Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 23 sizeStates = 5 sizeConstants = 22 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (millisecond)" legend_states[0] = "V in component membrane (millivolt)" legend_constants[0] = "RToF in component membrane (millivolt)" legend_constants[1] = "K_c in component membrane (millimolar)" legend_constants[2] = "K_i in component membrane (millimolar)" legend_constants[3] = "Na_c in component membrane (millimolar)" legend_constants[4] = "Na_i in component membrane (millimolar)" legend_algebraic[5] = "i_ns in component non_specific_current (picoA_per_picoF)" legend_algebraic[10] = "i_to in component transient_outward_K_current (picoA_per_picoF)" legend_algebraic[20] = "i_K1 in component inward_rectifier (picoA_per_picoF)" legend_algebraic[15] = "i_Kur in component ultra_rapid_K_current (picoA_per_picoF)" legend_algebraic[21] = "i_b_Na in component background_currents (picoA_per_picoF)" legend_algebraic[22] = "i_NaK in component sodium_potassium_pump (picoA_per_picoF)" legend_algebraic[0] = "i_Stim in component membrane (picoA_per_picoF)" legend_constants[5] = "stim_start in component membrane (millisecond)" legend_constants[6] = "stim_end in component membrane (millisecond)" legend_constants[7] = "stim_period in component membrane (millisecond)" legend_constants[8] = "stim_duration in component membrane (millisecond)" legend_constants[9] = "stim_amplitude in component membrane (picoA_per_picoF)" legend_constants[10] = "g_ns in component non_specific_current (nanoS_per_picoF)" legend_constants[20] = "E_K in component transient_outward_K_current (millivolt)" legend_constants[11] = "g_to in component transient_outward_K_current (nanoS_per_picoF)" legend_states[1] = "oa in component transient_outward_K_current_oa_gate (dimensionless)" legend_states[2] = "oi in component transient_outward_K_current_oi_gate (dimensionless)" legend_algebraic[1] = "alpha_oa in component transient_outward_K_current_oa_gate (per_millisecond)" legend_algebraic[6] = "beta_oa in component transient_outward_K_current_oa_gate (per_millisecond)" legend_algebraic[16] = "tau_oa in component transient_outward_K_current_oa_gate (millisecond)" legend_algebraic[11] = "oa_inf in component transient_outward_K_current_oa_gate (dimensionless)" legend_algebraic[2] = "alpha_oi in component transient_outward_K_current_oi_gate (per_millisecond)" legend_algebraic[7] = "beta_oi in component transient_outward_K_current_oi_gate (per_millisecond)" legend_algebraic[17] = "tau_oi in component transient_outward_K_current_oi_gate (millisecond)" legend_algebraic[12] = "oi_inf in component transient_outward_K_current_oi_gate (dimensionless)" legend_constants[12] = "g_Kur in component ultra_rapid_K_current (nanoS_per_picoF)" legend_states[3] = "ua in component ultra_rapid_K_current_ua_gate (dimensionless)" legend_states[4] = "ui in component ultra_rapid_K_current_ui_gate (dimensionless)" legend_algebraic[3] = "alpha_ua in component ultra_rapid_K_current_ua_gate (per_millisecond)" legend_algebraic[8] = "beta_ua in component ultra_rapid_K_current_ua_gate (per_millisecond)" legend_algebraic[18] = "tau_ua in component ultra_rapid_K_current_ua_gate (millisecond)" legend_algebraic[13] = "ua_inf in component ultra_rapid_K_current_ua_gate (dimensionless)" legend_algebraic[4] = "alpha_ui in component ultra_rapid_K_current_ui_gate (per_millisecond)" legend_algebraic[9] = "beta_ui in component ultra_rapid_K_current_ui_gate (per_millisecond)" legend_algebraic[19] = "tau_ui in component ultra_rapid_K_current_ui_gate (millisecond)" legend_algebraic[14] = "ui_inf in component ultra_rapid_K_current_ui_gate (dimensionless)" legend_constants[13] = "g_K1 in component inward_rectifier (nanoS_per_picoF)" legend_constants[14] = "g_b_Na in component background_currents (nanoS_per_picoF)" legend_constants[21] = "E_Na in component background_currents (millivolt)" legend_constants[15] = "k_NaK_K in component sodium_potassium_pump (millimolar)" legend_constants[16] = "k_NaK_Na in component sodium_potassium_pump (millimolar)" legend_constants[17] = "i_NaK_max in component sodium_potassium_pump (picoA_per_picoF)" legend_constants[18] = "V_rev in component sodium_potassium_pump (millivolt)" legend_constants[19] = "B in component sodium_potassium_pump (millivolt)" legend_rates[0] = "d/dt V in component membrane (millivolt)" legend_rates[1] = "d/dt oa in component transient_outward_K_current_oa_gate (dimensionless)" legend_rates[2] = "d/dt oi in component transient_outward_K_current_oi_gate (dimensionless)" legend_rates[3] = "d/dt ua in component ultra_rapid_K_current_ua_gate (dimensionless)" legend_rates[4] = "d/dt ui in component ultra_rapid_K_current_ui_gate (dimensionless)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = -50 constants[0] = 26.54 constants[1] = 5.4 constants[2] = 139 constants[3] = 140 constants[4] = 11.2 constants[5] = 100 constants[6] = 10000 constants[7] = 500 constants[8] = 2 constants[9] = -100 constants[10] = 0.018 constants[11] = 0.01652 states[1] = 0.2488 states[2] = 0.1866 constants[12] = 0.6 states[3] = 0.9933 states[4] = 0.0999 constants[13] = 0.03 constants[14] = 0.00607 constants[15] = 1 constants[16] = 11 constants[17] = 2.002 constants[18] = -150 constants[19] = -200 constants[20] = constants[0]*log(constants[1]/constants[2]) constants[21] = constants[0]*log(constants[3]/constants[4]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = 0.650000/(exp((states[0]+10.0000)/-8.50000)+exp((states[0]-30.0000)/-59.0000)) algebraic[6] = 0.650000/(2.50000+exp((states[0]+82.0000)/17.0000)) algebraic[16] = 15.0000/(algebraic[1]+algebraic[6]) algebraic[11] = 1.00000/(1.00000+exp((states[0]+20.4700)/-17.5400)) rates[1] = (algebraic[11]-states[1])/algebraic[16] algebraic[2] = 1.00000/(18.5300+exp((states[0]+113.700)/10.9500)) algebraic[7] = 1.00000/(35.5600+exp((states[0]+1.26000)/-7.44000)) algebraic[17] = 15.0000/(algebraic[2]+algebraic[7]) algebraic[12] = 1.00000/(1.00000+exp((states[0]+43.1000)/5.30000)) rates[2] = (algebraic[12]-states[2])/algebraic[17] algebraic[3] = 0.650000/(exp((states[0]+10.0000)/-8.50000)+exp((states[0]-30.0000)/-59.0000)) algebraic[8] = 0.650000/(2.50000+exp((states[0]+82.0000)/17.0000)) algebraic[18] = 1.00000/(algebraic[3]+algebraic[8]) algebraic[13] = 1.00000/(1.00000+exp((states[0]+33.3000)/-9.60000)) rates[3] = (algebraic[13]-states[3])/algebraic[18] algebraic[4] = 1.00000/(21.0000+exp((states[0]-185.000)/28.0000)) algebraic[9] = 1.00000/exp((states[0]-158.000)/-16.0000) algebraic[19] = 5.00000/(algebraic[4]+algebraic[9]) algebraic[14] = 1.00000/(1.00000+exp((states[0]-99.4500)/27.4800)) rates[4] = (algebraic[14]-states[4])/algebraic[19] algebraic[5] = constants[10]*states[0] algebraic[10] = constants[11]*(power(states[1], 3.00000))*states[2]*(states[0]-constants[20]) algebraic[20] = (constants[13]*(states[0]+86.7500))/(1.00000+exp((states[0]+20.0000)/20.0000)) algebraic[15] = (constants[12]*0.00500000+0.0500000/(1.00000+exp(-(states[0]-15.0000)/13.0000)))*(power(states[3], 3.00000))*states[4]*(states[0]-constants[20]) algebraic[21] = constants[14]*(states[0]-constants[21]) algebraic[22] = (((((constants[17]*constants[1])/(constants[1]+constants[15]))*(power(constants[4], 1.50000)))/(power(constants[4], 1.50000)+power(constants[16], 1.50000)))*(states[0]-constants[18]))/(states[0]-constants[19]) algebraic[0] = custom_piecewise([greater_equal(voi , constants[5]) & less_equal(voi , constants[6]) & less_equal((voi-constants[5])-floor((voi-constants[5])/constants[7])*constants[7] , constants[8]), constants[9] , True, 0.00000]) rates[0] = -(algebraic[5]+algebraic[15]+algebraic[10]+algebraic[20]+algebraic[21]+algebraic[22]+algebraic[0]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = 0.650000/(exp((states[0]+10.0000)/-8.50000)+exp((states[0]-30.0000)/-59.0000)) algebraic[6] = 0.650000/(2.50000+exp((states[0]+82.0000)/17.0000)) algebraic[16] = 15.0000/(algebraic[1]+algebraic[6]) algebraic[11] = 1.00000/(1.00000+exp((states[0]+20.4700)/-17.5400)) algebraic[2] = 1.00000/(18.5300+exp((states[0]+113.700)/10.9500)) algebraic[7] = 1.00000/(35.5600+exp((states[0]+1.26000)/-7.44000)) algebraic[17] = 15.0000/(algebraic[2]+algebraic[7]) algebraic[12] = 1.00000/(1.00000+exp((states[0]+43.1000)/5.30000)) algebraic[3] = 0.650000/(exp((states[0]+10.0000)/-8.50000)+exp((states[0]-30.0000)/-59.0000)) algebraic[8] = 0.650000/(2.50000+exp((states[0]+82.0000)/17.0000)) algebraic[18] = 1.00000/(algebraic[3]+algebraic[8]) algebraic[13] = 1.00000/(1.00000+exp((states[0]+33.3000)/-9.60000)) algebraic[4] = 1.00000/(21.0000+exp((states[0]-185.000)/28.0000)) algebraic[9] = 1.00000/exp((states[0]-158.000)/-16.0000) algebraic[19] = 5.00000/(algebraic[4]+algebraic[9]) algebraic[14] = 1.00000/(1.00000+exp((states[0]-99.4500)/27.4800)) algebraic[5] = constants[10]*states[0] algebraic[10] = constants[11]*(power(states[1], 3.00000))*states[2]*(states[0]-constants[20]) algebraic[20] = (constants[13]*(states[0]+86.7500))/(1.00000+exp((states[0]+20.0000)/20.0000)) algebraic[15] = (constants[12]*0.00500000+0.0500000/(1.00000+exp(-(states[0]-15.0000)/13.0000)))*(power(states[3], 3.00000))*states[4]*(states[0]-constants[20]) algebraic[21] = constants[14]*(states[0]-constants[21]) algebraic[22] = (((((constants[17]*constants[1])/(constants[1]+constants[15]))*(power(constants[4], 1.50000)))/(power(constants[4], 1.50000)+power(constants[16], 1.50000)))*(states[0]-constants[18]))/(states[0]-constants[19]) algebraic[0] = custom_piecewise([greater_equal(voi , constants[5]) & less_equal(voi , constants[6]) & less_equal((voi-constants[5])-floor((voi-constants[5])/constants[7])*constants[7] , constants[8]), constants[9] , True, 0.00000]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)