function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =9; end % There are a total of 1 entries in each of the rate and state variable arrays. % There are a total of 13 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('t in component main (second)'); LEGEND_STATES(:,1) = strpad('omega in component main (per_s)'); LEGEND_CONSTANTS(:,1) = strpad('omega_ref in component main (per_s)'); LEGEND_ALGEBRAIC(:,1) = strpad('logOmega in component main (dimensionless)'); LEGEND_CONSTANTS(:,2) = strpad('E_1 in component main (J_per_C2)'); LEGEND_CONSTANTS(:,3) = strpad('E_2 in component main (J_per_m2)'); LEGEND_CONSTANTS(:,4) = strpad('R_1 in component main (Js_per_C2)'); LEGEND_CONSTANTS(:,5) = strpad('R_2 in component main (Js_per_m2)'); LEGEND_CONSTANTS(:,6) = strpad('L_1 in component main (Js2_per_C2)'); LEGEND_CONSTANTS(:,7) = strpad('L_2 in component main (Js2_per_m2)'); LEGEND_CONSTANTS(:,8) = strpad('Bl in component main (Js_per_C_m)'); LEGEND_ALGEBRAIC(:,2) = strpad('x_1 in component main (J_per_m2)'); LEGEND_ALGEBRAIC(:,3) = strpad('x_2 in component main (J2_per_m4)'); LEGEND_CONSTANTS(:,11) = strpad('omega_3 in component main (per_s)'); LEGEND_CONSTANTS(:,12) = strpad('logOmega_3 in component main (dimensionless)'); LEGEND_ALGEBRAIC(:,4) = strpad('G_real in component main (Js_per_C2)'); LEGEND_ALGEBRAIC(:,5) = strpad('G_imag in component main (Js_per_C2)'); LEGEND_ALGEBRAIC(:,6) = strpad('amplitude in component main (Js_per_C2)'); LEGEND_CONSTANTS(:,9) = strpad('amplitude_ref in component main (Js_per_C2)'); LEGEND_ALGEBRAIC(:,7) = strpad('phase in component main (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('phase_ref in component main (dimensionless)'); LEGEND_ALGEBRAIC(:,8) = strpad('phase_degrees in component main (dimensionless)'); LEGEND_ALGEBRAIC(:,9) = strpad('logAmplitude in component main (dimensionless)'); LEGEND_RATES(:,1) = strpad('d/dt omega in component main (per_s)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0.1; CONSTANTS(:,1) = 1; CONSTANTS(:,2) = 0; CONSTANTS(:,3) = 2000; CONSTANTS(:,4) = 3.5; CONSTANTS(:,5) = 0.4; CONSTANTS(:,6) = 0.15; CONSTANTS(:,7) = 0.018; CONSTANTS(:,8) = 10; CONSTANTS(:,9) = 1; CONSTANTS(:,10) = 1; CONSTANTS(:,11) = power((CONSTANTS(:,3)./CONSTANTS(:,7)), 1.0 ./ 2); CONSTANTS(:,12) = 1.00000; CONSTANTS(:,12) = arbitrary_log(CONSTANTS(:,11)./CONSTANTS(:,1), 10); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = CONSTANTS(:,12); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = arbitrary_log(STATES(:,1)./CONSTANTS(:,1), 10); ALGEBRAIC(:,2) = CONSTANTS(:,3) - power(STATES(:,1), 2.00000).*CONSTANTS(:,7); ALGEBRAIC(:,3) = power(ALGEBRAIC(:,2), 2.00000)+power( STATES(:,1).*CONSTANTS(:,5), 2.00000); ALGEBRAIC(:,4) = CONSTANTS(:,4)+( CONSTANTS(:,5).*power( STATES(:,1).*CONSTANTS(:,8), 2.00000))./ALGEBRAIC(:,3); ALGEBRAIC(:,5) = STATES(:,1).*(CONSTANTS(:,6)+( power(CONSTANTS(:,8), 2.00000).*ALGEBRAIC(:,2))./ALGEBRAIC(:,3)); ALGEBRAIC(:,6) = power((power(ALGEBRAIC(:,4), 2.00000)+power(ALGEBRAIC(:,5), 2.00000)), 1.0 ./ 2); ALGEBRAIC(:,7) = atan(ALGEBRAIC(:,5)./ALGEBRAIC(:,4)); ALGEBRAIC(:,8) = ( ALGEBRAIC(:,7).*180.000)./ pi; ALGEBRAIC(:,9) = arbitrary_log(ALGEBRAIC(:,6)./CONSTANTS(:,9), 10); end % Compute a logarithm to any base" + function x = arbitrary_log(a, base) x = log(a) ./ log(base); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end