# Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

```function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
% This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
[VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount()
% Used later when setting a global variable with the number of algebraic variables.
% Note: This is not the "main method".
algebraicVariableCount =2;
end
% There are a total of 4 entries in each of the rate and state variable arrays.
% There are a total of 12 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
% Create ALGEBRAIC of correct size
global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
% Initialise constants and state variables
[INIT_STATES, CONSTANTS] = initConsts;

% Set timespan to solve over
tspan = [0, 10];

% Set numerical accuracy options for ODE solver
options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

% Solve model with ODE solver
[VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

% Compute algebraic variables
[RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

% Plot state variables against variable of integration
[LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
figure();
plot(VOI, STATES);
xlabel(LEGEND_VOI);
l = legend(LEGEND_STATES);
set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
LEGEND_CONSTANTS(:,1) = strpad('n1_initial in component component (dimensionless)');
LEGEND_CONSTANTS(:,2) = strpad('d1_initial in component component (dimensionless)');
LEGEND_CONSTANTS(:,3) = strpad('n2_initial in component component (dimensionless)');
LEGEND_CONSTANTS(:,4) = strpad('d2_initial in component component (dimensionless)');
LEGEND_STATES(:,1) = strpad('n in component component (dimensionless)');
LEGEND_STATES(:,2) = strpad('d in component component (dimensionless)');
LEGEND_STATES(:,3) = strpad('n in component component (dimensionless)');
LEGEND_STATES(:,4) = strpad('d in component component (dimensionless)');
LEGEND_ALGEBRAIC(:,1) = strpad('cell_1_neighbourhood_d_average in component component (dimensionless)');
LEGEND_ALGEBRAIC(:,2) = strpad('cell_2_neighbourhood_d_average in component component (dimensionless)');
LEGEND_CONSTANTS(:,5) = strpad('start_boundary_d in component component (dimensionless)');
LEGEND_CONSTANTS(:,6) = strpad('a in component component (dimensionless)');
LEGEND_CONSTANTS(:,7) = strpad('b in component component (dimensionless)');
LEGEND_CONSTANTS(:,8) = strpad('v in component component (dimensionless)');
LEGEND_CONSTANTS(:,9) = strpad('k in component component (dimensionless)');
LEGEND_CONSTANTS(:,10) = strpad('h in component component (dimensionless)');
LEGEND_VOI = strpad('time in component component (dimensionless)');
LEGEND_CONSTANTS(:,11) = strpad('start_boundary_d in component component (dimensionless)');
LEGEND_CONSTANTS(:,12) = strpad('end_boundary_d in component component (dimensionless)');
LEGEND_RATES(:,1) = strpad('d/dt n in component component (dimensionless)');
LEGEND_RATES(:,2) = strpad('d/dt d in component component (dimensionless)');
LEGEND_RATES(:,3) = strpad('d/dt n in component component (dimensionless)');
LEGEND_RATES(:,4) = strpad('d/dt d in component component (dimensionless)');
LEGEND_STATES  = LEGEND_STATES';
LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
LEGEND_RATES = LEGEND_RATES';
LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
CONSTANTS(:,1) = 1.0;
CONSTANTS(:,2) = 1.0;
CONSTANTS(:,3) = 0.99;
CONSTANTS(:,4) = 0.99;
CONSTANTS(:,5) = 0.0;
CONSTANTS(:,6) = 0.01;
CONSTANTS(:,7) = 100;
CONSTANTS(:,8) = 1;
CONSTANTS(:,9) = 2;
CONSTANTS(:,10) = 2;
CONSTANTS(:,11) = 0.0;
CONSTANTS(:,12) = 0.0;
STATES(:,1) = CONSTANTS(:,1);
STATES(:,2) = CONSTANTS(:,2);
STATES(:,3) = CONSTANTS(:,3);
STATES(:,4) = CONSTANTS(:,4);
if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
global algebraicVariableCount;
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
ALGEBRAIC = zeros(1, algebraicVariableCount);
utilOnes = 1;
else
statesRowCount = statesSize(1);
ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
RATES = zeros(statesRowCount, statesColumnCount);
utilOnes = ones(statesRowCount, 1);
end
RATES(:,2) =  CONSTANTS(:,8).*(1.00000./(1.00000+ CONSTANTS(:,7).*power(STATES(:,1), CONSTANTS(:,10))) - STATES(:,2));
RATES(:,4) =  CONSTANTS(:,8).*(1.00000./(1.00000+ CONSTANTS(:,7).*power(STATES(:,3), CONSTANTS(:,10))) - STATES(:,4));
ALGEBRAIC(:,1) =  (STATES(:,4)+CONSTANTS(:,5)).*0.500000;
RATES(:,1) = power(ALGEBRAIC(:,1), CONSTANTS(:,9))./(CONSTANTS(:,6)+power(ALGEBRAIC(:,1), CONSTANTS(:,9))) - STATES(:,1);
ALGEBRAIC(:,2) =  (STATES(:,2)+CONSTANTS(:,12)).*0.500000;
RATES(:,3) = power(ALGEBRAIC(:,2), CONSTANTS(:,9))./(CONSTANTS(:,6)+power(ALGEBRAIC(:,2), CONSTANTS(:,9))) - STATES(:,3);
RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
statesSize = size(STATES);
statesColumnCount = statesSize(2);
if ( statesColumnCount == 1)
STATES = STATES';
utilOnes = 1;
else
statesRowCount = statesSize(1);
utilOnes = ones(statesRowCount, 1);
end
ALGEBRAIC(:,1) =  (STATES(:,4)+CONSTANTS(:,5)).*0.500000;
ALGEBRAIC(:,2) =  (STATES(:,2)+CONSTANTS(:,12)).*0.500000;
end

% Pad out or shorten strings to a set length
function strout = strpad(strin)
req_length = 160;
insize = size(strin,2);
if insize > req_length
strout = strin(1:req_length);
else
strout = [strin, blanks(req_length - insize)];
end
end

```
Source
Derived from workspace Delta-Notch Intercellular Signalling at changeset 2859417cff13.
Collaboration
To begin collaborating on this work, please use your git client and issue this command: