]); ALGEBRAIC[23] = 6.89000e-05*exp( - 0.0417800*STATES[0]); RATES[39] = ( CONSTANTS[64]*STATES[38]+ ALGEBRAIC[23]*STATES[37]) - ( CONSTANTS[63]*STATES[39]+ ALGEBRAIC[10]*STATES[39]); ALGEBRAIC[2] = 1.00000 - (STATES[11]+STATES[12]+STATES[13]+STATES[14]+STATES[15]+STATES[16]+STATES[17]); ALGEBRAIC[12] = ( 0.400000*exp((STATES[0]+12.0000)/10.0000)*((1.00000+ 0.700000*exp(- pow(STATES[0]+40.0000, 2.00000)/10.0000)) - 0.750000*exp(- pow(STATES[0]+20.0000, 2.00000)/400.000)))/(1.00000+ 0.120000*exp((STATES[0]+12.0000)/10.0000)); ALGEBRAIC[25] = 0.0500000*exp(- (STATES[0]+12.0000)/13.0000); RATES[12] = ( 4.00000*ALGEBRAIC[12]*ALGEBRAIC[2]+ 2.00000*ALGEBRAIC[25]*STATES[13]) - ( ALGEBRAIC[25]*STATES[12]+ 3.00000*ALGEBRAIC[12]*STATES[12]); RATES[13] = ( 3.00000*ALGEBRAIC[12]*STATES[12]+ 3.00000*ALGEBRAIC[25]*STATES[14]) - ( 2.00000*ALGEBRAIC[25]*STATES[13]+ 2.00000*ALGEBRAIC[12]*STATES[13]); ALGEBRAIC[9] = 1.00000 - (STATES[38]+STATES[39]+STATES[37]+STATES[40]); ALGEBRAIC[22] = 0.0223480*exp( 0.0117600*STATES[0]); ALGEBRAIC[27] = 0.0470020*exp( - 0.0631000*STATES[0]); RATES[38] = ( ALGEBRAIC[22]*ALGEBRAIC[9]+ CONSTANTS[63]*STATES[39]) - ( ALGEBRAIC[27]*STATES[38]+ CONSTANTS[64]*STATES[38]); ALGEBRAIC[28] = 0.0908210*exp( 0.0233910*(STATES[0]+5.00000)); ALGEBRAIC[32] = 0.00649700*exp( - 0.0326800*(STATES[0]+5.00000)); RATES[37] = ( ALGEBRAIC[10]*STATES[39]+ ALGEBRAIC[32]*STATES[40]) - ( ALGEBRAIC[23]*STATES[37]+ ALGEBRAIC[28]*STATES[37]); RATES[40] = ALGEBRAIC[28]*STATES[37] - ALGEBRAIC[32]*STATES[40]; ALGEBRAIC[30] = ( CONSTANTS[45]*STATES[2])/(CONSTANTS[46]+STATES[2]); ALGEBRAIC[34] = 13.0000*(1.00000 - exp(- pow(STATES[0]+14.5000, 2.00000)/100.000)); RATES[11] = ( ALGEBRAIC[12]*STATES[14]+ CONSTANTS[44]*STATES[15]+ 0.00100000*( ALGEBRAIC[12]*STATES[16] - ALGEBRAIC[34]*STATES[11])) - ( 4.00000*ALGEBRAIC[25]*STATES[11]+ ALGEBRAIC[30]*STATES[11]); RATES[14] = ( 2.00000*ALGEBRAIC[12]*STATES[13]+ 4.00000*ALGEBRAIC[25]*STATES[11]+ 0.0100000*( 4.00000*CONSTANTS[44]*ALGEBRAIC[25]*STATES[15] - ALGEBRAIC[12]*ALGEBRAIC[30]*STATES[14])+ 0.00200000*( 4.00000*ALGEBRAIC[25]*STATES[16] - ALGEBRAIC[34]*STATES[14])+ 4.00000*ALGEBRAIC[25]*CONSTANTS[44]*STATES[17]) - ( 3.00000*ALGEBRAIC[25]*STATES[14]+ ALGEBRAIC[12]*STATES[14]+ 1.00000*ALGEBRAIC[30]*ALGEBRAIC[34]*STATES[14]); RATES[15] = ( ALGEBRAIC[30]*STATES[11]+ 0.00100000*( ALGEBRAIC[12]*STATES[17] - ALGEBRAIC[34]*STATES[15])+ 0.0100000*( ALGEBRAIC[12]*ALGEBRAIC[30]*STATES[14] - 4.00000*ALGEBRAIC[25]*ALGEBRAIC[34]*STATES[15])) - CONSTANTS[44]*STATES[15]; RATES[16] = ( 0.00100000*( ALGEBRAIC[34]*STATES[11] - ALGEBRAIC[12]*STATES[16])+ CONSTANTS[44]*STATES[17]+ 0.00200000*( ALGEBRAIC[34]*STATES[14] - 4.00000*ALGEBRAIC[25]*STATES[16])) - ALGEBRAIC[30]*STATES[16]; RATES[17] = ( 0.00100000*( ALGEBRAIC[34]*STATES[15] - ALGEBRAIC[12]*STATES[17])+ ALGEBRAIC[30]*STATES[16]+ 1.00000*ALGEBRAIC[30]*ALGEBRAIC[34]*STATES[14]) - ( 4.00000*ALGEBRAIC[25]*CONSTANTS[44]*STATES[17]+ CONSTANTS[44]*STATES[17]); ALGEBRAIC[29] = pow(1.00000+( CONSTANTS[18]*CONSTANTS[20])/pow(CONSTANTS[20]+STATES[3], 2.00000), - 1.00000); ALGEBRAIC[33] = CONSTANTS[25]*(STATES[8]+STATES[9])*(STATES[3] - STATES[2])*STATES[5]; ALGEBRAIC[36] = (STATES[4] - STATES[3])/CONSTANTS[26]; RATES[3] = ALGEBRAIC[29]*(ALGEBRAIC[36] - ALGEBRAIC[33]); ALGEBRAIC[40] = CONSTANTS[27]*(STATES[4] - STATES[1]); ALGEBRAIC[42] = ( CONSTANTS[29]*pow(STATES[1], 2.00000))/(pow(CONSTANTS[30], 2.00000)+pow(STATES[1], 2.00000)); RATES[4] = ( (ALGEBRAIC[42] - ALGEBRAIC[40])*CONSTANTS[1])/CONSTANTS[3] - ( ALGEBRAIC[36]*CONSTANTS[2])/CONSTANTS[3]; ALGEBRAIC[3] = 1.00000 - (STATES[19]+STATES[20]+STATES[21]+STATES[24]+STATES[22]+STATES[23]+STATES[25]+STATES[26]); ALGEBRAIC[13] = 3.80200/( 0.102700*exp(- (STATES[0]+2.50000)/17.0000)+ 0.200000*exp(- (STATES[0]+2.50000)/150.000)); ALGEBRAIC[35] = 0.191700*exp(- (STATES[0]+2.50000)/20.3000); ALGEBRAIC[26] = 3.80200/( 0.102700*exp(- (STATES[0]+2.50000)/15.0000)+ 0.230000*exp(- (STATES[0]+2.50000)/150.000)); ALGEBRAIC[37] = 0.200000*exp(- (STATES[0] - 2.50000)/20.3000); ALGEBRAIC[41] = 7.00000e-07*exp(- (STATES[0]+7.00000)/7.70000); ALGEBRAIC[43] = 0.00840000+ 2.00000e-05*(STATES[0]+7.00000); RATES[21] = ( ALGEBRAIC[13]*ALGEBRAIC[3]+ ALGEBRAIC[37]*STATES[20]+ ALGEBRAIC[41]*STATES[25]) - ( ALGEBRAIC[35]*STATES[21]+ ALGEBRAIC[26]*STATES[21]+ ALGEBRAIC[43]*STATES[21]); ALGEBRAIC[31] = 3.80200/( 0.102700*exp(- (STATES[0]+2.50000)/12.0000)+ 0.250000*exp(- (STATES[0]+2.50000)/150.000)); ALGEBRAIC[39] = 0.220000*exp(- (STATES[0] - 7.50000)/20.3000); RATES[20] = ( ALGEBRAIC[26]*STATES[21]+ ALGEBRAIC[39]*STATES[19]+ ALGEBRAIC[41]*STATES[24]) - ( ALGEBRAIC[37]*STATES[20]+ ALGEBRAIC[31]*STATES[20]+ ALGEBRAIC[43]*STATES[20]); RATES[25] = ( ALGEBRAIC[13]*STATES[26]+ ALGEBRAIC[37]*STATES[24]+ ALGEBRAIC[43]*STATES[21]) - ( ALGEBRAIC[35]*STATES[25]+ ALGEBRAIC[26]*STATES[25]+ ALGEBRAIC[41]*STATES[25]); RATES[26] = ( ALGEBRAIC[35]*STATES[25]+ ALGEBRAIC[43]*ALGEBRAIC[3]) - ( ALGEBRAIC[13]*STATES[26]+ ALGEBRAIC[41]*STATES[26]); ALGEBRAIC[46] = CONSTANTS[43]*STATES[11]*(STATES[0] - CONSTANTS[42]); ALGEBRAIC[24] = pow(1.00000+( CONSTANTS[17]*CONSTANTS[19])/pow(CONSTANTS[19]+STATES[2], 2.00000), - 1.00000); ALGEBRAIC[38] = (STATES[2] - STATES[1])/CONSTANTS[28]; RATES[2] = ALGEBRAIC[24]*(( ALGEBRAIC[33]*CONSTANTS[2])/CONSTANTS[4] - (( ALGEBRAIC[38]*CONSTANTS[1])/CONSTANTS[4]+( ALGEBRAIC[46]*CONSTANTS[5]*CONSTANTS[0])/( 2.00000*CONSTANTS[4]*CONSTANTS[11]))); RATES[5] = - 0.0400000*STATES[5] - (( 0.100000*ALGEBRAIC[46])/CONSTANTS[33])*exp(- pow(STATES[0] - 5.00000, 2.00000)/648.000); ALGEBRAIC[45] = 1.00000/( 0.188495*exp(- (STATES[0]+7.00000)/16.6000)+0.393956); ALGEBRAIC[47] = ( ALGEBRAIC[31]*ALGEBRAIC[45]*ALGEBRAIC[41])/( ALGEBRAIC[39]*ALGEBRAIC[43]); RATES[19] = ( ALGEBRAIC[31]*STATES[20]+ ALGEBRAIC[47]*STATES[24]) - ( ALGEBRAIC[39]*STATES[19]+ ALGEBRAIC[45]*STATES[19]); ALGEBRAIC[49] = ALGEBRAIC[45]/1000.00; ALGEBRAIC[51] = ALGEBRAIC[41]; RATES[24] = ( ALGEBRAIC[45]*STATES[19]+ ALGEBRAIC[43]*STATES[20]+ ALGEBRAIC[51]*STATES[22]+ ALGEBRAIC[26]*STATES[25]) - ( ALGEBRAIC[47]*STATES[24]+ ALGEBRAIC[41]*STATES[24]+ ALGEBRAIC[49]*STATES[24]+ ALGEBRAIC[37]*STATES[24]); ALGEBRAIC[48] = ( CONSTANTS[47]*pow(STATES[1], 2.00000))/(pow(CONSTANTS[48], 2.00000)+pow(STATES[1], 2.00000)); ALGEBRAIC[50] = (( (( (( CONSTANTS[49]*1.00000)/(pow(CONSTANTS[50], 3.00000)+pow(CONSTANTS[7], 3.00000)))*1.00000)/(CONSTANTS[51]+CONSTANTS[8]))*1.00000)/(1.00000+ CONSTANTS[52]*exp(( (CONSTANTS[53] - 1.00000)*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))))*( exp(( CONSTANTS[53]*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))*pow(STATES[18], 3.00000)*CONSTANTS[8] - exp(( (CONSTANTS[53] - 1.00000)*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))*pow(CONSTANTS[7], 3.00000)*STATES[1]); ALGEBRAIC[52] = (( CONSTANTS[9]*CONSTANTS[10])/( 2.00000*CONSTANTS[11]))*log(CONSTANTS[8]/STATES[1]); ALGEBRAIC[54] = CONSTANTS[54]*(STATES[0] - ALGEBRAIC[52]); ALGEBRAIC[11] = pow(1.00000+( CONSTANTS[17]*CONSTANTS[19])/pow(CONSTANTS[19]+STATES[1], 2.00000), - 1.00000); ALGEBRAIC[44] = ( CONSTANTS[21]*STATES[1]*(CONSTANTS[32] - STATES[7])+ CONSTANTS[23]*STATES[1]*(CONSTANTS[31] - STATES[6])) - ( CONSTANTS[22]*STATES[7]+ CONSTANTS[24]*STATES[6]); RATES[1] = ALGEBRAIC[11]*((ALGEBRAIC[40]+ALGEBRAIC[38]) - (ALGEBRAIC[42]+ALGEBRAIC[44]+( ((ALGEBRAIC[54]+ALGEBRAIC[48]) - 2.00000*ALGEBRAIC[50])*CONSTANTS[5]*CONSTANTS[0])/( 2.00000*CONSTANTS[1]*CONSTANTS[11]))); ALGEBRAIC[53] = ALGEBRAIC[45]/95000.0; ALGEBRAIC[55] = ALGEBRAIC[41]/50.0000; RATES[22] = ( ALGEBRAIC[49]*STATES[24]+ ALGEBRAIC[55]*STATES[23]) - ( ALGEBRAIC[51]*STATES[22]+ ALGEBRAIC[53]*STATES[22]); RATES[23] = ALGEBRAIC[53]*STATES[22] - ALGEBRAIC[55]*STATES[23]; ALGEBRAIC[56] = (( CONSTANTS[9]*CONSTANTS[10])/CONSTANTS[11])*log(( 0.900000*CONSTANTS[7]+ 0.100000*CONSTANTS[6])/( 0.900000*STATES[18]+ 0.100000*STATES[27])); ALGEBRAIC[57] = CONSTANTS[55]*STATES[19]*(STATES[0] - ALGEBRAIC[56]); ALGEBRAIC[58] = CONSTANTS[56]*(STATES[0] - ALGEBRAIC[56]); ALGEBRAIC[67] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))+ 0.0365000*CONSTANTS[71]*exp(( - STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))); ALGEBRAIC[68] = ( (( CONSTANTS[65]*ALGEBRAIC[67]*1.00000)/(1.00000+pow(CONSTANTS[66]/STATES[18], 1.50000)))*CONSTANTS[6])/(CONSTANTS[6]+CONSTANTS[67]); RATES[18] = ( - (ALGEBRAIC[57]+ALGEBRAIC[58]+ 3.00000*ALGEBRAIC[68]+ 3.00000*ALGEBRAIC[50])*CONSTANTS[5]*CONSTANTS[0])/( CONSTANTS[1]*CONSTANTS[11]); ALGEBRAIC[59] = (( CONSTANTS[9]*CONSTANTS[10])/CONSTANTS[11])*log(CONSTANTS[6]/STATES[27]); ALGEBRAIC[60] = CONSTANTS[57]*pow(STATES[28], 3.00000)*STATES[29]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[61] = CONSTANTS[58]*STATES[30]*STATES[31]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[62] = ( (( 0.293800*CONSTANTS[6])/(CONSTANTS[6]+210.000))*(STATES[0] - ALGEBRAIC[59]))/(1.00000+exp( 0.0896000*(STATES[0] - ALGEBRAIC[59]))); ALGEBRAIC[63] = CONSTANTS[59]*pow(STATES[32], 2.00000)*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[64] = CONSTANTS[60]*STATES[33]*STATES[34]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[65] = CONSTANTS[61]*STATES[35]*STATES[36]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[66] = CONSTANTS[62]*STATES[37]*(STATES[0] - (( CONSTANTS[9]*CONSTANTS[10])/CONSTANTS[11])*log(( 0.980000*CONSTANTS[6]+ 0.0200000*CONSTANTS[7])/( 0.980000*STATES[27]+ 0.0200000*STATES[18]))); RATES[27] = ( - ((ALGEBRAIC[60]+ALGEBRAIC[61]+ALGEBRAIC[62]+ALGEBRAIC[63]+ALGEBRAIC[65]+ALGEBRAIC[64]+ALGEBRAIC[66]) - 2.00000*ALGEBRAIC[68])*CONSTANTS[5]*CONSTANTS[0])/( CONSTANTS[1]*CONSTANTS[11]); ALGEBRAIC[0] = (VOI>=CONSTANTS[12]&&VOI<=CONSTANTS[13]&&(VOI - CONSTANTS[12]) - floor((VOI - CONSTANTS[12])/CONSTANTS[14])*CONSTANTS[14]<=CONSTANTS[15] ? CONSTANTS[16] : 0.00000); ALGEBRAIC[69] = 0.200000/(1.00000+exp(- (STATES[0] - 46.7000)/7.80000)); ALGEBRAIC[70] = (( CONSTANTS[68]*ALGEBRAIC[69]*STATES[1])/(STATES[1]+CONSTANTS[70]))*(STATES[0] - CONSTANTS[69]); RATES[0] = - (ALGEBRAIC[46]+ALGEBRAIC[48]+ALGEBRAIC[50]+ALGEBRAIC[54]+ALGEBRAIC[57]+ALGEBRAIC[58]+ALGEBRAIC[68]+ALGEBRAIC[60]+ALGEBRAIC[61]+ALGEBRAIC[62]+ALGEBRAIC[63]+ALGEBRAIC[64]+ALGEBRAIC[65]+ALGEBRAIC[66]+ALGEBRAIC[70]+ALGEBRAIC[0]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[1] = 1.00000 - (STATES[10]+STATES[8]+STATES[9]); ALGEBRAIC[4] = 0.180640*exp( 0.0357700*(STATES[0]+30.0000)); ALGEBRAIC[14] = 0.395600*exp( - 0.0623700*(STATES[0]+30.0000)); ALGEBRAIC[5] = ( 0.000152000*exp(- (STATES[0]+13.5000)/7.00000))/( 0.00670830*exp(- (STATES[0]+33.5000)/7.00000)+1.00000); ALGEBRAIC[15] = ( 0.000950000*exp((STATES[0]+33.5000)/7.00000))/( 0.0513350*exp((STATES[0]+33.5000)/7.00000)+1.00000); ALGEBRAIC[6] = 1.00000/(1.00000+exp(- (STATES[0]+22.5000)/7.70000)); ALGEBRAIC[16] = 0.493000*exp( - 0.0629000*STATES[0])+2.05800; ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+45.2000)/5.70000)); ALGEBRAIC[17] = 270.000+1050.00/(1.00000+exp((STATES[0]+45.2000)/5.70000)); ALGEBRAIC[8] = ( 4.81333e-06*(STATES[0]+26.5000))/(1.00000 - exp( - 0.128000*(STATES[0]+26.5000))); ALGEBRAIC[18] = 9.53333e-05*exp( - 0.0380000*(STATES[0]+26.5000)); ALGEBRAIC[19] = 0.493000*exp( - 0.0629000*STATES[0])+2.05800; ALGEBRAIC[20] = 1200.00 - 170.000/(1.00000+exp((STATES[0]+45.2000)/5.70000)); ALGEBRAIC[21] = 39.3000*exp( - 0.0862000*STATES[0])+13.1700; ALGEBRAIC[10] = 0.0137330*exp( 0.0381980*STATES[0]); ALGEBRAIC[23] = 6.89000e-05*exp( - 0.0417800*STATES[0]); ALGEBRAIC[2] = 1.00000 - (STATES[11]+STATES[12]+STATES[13]+STATES[14]+STATES[15]+STATES[16]+STATES[17]); ALGEBRAIC[12] = ( 0.400000*exp((STATES[0]+12.0000)/10.0000)*((1.00000+ 0.700000*exp(- pow(STATES[0]+40.0000, 2.00000)/10.0000)) - 0.750000*exp(- pow(STATES[0]+20.0000, 2.00000)/400.000)))/(1.00000+ 0.120000*exp((STATES[0]+12.0000)/10.0000)); ALGEBRAIC[25] = 0.0500000*exp(- (STATES[0]+12.0000)/13.0000); ALGEBRAIC[9] = 1.00000 - (STATES[38]+STATES[39]+STATES[37]+STATES[40]); ALGEBRAIC[22] = 0.0223480*exp( 0.0117600*STATES[0]); ALGEBRAIC[27] = 0.0470020*exp( - 0.0631000*STATES[0]); ALGEBRAIC[28] = 0.0908210*exp( 0.0233910*(STATES[0]+5.00000)); ALGEBRAIC[32] = 0.00649700*exp( - 0.0326800*(STATES[0]+5.00000)); ALGEBRAIC[30] = ( CONSTANTS[45]*STATES[2])/(CONSTANTS[46]+STATES[2]); ALGEBRAIC[34] = 13.0000*(1.00000 - exp(- pow(STATES[0]+14.5000, 2.00000)/100.000)); ALGEBRAIC[29] = pow(1.00000+( CONSTANTS[18]*CONSTANTS[20])/pow(CONSTANTS[20]+STATES[3], 2.00000), - 1.00000); ALGEBRAIC[33] = CONSTANTS[25]*(STATES[8]+STATES[9])*(STATES[3] - STATES[2])*STATES[5]; ALGEBRAIC[36] = (STATES[4] - STATES[3])/CONSTANTS[26]; ALGEBRAIC[40] = CONSTANTS[27]*(STATES[4] - STATES[1]); ALGEBRAIC[42] = ( CONSTANTS[29]*pow(STATES[1], 2.00000))/(pow(CONSTANTS[30], 2.00000)+pow(STATES[1], 2.00000)); ALGEBRAIC[3] = 1.00000 - (STATES[19]+STATES[20]+STATES[21]+STATES[24]+STATES[22]+STATES[23]+STATES[25]+STATES[26]); ALGEBRAIC[13] = 3.80200/( 0.102700*exp(- (STATES[0]+2.50000)/17.0000)+ 0.200000*exp(- (STATES[0]+2.50000)/150.000)); ALGEBRAIC[35] = 0.191700*exp(- (STATES[0]+2.50000)/20.3000); ALGEBRAIC[26] = 3.80200/( 0.102700*exp(- (STATES[0]+2.50000)/15.0000)+ 0.230000*exp(- (STATES[0]+2.50000)/150.000)); ALGEBRAIC[37] = 0.200000*exp(- (STATES[0] - 2.50000)/20.3000); ALGEBRAIC[41] = 7.00000e-07*exp(- (STATES[0]+7.00000)/7.70000); ALGEBRAIC[43] = 0.00840000+ 2.00000e-05*(STATES[0]+7.00000); ALGEBRAIC[31] = 3.80200/( 0.102700*exp(- (STATES[0]+2.50000)/12.0000)+ 0.250000*exp(- (STATES[0]+2.50000)/150.000)); ALGEBRAIC[39] = 0.220000*exp(- (STATES[0] - 7.50000)/20.3000); ALGEBRAIC[46] = CONSTANTS[43]*STATES[11]*(STATES[0] - CONSTANTS[42]); ALGEBRAIC[24] = pow(1.00000+( CONSTANTS[17]*CONSTANTS[19])/pow(CONSTANTS[19]+STATES[2], 2.00000), - 1.00000); ALGEBRAIC[38] = (STATES[2] - STATES[1])/CONSTANTS[28]; ALGEBRAIC[45] = 1.00000/( 0.188495*exp(- (STATES[0]+7.00000)/16.6000)+0.393956); ALGEBRAIC[47] = ( ALGEBRAIC[31]*ALGEBRAIC[45]*ALGEBRAIC[41])/( ALGEBRAIC[39]*ALGEBRAIC[43]); ALGEBRAIC[49] = ALGEBRAIC[45]/1000.00; ALGEBRAIC[51] = ALGEBRAIC[41]; ALGEBRAIC[48] = ( CONSTANTS[47]*pow(STATES[1], 2.00000))/(pow(CONSTANTS[48], 2.00000)+pow(STATES[1], 2.00000)); ALGEBRAIC[50] = (( (( (( CONSTANTS[49]*1.00000)/(pow(CONSTANTS[50], 3.00000)+pow(CONSTANTS[7], 3.00000)))*1.00000)/(CONSTANTS[51]+CONSTANTS[8]))*1.00000)/(1.00000+ CONSTANTS[52]*exp(( (CONSTANTS[53] - 1.00000)*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))))*( exp(( CONSTANTS[53]*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))*pow(STATES[18], 3.00000)*CONSTANTS[8] - exp(( (CONSTANTS[53] - 1.00000)*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))*pow(CONSTANTS[7], 3.00000)*STATES[1]); ALGEBRAIC[52] = (( CONSTANTS[9]*CONSTANTS[10])/( 2.00000*CONSTANTS[11]))*log(CONSTANTS[8]/STATES[1]); ALGEBRAIC[54] = CONSTANTS[54]*(STATES[0] - ALGEBRAIC[52]); ALGEBRAIC[11] = pow(1.00000+( CONSTANTS[17]*CONSTANTS[19])/pow(CONSTANTS[19]+STATES[1], 2.00000), - 1.00000); ALGEBRAIC[44] = ( CONSTANTS[21]*STATES[1]*(CONSTANTS[32] - STATES[7])+ CONSTANTS[23]*STATES[1]*(CONSTANTS[31] - STATES[6])) - ( CONSTANTS[22]*STATES[7]+ CONSTANTS[24]*STATES[6]); ALGEBRAIC[53] = ALGEBRAIC[45]/95000.0; ALGEBRAIC[55] = ALGEBRAIC[41]/50.0000; ALGEBRAIC[56] = (( CONSTANTS[9]*CONSTANTS[10])/CONSTANTS[11])*log(( 0.900000*CONSTANTS[7]+ 0.100000*CONSTANTS[6])/( 0.900000*STATES[18]+ 0.100000*STATES[27])); ALGEBRAIC[57] = CONSTANTS[55]*STATES[19]*(STATES[0] - ALGEBRAIC[56]); ALGEBRAIC[58] = CONSTANTS[56]*(STATES[0] - ALGEBRAIC[56]); ALGEBRAIC[67] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))+ 0.0365000*CONSTANTS[71]*exp(( - STATES[0]*CONSTANTS[11])/( CONSTANTS[9]*CONSTANTS[10]))); ALGEBRAIC[68] = ( (( CONSTANTS[65]*ALGEBRAIC[67]*1.00000)/(1.00000+pow(CONSTANTS[66]/STATES[18], 1.50000)))*CONSTANTS[6])/(CONSTANTS[6]+CONSTANTS[67]); ALGEBRAIC[59] = (( CONSTANTS[9]*CONSTANTS[10])/CONSTANTS[11])*log(CONSTANTS[6]/STATES[27]); ALGEBRAIC[60] = CONSTANTS[57]*pow(STATES[28], 3.00000)*STATES[29]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[61] = CONSTANTS[58]*STATES[30]*STATES[31]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[62] = ( (( 0.293800*CONSTANTS[6])/(CONSTANTS[6]+210.000))*(STATES[0] - ALGEBRAIC[59]))/(1.00000+exp( 0.0896000*(STATES[0] - ALGEBRAIC[59]))); ALGEBRAIC[63] = CONSTANTS[59]*pow(STATES[32], 2.00000)*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[64] = CONSTANTS[60]*STATES[33]*STATES[34]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[65] = CONSTANTS[61]*STATES[35]*STATES[36]*(STATES[0] - ALGEBRAIC[59]); ALGEBRAIC[66] = CONSTANTS[62]*STATES[37]*(STATES[0] - (( CONSTANTS[9]*CONSTANTS[10])/CONSTANTS[11])*log(( 0.980000*CONSTANTS[6]+ 0.0200000*CONSTANTS[7])/( 0.980000*STATES[27]+ 0.0200000*STATES[18]))); ALGEBRAIC[0] = (VOI>=CONSTANTS[12]&&VOI<=CONSTANTS[13]&&(VOI - CONSTANTS[12]) - floor((VOI - CONSTANTS[12])/CONSTANTS[14])*CONSTANTS[14]<=CONSTANTS[15] ? CONSTANTS[16] : 0.00000); ALGEBRAIC[69] = 0.200000/(1.00000+exp(- (STATES[0] - 46.7000)/7.80000)); ALGEBRAIC[70] = (( CONSTANTS[68]*ALGEBRAIC[69]*STATES[1])/(STATES[1]+CONSTANTS[70]))*(STATES[0] - CONSTANTS[69]); }