Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 95 entries in the algebraic variable array. There are a total of 39 entries in each of the rate and state variable arrays. There are a total of 80 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[11] is I_st in component membrane (microA_per_microF). * ALGEBRAIC[37] is i_Na in component fast_sodium_current (microA_per_microF). * ALGEBRAIC[55] is i_Ca_L in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[79] is i_Ca_T in component T_type_Ca_channel (microA_per_microF). * ALGEBRAIC[59] is i_Kr in component rapid_delayed_rectifier_potassium_current (microA_per_microF). * ALGEBRAIC[62] is i_Ks in component slow_delayed_rectifier_potassium_current (microA_per_microF). * ALGEBRAIC[72] is i_K_Na in component sodium_activated_potassium_current (microA_per_microF). * ALGEBRAIC[73] is i_K_ATP in component ATP_sensitive_potassium_current (microA_per_microF). * ALGEBRAIC[75] is i_to in component transient_outward_current (microA_per_microF). * ALGEBRAIC[88] is i_NaCa in component Na_Ca_exchanger (microA_per_microF). * ALGEBRAIC[67] is i_K1 in component time_independent_potassium_current (microA_per_microF). * ALGEBRAIC[69] is i_Kp in component plateau_potassium_current (microA_per_microF). * ALGEBRAIC[76] is i_p_Ca in component sarcolemmal_calcium_pump (microA_per_microF). * ALGEBRAIC[77] is i_Na_b in component sodium_background_current (microA_per_microF). * ALGEBRAIC[80] is i_Ca_b in component calcium_background_current (microA_per_microF). * ALGEBRAIC[82] is i_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[87] is i_ns_Ca in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[89] is dVdt in component membrane (dimensionless). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (dimensionless). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (microA_per_microF). * ALGEBRAIC[23] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[9] is g_Na in component fast_sodium_current (milliS_per_microF). * CONSTANTS[10] is Nao in component ionic_concentrations (millimolar). * STATES[1] is Nai in component ionic_concentrations (millimolar). * ALGEBRAIC[30] is P_O_Na in component Na_channel_states (dimensionless). * STATES[2] is P_LO in component Na_channel_states (dimensionless). * STATES[3] is P_UO in component Na_channel_states (dimensionless). * STATES[4] is P_LC1 in component Na_channel_states (dimensionless). * STATES[5] is P_LC2 in component Na_channel_states (dimensionless). * STATES[6] is P_LC3 in component Na_channel_states (dimensionless). * STATES[7] is P_UIF in component Na_channel_states (dimensionless). * STATES[8] is P_UC1 in component Na_channel_states (dimensionless). * STATES[9] is P_UC2 in component Na_channel_states (dimensionless). * STATES[10] is P_UC3 in component Na_channel_states (dimensionless). * STATES[11] is P_UIC3 in component Na_channel_states (dimensionless). * STATES[12] is P_UIC2 in component Na_channel_states (dimensionless). * STATES[13] is P_UIM1 in component Na_channel_states (dimensionless). * STATES[14] is P_UIM2 in component Na_channel_states (dimensionless). * ALGEBRAIC[0] is alpha_11 in component Na_channel_states (per_second). * ALGEBRAIC[31] is beta_11 in component Na_channel_states (per_second). * ALGEBRAIC[12] is alpha_12 in component Na_channel_states (per_second). * ALGEBRAIC[38] is beta_12 in component Na_channel_states (per_second). * ALGEBRAIC[24] is alpha_13 in component Na_channel_states (per_second). * ALGEBRAIC[42] is beta_13 in component Na_channel_states (per_second). * ALGEBRAIC[44] is alpha_2 in component Na_channel_states (per_second). * ALGEBRAIC[50] is beta_2 in component Na_channel_states (per_second). * ALGEBRAIC[46] is alpha_3 in component Na_channel_states (per_second). * ALGEBRAIC[48] is beta_3 in component Na_channel_states (per_second). * ALGEBRAIC[52] is alpha_4 in component Na_channel_states (per_second). * ALGEBRAIC[54] is beta_4 in component Na_channel_states (per_second). * ALGEBRAIC[56] is alpha_5 in component Na_channel_states (per_second). * ALGEBRAIC[58] is beta_5 in component Na_channel_states (per_second). * ALGEBRAIC[49] is i_CaCa in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[53] is i_CaK in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[51] is i_CaNa in component L_type_Ca_channel (microA_per_microF). * CONSTANTS[11] is gamma_Nai in component L_type_Ca_channel (dimensionless). * CONSTANTS[12] is gamma_Nao in component L_type_Ca_channel (dimensionless). * CONSTANTS[13] is gamma_Ki in component L_type_Ca_channel (dimensionless). * CONSTANTS[14] is gamma_Ko in component L_type_Ca_channel (dimensionless). * ALGEBRAIC[41] is I_CaCa in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[45] is I_CaK in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[43] is I_CaNa in component L_type_Ca_channel (microA_per_microF). * CONSTANTS[15] is P_Ca in component L_type_Ca_channel (cm_per_second). * CONSTANTS[16] is P_Na in component L_type_Ca_channel (cm_per_second). * CONSTANTS[17] is P_K in component L_type_Ca_channel (cm_per_second). * CONSTANTS[18] is gamma_Cai in component L_type_Ca_channel (dimensionless). * CONSTANTS[19] is gamma_Cao in component L_type_Ca_channel (dimensionless). * STATES[15] is Cai in component calcium_dynamics (millimolar). * CONSTANTS[20] is Cao in component calcium_dynamics (millimolar). * CONSTANTS[21] is Ko in component ionic_concentrations (millimolar). * STATES[16] is Ki in component ionic_concentrations (millimolar). * STATES[17] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[18] is f in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[47] is f_Ca in component L_type_Ca_channel_f_Ca_gate (dimensionless). * ALGEBRAIC[32] is alpha_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[39] is beta_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[13] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[25] is tau_d in component L_type_Ca_channel_d_gate (second). * ALGEBRAIC[1] is E0_d in component L_type_Ca_channel_d_gate (millivolt). * ALGEBRAIC[26] is alpha_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[33] is beta_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[2] is f_infinity in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[14] is tau_f in component L_type_Ca_channel_f_gate (second). * CONSTANTS[22] is Km_Ca in component L_type_Ca_channel_f_Ca_gate (millimolar). * CONSTANTS[23] is g_CaT in component T_type_Ca_channel (milliS_per_microF). * ALGEBRAIC[78] is E_Ca in component calcium_background_current (millivolt). * STATES[19] is b in component T_type_Ca_channel_b_gate (dimensionless). * STATES[20] is g in component T_type_Ca_channel_g_gate (dimensionless). * ALGEBRAIC[3] is b_inf in component T_type_Ca_channel_b_gate (dimensionless). * ALGEBRAIC[15] is tau_b in component T_type_Ca_channel_b_gate (second). * ALGEBRAIC[4] is g_inf in component T_type_Ca_channel_g_gate (dimensionless). * ALGEBRAIC[16] is tau_g in component T_type_Ca_channel_g_gate (second). * CONSTANTS[66] is g_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF). * ALGEBRAIC[57] is E_Kr in component rapid_delayed_rectifier_potassium_current (millivolt). * STATES[21] is P_O in component Kr_channel_states (dimensionless). * STATES[22] is P_C1 in component Kr_channel_states (dimensionless). * STATES[23] is P_C2 in component Kr_channel_states (dimensionless). * STATES[24] is P_C3 in component Kr_channel_states (dimensionless). * STATES[25] is P_I in component Kr_channel_states (dimensionless). * ALGEBRAIC[5] is alpha in component Kr_channel_states (per_second). * ALGEBRAIC[17] is beta in component Kr_channel_states (per_second). * CONSTANTS[24] is alpha_in in component Kr_channel_states (per_second). * CONSTANTS[25] is beta_in in component Kr_channel_states (per_second). * ALGEBRAIC[6] is alpha_alpha in component Kr_channel_states (per_second). * ALGEBRAIC[18] is beta_beta in component Kr_channel_states (per_second). * ALGEBRAIC[27] is alpha_i in component Kr_channel_states (per_second). * ALGEBRAIC[34] is beta_i in component Kr_channel_states (per_second). * ALGEBRAIC[40] is mu in component Kr_channel_states (per_second). * ALGEBRAIC[61] is g_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF). * ALGEBRAIC[60] is E_Ks in component slow_delayed_rectifier_potassium_current (millivolt). * CONSTANTS[26] is PNaK in component slow_delayed_rectifier_potassium_current (dimensionless). * STATES[26] is xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * STATES[27] is xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * ALGEBRAIC[7] is xs1_infinity in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * ALGEBRAIC[19] is tau_xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (second). * ALGEBRAIC[8] is xs2_infinity in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * ALGEBRAIC[20] is tau_xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (second). * ALGEBRAIC[63] is E_K in component time_independent_potassium_current (millivolt). * CONSTANTS[67] is g_K1 in component time_independent_potassium_current (milliS_per_cm2). * ALGEBRAIC[66] is K1_infinity in component time_independent_potassium_current_K1_gate (dimensionless). * ALGEBRAIC[64] is alpha_K1 in component time_independent_potassium_current_K1_gate (per_second). * ALGEBRAIC[65] is beta_K1 in component time_independent_potassium_current_K1_gate (per_second). * CONSTANTS[27] is g_Kp in component plateau_potassium_current (milliS_per_microF). * ALGEBRAIC[68] is Kp in component plateau_potassium_current (dimensionless). * CONSTANTS[68] is g_K_Na in component sodium_activated_potassium_current (milliS_per_microF). * CONSTANTS[28] is nKNa in component sodium_activated_potassium_current (dimensionless). * ALGEBRAIC[70] is pona in component sodium_activated_potassium_current (dimensionless). * ALGEBRAIC[71] is pov in component sodium_activated_potassium_current (dimensionless). * CONSTANTS[29] is kdKNa in component sodium_activated_potassium_current (millimolar). * CONSTANTS[69] is g_K_ATP in component ATP_sensitive_potassium_current (milliS_per_microF). * CONSTANTS[30] is i_K_ATP_on in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[31] is nATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[32] is nicholsarea in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[33] is ATPi in component ATP_sensitive_potassium_current (millimolar). * CONSTANTS[34] is hATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[35] is kATP in component ATP_sensitive_potassium_current (millimolar). * CONSTANTS[75] is pATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[77] is GKbaraATP in component ATP_sensitive_potassium_current (milliS_per_microF). * CONSTANTS[70] is g_to in component transient_outward_current (milliS_per_microF). * ALGEBRAIC[74] is rvdv in component transient_outward_current (dimensionless). * STATES[28] is zdv in component transient_outward_current_zdv_gate (dimensionless). * STATES[29] is ydv in component transient_outward_current_ydv_gate (dimensionless). * ALGEBRAIC[9] is alpha_zdv in component transient_outward_current_zdv_gate (per_second). * ALGEBRAIC[21] is beta_zdv in component transient_outward_current_zdv_gate (per_second). * ALGEBRAIC[28] is tau_zdv in component transient_outward_current_zdv_gate (second). * ALGEBRAIC[35] is zdv_ss in component transient_outward_current_zdv_gate (dimensionless). * ALGEBRAIC[10] is alpha_ydv in component transient_outward_current_ydv_gate (per_second). * ALGEBRAIC[22] is beta_ydv in component transient_outward_current_ydv_gate (per_second). * ALGEBRAIC[29] is tau_ydv in component transient_outward_current_ydv_gate (second). * ALGEBRAIC[36] is ydv_ss in component transient_outward_current_ydv_gate (dimensionless). * CONSTANTS[36] is K_mpCa in component sarcolemmal_calcium_pump (millimolar). * CONSTANTS[37] is I_pCa in component sarcolemmal_calcium_pump (microA_per_microF). * CONSTANTS[38] is g_Nab in component sodium_background_current (milliS_per_microF). * CONSTANTS[39] is g_Cab in component calcium_background_current (milliS_per_microF). * CONSTANTS[40] is I_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[81] is f_NaK in component sodium_potassium_pump (dimensionless). * CONSTANTS[41] is K_mNai in component sodium_potassium_pump (millimolar). * CONSTANTS[42] is K_mKo in component sodium_potassium_pump (millimolar). * CONSTANTS[71] is sigma in component sodium_potassium_pump (dimensionless). * ALGEBRAIC[85] is i_ns_Na in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[86] is i_ns_K in component non_specific_calcium_activated_current (microA_per_microF). * CONSTANTS[72] is P_ns_Ca in component non_specific_calcium_activated_current (cm_per_second). * ALGEBRAIC[83] is I_ns_Na in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[84] is I_ns_K in component non_specific_calcium_activated_current (microA_per_microF). * CONSTANTS[43] is K_m_ns_Ca in component non_specific_calcium_activated_current (millimolar). * CONSTANTS[44] is c1 in component Na_Ca_exchanger (microA_per_microF). * CONSTANTS[45] is c2 in component Na_Ca_exchanger (millimolar). * CONSTANTS[46] is gamma in component Na_Ca_exchanger (dimensionless). * ALGEBRAIC[91] is i_rel in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[92] is i_up in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[93] is i_leak in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[94] is i_tr in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[90] is G_rel in component calcium_dynamics (per_second). * CONSTANTS[47] is G_rel_max in component calcium_dynamics (per_second). * CONSTANTS[48] is G_rel_overload in component calcium_dynamics (per_second). * CONSTANTS[49] is tau_tr in component calcium_dynamics (second). * CONSTANTS[50] is K_mrel in component calcium_dynamics (millimolar). * CONSTANTS[51] is delta_Ca_ith in component calcium_dynamics (millimolar). * CONSTANTS[52] is CSQN_max in component calcium_dynamics (millimolar). * CONSTANTS[53] is K_mCSQN in component calcium_dynamics (millimolar). * CONSTANTS[54] is K_mup in component calcium_dynamics (millimolar). * CONSTANTS[73] is K_leak in component calcium_dynamics (per_second). * CONSTANTS[55] is I_up in component calcium_dynamics (millimolar_per_second). * CONSTANTS[56] is Ca_NSR_max in component calcium_dynamics (millimolar). * STATES[30] is Ca_JSR in component calcium_dynamics (millimolar). * STATES[31] is Ca_NSR in component calcium_dynamics (millimolar). * CONSTANTS[76] is V_myo in component ionic_concentrations (micro_litre). * CONSTANTS[57] is A_cap in component ionic_concentrations (mm2). * CONSTANTS[78] is V_JSR in component calcium_dynamics (micro_litre). * CONSTANTS[79] is V_NSR in component calcium_dynamics (micro_litre). * CONSTANTS[58] is K_mTn in component calcium_dynamics (millimolar). * CONSTANTS[59] is K_mCMDN in component calcium_dynamics (millimolar). * CONSTANTS[60] is Tn_max in component calcium_dynamics (millimolar). * CONSTANTS[61] is CMDN_max in component calcium_dynamics (millimolar). * STATES[32] is APtrack in component calcium_dynamics (dimensionless). * STATES[33] is APtrack2 in component calcium_dynamics (dimensionless). * STATES[34] is APtrack3 in component calcium_dynamics (dimensionless). * STATES[35] is Cainfluxtrack in component calcium_dynamics (dimensionless). * STATES[36] is OVRLDtrack in component calcium_dynamics (dimensionless). * STATES[37] is OVRLDtrack2 in component calcium_dynamics (dimensionless). * STATES[38] is OVRLDtrack3 in component calcium_dynamics (dimensionless). * CONSTANTS[62] is CSQNthresh in component calcium_dynamics (millimolar). * CONSTANTS[63] is Logicthresh in component calcium_dynamics (dimensionless). * CONSTANTS[64] is preplength in component ionic_concentrations (mm). * CONSTANTS[65] is radius in component ionic_concentrations (mm). * CONSTANTS[74] is volume in component ionic_concentrations (micro_litre). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[6] is d/dt P_LC3 in component Na_channel_states (dimensionless). * RATES[5] is d/dt P_LC2 in component Na_channel_states (dimensionless). * RATES[4] is d/dt P_LC1 in component Na_channel_states (dimensionless). * RATES[2] is d/dt P_LO in component Na_channel_states (dimensionless). * RATES[7] is d/dt P_UIF in component Na_channel_states (dimensionless). * RATES[11] is d/dt P_UIC3 in component Na_channel_states (dimensionless). * RATES[12] is d/dt P_UIC2 in component Na_channel_states (dimensionless). * RATES[13] is d/dt P_UIM1 in component Na_channel_states (dimensionless). * RATES[14] is d/dt P_UIM2 in component Na_channel_states (dimensionless). * RATES[10] is d/dt P_UC3 in component Na_channel_states (dimensionless). * RATES[9] is d/dt P_UC2 in component Na_channel_states (dimensionless). * RATES[8] is d/dt P_UC1 in component Na_channel_states (dimensionless). * RATES[3] is d/dt P_UO in component Na_channel_states (dimensionless). * RATES[17] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[18] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[19] is d/dt b in component T_type_Ca_channel_b_gate (dimensionless). * RATES[20] is d/dt g in component T_type_Ca_channel_g_gate (dimensionless). * RATES[24] is d/dt P_C3 in component Kr_channel_states (dimensionless). * RATES[23] is d/dt P_C2 in component Kr_channel_states (dimensionless). * RATES[22] is d/dt P_C1 in component Kr_channel_states (dimensionless). * RATES[21] is d/dt P_O in component Kr_channel_states (dimensionless). * RATES[25] is d/dt P_I in component Kr_channel_states (dimensionless). * RATES[26] is d/dt xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * RATES[27] is d/dt xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * RATES[28] is d/dt zdv in component transient_outward_current_zdv_gate (dimensionless). * RATES[29] is d/dt ydv in component transient_outward_current_ydv_gate (dimensionless). * RATES[32] is d/dt APtrack in component calcium_dynamics (dimensionless). * RATES[33] is d/dt APtrack2 in component calcium_dynamics (dimensionless). * RATES[34] is d/dt APtrack3 in component calcium_dynamics (dimensionless). * RATES[35] is d/dt Cainfluxtrack in component calcium_dynamics (dimensionless). * RATES[36] is d/dt OVRLDtrack in component calcium_dynamics (dimensionless). * RATES[37] is d/dt OVRLDtrack2 in component calcium_dynamics (dimensionless). * RATES[38] is d/dt OVRLDtrack3 in component calcium_dynamics (dimensionless). * RATES[30] is d/dt Ca_JSR in component calcium_dynamics (millimolar). * RATES[31] is d/dt Ca_NSR in component calcium_dynamics (millimolar). * RATES[15] is d/dt Cai in component calcium_dynamics (millimolar). * RATES[1] is d/dt Nai in component ionic_concentrations (millimolar). * RATES[16] is d/dt Ki in component ionic_concentrations (millimolar). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -88.78; CONSTANTS[0] = 8314; CONSTANTS[1] = 310; CONSTANTS[2] = 96485; CONSTANTS[3] = 0.001; CONSTANTS[4] = 3; CONSTANTS[5] = 9; CONSTANTS[6] = 1; CONSTANTS[7] = 0.002; CONSTANTS[8] = -50; CONSTANTS[9] = 23.5; CONSTANTS[10] = 132; STATES[1] = 10.53; STATES[2] = 4.68e-17; STATES[3] = 4.45e-13; STATES[4] = 5.91e-14; STATES[5] = 1.218e-11; STATES[6] = 9.447e-10; STATES[7] = 2.412e-10; STATES[8] = 5.62e-10; STATES[9] = 1.16e-7; STATES[10] = 8.98e-6; STATES[11] = 3.855e-6; STATES[12] = 4.97e-8; STATES[13] = 7.206e-11; STATES[14] = 1.24e-12; CONSTANTS[11] = 0.75; CONSTANTS[12] = 0.75; CONSTANTS[13] = 0.75; CONSTANTS[14] = 0.75; CONSTANTS[15] = 0.00054; CONSTANTS[16] = 6.75e-7; CONSTANTS[17] = 1.93e-7; CONSTANTS[18] = 1; CONSTANTS[19] = 0.341; STATES[15] = 0.000104; CONSTANTS[20] = 1.8; CONSTANTS[21] = 4.5; STATES[16] = 140.56; STATES[17] = 3.289e-6; STATES[18] = 0.99975; CONSTANTS[22] = 0.0006; CONSTANTS[23] = 0.05; STATES[19] = 0.000983; STATES[20] = 0.9942; STATES[21] = 1.104e-10; STATES[22] = 3.408e-8; STATES[23] = 1.69e-8; STATES[24] = 4.949e-6; STATES[25] = 3.386e-11; CONSTANTS[24] = 2172; CONSTANTS[25] = 1077; CONSTANTS[26] = 0.01833; STATES[26] = 0.00447; STATES[27] = 0.00447; CONSTANTS[27] = 0.00552; CONSTANTS[28] = 2.8; CONSTANTS[29] = 66; CONSTANTS[30] = 1; CONSTANTS[31] = 0.24; CONSTANTS[32] = 5e-5; CONSTANTS[33] = 3; CONSTANTS[34] = 2; CONSTANTS[35] = 0.00025; STATES[28] = 0.01167; STATES[29] = 0.99998; CONSTANTS[36] = 0.0005; CONSTANTS[37] = 1.15; CONSTANTS[38] = 0.004; CONSTANTS[39] = 0.003016; CONSTANTS[40] = 2.25; CONSTANTS[41] = 10; CONSTANTS[42] = 1.5; CONSTANTS[43] = 0.0012; CONSTANTS[44] = 0.00025; CONSTANTS[45] = 0.0001; CONSTANTS[46] = 0.15; CONSTANTS[47] = 60000; CONSTANTS[48] = 4000; CONSTANTS[49] = 0.18; CONSTANTS[50] = 0.0008; CONSTANTS[51] = 0.00018; CONSTANTS[52] = 10; CONSTANTS[53] = 0.8; CONSTANTS[54] = 0.00092; CONSTANTS[55] = 8.75; CONSTANTS[56] = 15; STATES[30] = 1.516; STATES[31] = 1.518; CONSTANTS[57] = 1.434e-7; CONSTANTS[58] = 0.0005; CONSTANTS[59] = 0.00238; CONSTANTS[60] = 0.07; CONSTANTS[61] = 0.05; STATES[32] = 0; STATES[33] = 0; STATES[34] = 0; STATES[35] = 0; STATES[36] = 0; STATES[37] = 0; STATES[38] = 0; CONSTANTS[62] = 0.7; CONSTANTS[63] = 0.98; CONSTANTS[64] = 0.001; CONSTANTS[65] = 1.1e-4; CONSTANTS[66] = 0.0135000*pow(CONSTANTS[21], 0.590000); CONSTANTS[67] = 0.750000* pow((CONSTANTS[21]/5.40000), 1.0 / 2); CONSTANTS[68] = 0.00000*0.128480; CONSTANTS[69] = ( CONSTANTS[30]*0.000193000)/CONSTANTS[32]; CONSTANTS[70] = 1.10000; CONSTANTS[71] = (1.00000/7.00000)*(exp(CONSTANTS[10]/67.3000) - 1.00000); CONSTANTS[72] = 0.00000*1.75000e-07; CONSTANTS[73] = CONSTANTS[55]/CONSTANTS[56]; CONSTANTS[74] = 3.14159265358979*CONSTANTS[64]*pow(CONSTANTS[65], 2.00000); CONSTANTS[75] = 1.00000/(1.00000+pow(CONSTANTS[33]/CONSTANTS[35], CONSTANTS[34])); CONSTANTS[76] = 0.680000*CONSTANTS[74]; CONSTANTS[77] = CONSTANTS[69]*CONSTANTS[75]*pow(CONSTANTS[21]/4.00000, CONSTANTS[31]); CONSTANTS[78] = (0.00480000/0.680000)*CONSTANTS[76]; CONSTANTS[79] = (0.0552000/0.680000)*CONSTANTS[76]; } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { RATES[33] = (STATES[32]<0.200000&&STATES[32]>0.180000 ? 100000.*(1.00000 - STATES[33]) - 500.000*STATES[33] : - 500.000*STATES[33]); RATES[34] = (STATES[32]<0.200000&&STATES[32]>0.180000 ? 100000.*(1.00000 - STATES[34]) - 500.000*STATES[34] : - 10.0000*STATES[34]); RATES[36] = (1.00000/(1.00000+CONSTANTS[53]/STATES[31])>CONSTANTS[62]&&STATES[38]<0.370000&&STATES[34]<0.370000 ? 50000.0*(1.00000 - STATES[36]) : - 500.000*STATES[36]); RATES[37] = (STATES[36]>CONSTANTS[63]&&STATES[37]<CONSTANTS[63] ? 50000.0*(1.00000 - STATES[37]) : - 500.000*STATES[37]); RATES[38] = (STATES[36]>CONSTANTS[63]&&STATES[38]<CONSTANTS[63] ? 50000.0*(1.00000 - STATES[38]) : - 10.0000*STATES[38]); ALGEBRAIC[3] = 1.00000/(1.00000+exp(- (STATES[0]+14.0000)/10.8000)); ALGEBRAIC[15] = 0.00370000+0.00610000/(1.00000+exp((STATES[0]+25.0000)/4.50000)); RATES[19] = (ALGEBRAIC[3] - STATES[19])/ALGEBRAIC[15]; ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+60.0000)/5.60000)); ALGEBRAIC[16] = (STATES[0]<=0.00000 ? - 0.000875000*STATES[0]+0.0120000 : 0.0120000); RATES[20] = (ALGEBRAIC[4] - STATES[20])/ALGEBRAIC[16]; ALGEBRAIC[5] = 55.5000*exp( 0.0554715*(STATES[0] - 12.0000)); ALGEBRAIC[17] = 2.35700*exp( - 0.0365880*STATES[0]); RATES[24] = ALGEBRAIC[17]*STATES[23] - ALGEBRAIC[5]*STATES[24]; RATES[23] = - (ALGEBRAIC[17]+CONSTANTS[24])*STATES[23]+ ALGEBRAIC[5]*STATES[24]+ CONSTANTS[25]*STATES[22]; ALGEBRAIC[7] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[19] = 0.00100000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); RATES[26] = (ALGEBRAIC[7] - STATES[26])/ALGEBRAIC[19]; ALGEBRAIC[8] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[20] = ( 4.00000*0.00100000)/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); RATES[27] = (ALGEBRAIC[8] - STATES[27])/ALGEBRAIC[20]; ALGEBRAIC[0] = 3802.00/( 0.102700*exp(- STATES[0]/17.0000)+ 0.200000*exp(- STATES[0]/150.000)); ALGEBRAIC[31] = 191.700*exp(- STATES[0]/20.3000); RATES[6] = - (0.950000+ALGEBRAIC[0])*STATES[6]+ 0.000100000*STATES[10]+ ALGEBRAIC[31]*STATES[5]; ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+32.0000)/8.00000))+0.600000/(1.00000+exp((50.0000 - STATES[0])/20.0000)); ALGEBRAIC[14] = 0.00100000/( 0.0197000*exp(- pow( 0.0337000*(STATES[0]+10.0000), 2.00000))+0.0200000); ALGEBRAIC[26] = ALGEBRAIC[2]/ALGEBRAIC[14]; ALGEBRAIC[33] = (1.00000 - ALGEBRAIC[2])/ALGEBRAIC[14]; RATES[18] = ALGEBRAIC[26]*(1.00000 - STATES[18]) - ALGEBRAIC[33]*STATES[18]; ALGEBRAIC[6] = 65.5000*exp( 0.0554715*(STATES[0] - 36.0000)); ALGEBRAIC[18] = 2.93570*exp( - 0.0215800*STATES[0]); ALGEBRAIC[27] = ( 439.000*exp( - 0.0235200*(STATES[0]+25.0000))*4.50000)/CONSTANTS[21]; ALGEBRAIC[34] = ( 656.000*exp( 0.000942000*STATES[0])*pow(4.50000, 0.300000))/pow(CONSTANTS[21], 0.300000); RATES[21] = - (ALGEBRAIC[18]+ALGEBRAIC[34])*STATES[21]+ ALGEBRAIC[6]*STATES[22]+ ALGEBRAIC[27]*STATES[25]; ALGEBRAIC[9] = ( 10000.0*exp((STATES[0] - 40.0000)/25.0000))/(1.00000+exp((STATES[0] - 40.0000)/25.0000)); ALGEBRAIC[21] = ( 10000.0*exp(- (STATES[0]+90.0000)/25.0000))/(1.00000+exp(- (STATES[0]+90.0000)/25.0000)); ALGEBRAIC[28] = 1.00000/(ALGEBRAIC[9]+ALGEBRAIC[21]); ALGEBRAIC[35] = ALGEBRAIC[9]/(ALGEBRAIC[9]+ALGEBRAIC[21]); RATES[28] = (ALGEBRAIC[35] - STATES[28])/ALGEBRAIC[28]; ALGEBRAIC[10] = 15.0000/(1.00000+exp((STATES[0]+60.0000)/5.00000)); ALGEBRAIC[22] = ( 100.000*exp((STATES[0]+25.0000)/5.00000))/(1.00000+exp((STATES[0]+25.0000)/5.00000)); ALGEBRAIC[29] = 1.00000/(ALGEBRAIC[10]+ALGEBRAIC[22]); ALGEBRAIC[36] = ALGEBRAIC[10]/(ALGEBRAIC[10]+ALGEBRAIC[22]); RATES[29] = (ALGEBRAIC[36] - STATES[29])/ALGEBRAIC[29]; ALGEBRAIC[12] = 3802.00/( 0.102700*exp(- STATES[0]/15.0000)+ 0.230000*exp(- STATES[0]/150.000)); ALGEBRAIC[38] = 200.000*exp(- (STATES[0] - 5.00000)/20.3000); RATES[5] = - (ALGEBRAIC[31]+0.950000+ALGEBRAIC[12])*STATES[5]+ ALGEBRAIC[0]*STATES[6]+ ALGEBRAIC[38]*STATES[4]+ 0.000100000*STATES[9]; ALGEBRAIC[1] = STATES[0]+10.0000; ALGEBRAIC[13] = 1.00000/(1.00000+exp(- ALGEBRAIC[1]/6.24000)); ALGEBRAIC[25] = (fabs(ALGEBRAIC[1])<1.00000e-05 ? 0.00100000/( 0.0350000*6.24000) : ( 0.00100000*ALGEBRAIC[13]*(1.00000 - exp(- ALGEBRAIC[1]/6.24000)))/( 0.0350000*ALGEBRAIC[1])); ALGEBRAIC[32] = ALGEBRAIC[13]/ALGEBRAIC[25]; ALGEBRAIC[39] = (1.00000 - ALGEBRAIC[13])/ALGEBRAIC[25]; RATES[17] = ALGEBRAIC[32]*(1.00000 - STATES[17]) - ALGEBRAIC[39]*STATES[17]; ALGEBRAIC[40] = ( ALGEBRAIC[27]*ALGEBRAIC[18]*ALGEBRAIC[6])/( ALGEBRAIC[6]*ALGEBRAIC[34]); RATES[22] = - (CONSTANTS[25]+ALGEBRAIC[6]+ALGEBRAIC[6])*STATES[22]+ CONSTANTS[24]*STATES[23]+ ALGEBRAIC[18]*STATES[21]+ ALGEBRAIC[40]*STATES[25]; RATES[25] = - (ALGEBRAIC[40]+ALGEBRAIC[27])*STATES[25]+ ALGEBRAIC[6]*STATES[22]+ ALGEBRAIC[34]*STATES[21]; ALGEBRAIC[24] = 3802.00/( 0.102700*exp(- STATES[0]/12.0000)+ 0.250000*exp(- STATES[0]/150.000)); ALGEBRAIC[42] = 220.000*exp(- (STATES[0] - 10.0000)/20.3000); RATES[4] = - (ALGEBRAIC[38]+ALGEBRAIC[24]+0.950000)*STATES[4]+ ALGEBRAIC[12]*STATES[5]+ ALGEBRAIC[42]*STATES[2]+ 0.000100000*STATES[8]; RATES[2] = - (0.950000+ALGEBRAIC[42])*STATES[2]+ 0.000100000*STATES[3]+ ALGEBRAIC[24]*STATES[4]; ALGEBRAIC[46] = ( 0.000379330*exp(- STATES[0]/7.70000))/2.50000; ALGEBRAIC[48] = 8.40000+ 0.0200000*STATES[0]; RATES[11] = - (ALGEBRAIC[46]+ALGEBRAIC[0])*STATES[11]+ ALGEBRAIC[48]*STATES[10]+ ALGEBRAIC[31]*STATES[12]; RATES[12] = - (ALGEBRAIC[46]+ALGEBRAIC[12]+ALGEBRAIC[31])*STATES[12]+ ALGEBRAIC[48]*STATES[9]+ ALGEBRAIC[38]*STATES[7]+ ALGEBRAIC[0]*STATES[11]; RATES[10] = - (ALGEBRAIC[48]+ALGEBRAIC[0]+0.000100000)*STATES[10]+ ALGEBRAIC[46]*STATES[11]+ ALGEBRAIC[31]*STATES[9]+ 0.950000*STATES[6]; RATES[9] = - (ALGEBRAIC[31]+ALGEBRAIC[48]+ALGEBRAIC[12]+0.000100000)*STATES[9]+ ALGEBRAIC[0]*STATES[10]+ ALGEBRAIC[38]*STATES[8]+ ALGEBRAIC[46]*STATES[12]+ 0.950000*STATES[5]; RATES[8] = - (ALGEBRAIC[38]+ALGEBRAIC[24]+ALGEBRAIC[48]+0.000100000)*STATES[8]+ ALGEBRAIC[12]*STATES[9]+ ALGEBRAIC[42]*STATES[3]+ ALGEBRAIC[46]*STATES[7]+ 0.950000*STATES[4]; ALGEBRAIC[44] = 9178.00*exp(STATES[0]/29.6800); ALGEBRAIC[50] = ( ALGEBRAIC[24]*ALGEBRAIC[44]*ALGEBRAIC[46])/( ALGEBRAIC[42]*ALGEBRAIC[48]); RATES[3] = - (ALGEBRAIC[44]+ALGEBRAIC[42]+0.000100000)*STATES[3]+ ALGEBRAIC[50]*STATES[7]+ ALGEBRAIC[24]*STATES[8]+ 0.950000*STATES[2]; ALGEBRAIC[52] = ALGEBRAIC[44]/100.000; ALGEBRAIC[54] = ALGEBRAIC[46]; RATES[7] = - (ALGEBRAIC[50]+ALGEBRAIC[46]+ALGEBRAIC[52]+ALGEBRAIC[38])*STATES[7]+ ALGEBRAIC[48]*STATES[8]+ ALGEBRAIC[54]*STATES[13]+ ALGEBRAIC[44]*STATES[3]+ ALGEBRAIC[12]*STATES[12]; ALGEBRAIC[56] = ALGEBRAIC[44]/35000.0; ALGEBRAIC[58] = ALGEBRAIC[46]/20.0000; RATES[13] = - (ALGEBRAIC[56]+ALGEBRAIC[54])*STATES[13]+ ALGEBRAIC[58]*STATES[14]+ ALGEBRAIC[52]*STATES[7]; RATES[14] = ALGEBRAIC[56]*STATES[13] - ALGEBRAIC[58]*STATES[14]; ALGEBRAIC[57] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[21]/STATES[16]); ALGEBRAIC[59] = CONSTANTS[66]*STATES[21]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[61] = 1.17000*0.433000*(1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[15], 1.40000))); ALGEBRAIC[60] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[21]+ CONSTANTS[26]*CONSTANTS[10])/(STATES[16]+ CONSTANTS[26]*STATES[1])); ALGEBRAIC[62] = ALGEBRAIC[61]*STATES[26]*STATES[27]*(STATES[0] - ALGEBRAIC[60]); ALGEBRAIC[63] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[21]/STATES[16]); ALGEBRAIC[70] = 0.850000/(1.00000+pow(CONSTANTS[29]/STATES[1], CONSTANTS[28])); ALGEBRAIC[71] = 0.800000 - 0.650000/(1.00000+exp((STATES[0]+125.000)/15.0000)); ALGEBRAIC[72] = CONSTANTS[68]*ALGEBRAIC[70]*ALGEBRAIC[71]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[73] = CONSTANTS[77]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[74] = exp(STATES[0]/100.000); ALGEBRAIC[75] = CONSTANTS[70]*pow(STATES[28], 3.00000)*STATES[29]*ALGEBRAIC[74]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[64] = 1020.00/(1.00000+exp( 0.238500*((STATES[0] - ALGEBRAIC[63]) - 59.2150))); ALGEBRAIC[65] = ( 1000.00*( 0.491240*exp( 0.0803200*((STATES[0] - ALGEBRAIC[63])+5.47600))+exp( 0.0617500*((STATES[0] - ALGEBRAIC[63]) - 594.310))))/(1.00000+exp( - 0.514300*((STATES[0] - ALGEBRAIC[63])+4.75300))); ALGEBRAIC[66] = ALGEBRAIC[64]/(ALGEBRAIC[64]+ALGEBRAIC[65]); ALGEBRAIC[67] = CONSTANTS[67]*ALGEBRAIC[66]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[68] = 1.00000/(1.00000+exp((7.48800 - STATES[0])/5.98000)); ALGEBRAIC[69] = CONSTANTS[27]*ALGEBRAIC[68]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[81] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[71]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[82] = ( (( CONSTANTS[40]*ALGEBRAIC[81]*1.00000)/(1.00000+pow(CONSTANTS[41]/STATES[1], 2.00000)))*CONSTANTS[21])/(CONSTANTS[21]+CONSTANTS[42]); ALGEBRAIC[45] = ( (( CONSTANTS[17]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[13]*STATES[16]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[14]*CONSTANTS[21]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[47] = 1.00000/(1.00000+STATES[15]/CONSTANTS[22]); ALGEBRAIC[53] = STATES[17]*STATES[18]*ALGEBRAIC[47]*ALGEBRAIC[45]; ALGEBRAIC[84] = ( (( CONSTANTS[72]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[13]*STATES[16]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[14]*CONSTANTS[21]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[86] = ( ALGEBRAIC[84]*1.00000)/(1.00000+pow(CONSTANTS[43]/STATES[15], 3.00000)); RATES[16] = ( - (ALGEBRAIC[53]+ALGEBRAIC[59]+ALGEBRAIC[62]+ALGEBRAIC[67]+ALGEBRAIC[69]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[75]+ALGEBRAIC[86]+ - ALGEBRAIC[82]*2.00000)*CONSTANTS[57])/( CONSTANTS[76]*CONSTANTS[2]); ALGEBRAIC[11] = (VOI>=CONSTANTS[4]&&VOI<=CONSTANTS[5]&&(VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]<=CONSTANTS[7] ? CONSTANTS[8] : 0.00000); ALGEBRAIC[23] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[30] = STATES[2]+STATES[3]; ALGEBRAIC[37] = CONSTANTS[9]*ALGEBRAIC[30]*(STATES[0] - ALGEBRAIC[23]); ALGEBRAIC[41] = ( (( CONSTANTS[15]*pow(2.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[18]*STATES[15]*exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[19]*CONSTANTS[20]))/(exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[49] = STATES[17]*STATES[18]*ALGEBRAIC[47]*ALGEBRAIC[41]; ALGEBRAIC[43] = ( (( CONSTANTS[16]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[11]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*CONSTANTS[10]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[51] = STATES[17]*STATES[18]*ALGEBRAIC[47]*ALGEBRAIC[43]; ALGEBRAIC[55] = ALGEBRAIC[49]+ALGEBRAIC[53]+ALGEBRAIC[51]; ALGEBRAIC[78] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[20]/STATES[15]); ALGEBRAIC[79] = CONSTANTS[23]*STATES[19]*STATES[19]*STATES[20]*(STATES[0] - ALGEBRAIC[78]); ALGEBRAIC[88] = ( CONSTANTS[44]*exp(( (CONSTANTS[46] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[20] - pow(CONSTANTS[10], 3.00000)*STATES[15]))/(1.00000+ CONSTANTS[45]*exp(( (CONSTANTS[46] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[20]+ pow(CONSTANTS[10], 3.00000)*STATES[15])); ALGEBRAIC[76] = ( CONSTANTS[37]*STATES[15])/(CONSTANTS[36]+STATES[15]); ALGEBRAIC[77] = CONSTANTS[38]*(STATES[0] - ALGEBRAIC[23]); ALGEBRAIC[80] = CONSTANTS[39]*(STATES[0] - ALGEBRAIC[78]); ALGEBRAIC[83] = ( (( CONSTANTS[72]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[11]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*CONSTANTS[10]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[85] = ( ALGEBRAIC[83]*1.00000)/(1.00000+pow(CONSTANTS[43]/STATES[15], 3.00000)); ALGEBRAIC[87] = ALGEBRAIC[85]+ALGEBRAIC[86]; RATES[0] = (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[37]+ALGEBRAIC[55]+ALGEBRAIC[79]+ALGEBRAIC[59]+ALGEBRAIC[62]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[75]+ALGEBRAIC[67]+ALGEBRAIC[69]+ALGEBRAIC[88]+ALGEBRAIC[76]+ALGEBRAIC[77]+ALGEBRAIC[80]+ALGEBRAIC[82]+ALGEBRAIC[87]+ALGEBRAIC[11]); RATES[35] = (STATES[32]>0.200000 ? ( - CONSTANTS[57]*(((ALGEBRAIC[49]+ALGEBRAIC[79]) - ALGEBRAIC[88])+ALGEBRAIC[76]+ALGEBRAIC[80]))/( 2.00000*CONSTANTS[76]*CONSTANTS[2]) : STATES[33]>0.0100000&&STATES[32]<=0.200000 ? 0.00000 : - 500.000*STATES[35]); RATES[1] = ( - (ALGEBRAIC[37]+ALGEBRAIC[51]+ALGEBRAIC[77]+ALGEBRAIC[85]+ ALGEBRAIC[88]*3.00000+ ALGEBRAIC[82]*3.00000)*CONSTANTS[57])/( CONSTANTS[76]*CONSTANTS[2]); ALGEBRAIC[89] = (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[37]+ALGEBRAIC[55]+ALGEBRAIC[79]+ALGEBRAIC[59]+ALGEBRAIC[62]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[75]+ALGEBRAIC[67]+ALGEBRAIC[69]+ALGEBRAIC[88]+ALGEBRAIC[76]+ALGEBRAIC[77]+ALGEBRAIC[80]+ALGEBRAIC[82]+ALGEBRAIC[87]+ALGEBRAIC[11]); RATES[32] = (ALGEBRAIC[89]>150000. ? 100000.*(1.00000 - STATES[32]) - 500.000*STATES[32] : - 500.000*STATES[32]); ALGEBRAIC[90] = (STATES[35]>CONSTANTS[51] ? (( CONSTANTS[47]*(STATES[35] - CONSTANTS[51]))/((CONSTANTS[50]+STATES[35]) - CONSTANTS[51]))*(1.00000 - STATES[33])*STATES[33] : STATES[35]<=CONSTANTS[51]&&STATES[37]>0.00000 ? CONSTANTS[48]*(1.00000 - STATES[37])*STATES[37] : 0.00000); ALGEBRAIC[91] = ALGEBRAIC[90]*(STATES[30] - STATES[15]); ALGEBRAIC[92] = ( CONSTANTS[55]*STATES[15])/(STATES[15]+CONSTANTS[54]); ALGEBRAIC[93] = CONSTANTS[73]*STATES[31]; RATES[15] = (1.00000/(1.00000+( CONSTANTS[61]*CONSTANTS[59])/pow(CONSTANTS[59]+STATES[15], 2.00000)+( CONSTANTS[60]*CONSTANTS[58])/pow(CONSTANTS[58]+STATES[15], 2.00000)))*(( - CONSTANTS[57]*(((ALGEBRAIC[49]+ALGEBRAIC[79]) - 2.00000*ALGEBRAIC[88])+ALGEBRAIC[76]+ALGEBRAIC[80]))/( 2.00000*CONSTANTS[76]*CONSTANTS[2])+( ALGEBRAIC[91]*CONSTANTS[78])/CONSTANTS[76]+( (ALGEBRAIC[93] - ALGEBRAIC[92])*CONSTANTS[79])/CONSTANTS[76]); ALGEBRAIC[94] = (STATES[31] - STATES[30])/CONSTANTS[49]; RATES[30] = (1.00000/(1.00000+( CONSTANTS[52]*CONSTANTS[53])/pow(CONSTANTS[53]+STATES[30], 2.00000)))*(ALGEBRAIC[94] - ALGEBRAIC[91]); RATES[31] = (( - ALGEBRAIC[94]*CONSTANTS[78])/CONSTANTS[79] - ALGEBRAIC[93])+ALGEBRAIC[92]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[3] = 1.00000/(1.00000+exp(- (STATES[0]+14.0000)/10.8000)); ALGEBRAIC[15] = 0.00370000+0.00610000/(1.00000+exp((STATES[0]+25.0000)/4.50000)); ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+60.0000)/5.60000)); ALGEBRAIC[16] = (STATES[0]<=0.00000 ? - 0.000875000*STATES[0]+0.0120000 : 0.0120000); ALGEBRAIC[5] = 55.5000*exp( 0.0554715*(STATES[0] - 12.0000)); ALGEBRAIC[17] = 2.35700*exp( - 0.0365880*STATES[0]); ALGEBRAIC[7] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[19] = 0.00100000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); ALGEBRAIC[8] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[20] = ( 4.00000*0.00100000)/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); ALGEBRAIC[0] = 3802.00/( 0.102700*exp(- STATES[0]/17.0000)+ 0.200000*exp(- STATES[0]/150.000)); ALGEBRAIC[31] = 191.700*exp(- STATES[0]/20.3000); ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+32.0000)/8.00000))+0.600000/(1.00000+exp((50.0000 - STATES[0])/20.0000)); ALGEBRAIC[14] = 0.00100000/( 0.0197000*exp(- pow( 0.0337000*(STATES[0]+10.0000), 2.00000))+0.0200000); ALGEBRAIC[26] = ALGEBRAIC[2]/ALGEBRAIC[14]; ALGEBRAIC[33] = (1.00000 - ALGEBRAIC[2])/ALGEBRAIC[14]; ALGEBRAIC[6] = 65.5000*exp( 0.0554715*(STATES[0] - 36.0000)); ALGEBRAIC[18] = 2.93570*exp( - 0.0215800*STATES[0]); ALGEBRAIC[27] = ( 439.000*exp( - 0.0235200*(STATES[0]+25.0000))*4.50000)/CONSTANTS[21]; ALGEBRAIC[34] = ( 656.000*exp( 0.000942000*STATES[0])*pow(4.50000, 0.300000))/pow(CONSTANTS[21], 0.300000); ALGEBRAIC[9] = ( 10000.0*exp((STATES[0] - 40.0000)/25.0000))/(1.00000+exp((STATES[0] - 40.0000)/25.0000)); ALGEBRAIC[21] = ( 10000.0*exp(- (STATES[0]+90.0000)/25.0000))/(1.00000+exp(- (STATES[0]+90.0000)/25.0000)); ALGEBRAIC[28] = 1.00000/(ALGEBRAIC[9]+ALGEBRAIC[21]); ALGEBRAIC[35] = ALGEBRAIC[9]/(ALGEBRAIC[9]+ALGEBRAIC[21]); ALGEBRAIC[10] = 15.0000/(1.00000+exp((STATES[0]+60.0000)/5.00000)); ALGEBRAIC[22] = ( 100.000*exp((STATES[0]+25.0000)/5.00000))/(1.00000+exp((STATES[0]+25.0000)/5.00000)); ALGEBRAIC[29] = 1.00000/(ALGEBRAIC[10]+ALGEBRAIC[22]); ALGEBRAIC[36] = ALGEBRAIC[10]/(ALGEBRAIC[10]+ALGEBRAIC[22]); ALGEBRAIC[12] = 3802.00/( 0.102700*exp(- STATES[0]/15.0000)+ 0.230000*exp(- STATES[0]/150.000)); ALGEBRAIC[38] = 200.000*exp(- (STATES[0] - 5.00000)/20.3000); ALGEBRAIC[1] = STATES[0]+10.0000; ALGEBRAIC[13] = 1.00000/(1.00000+exp(- ALGEBRAIC[1]/6.24000)); ALGEBRAIC[25] = (fabs(ALGEBRAIC[1])<1.00000e-05 ? 0.00100000/( 0.0350000*6.24000) : ( 0.00100000*ALGEBRAIC[13]*(1.00000 - exp(- ALGEBRAIC[1]/6.24000)))/( 0.0350000*ALGEBRAIC[1])); ALGEBRAIC[32] = ALGEBRAIC[13]/ALGEBRAIC[25]; ALGEBRAIC[39] = (1.00000 - ALGEBRAIC[13])/ALGEBRAIC[25]; ALGEBRAIC[40] = ( ALGEBRAIC[27]*ALGEBRAIC[18]*ALGEBRAIC[6])/( ALGEBRAIC[6]*ALGEBRAIC[34]); ALGEBRAIC[24] = 3802.00/( 0.102700*exp(- STATES[0]/12.0000)+ 0.250000*exp(- STATES[0]/150.000)); ALGEBRAIC[42] = 220.000*exp(- (STATES[0] - 10.0000)/20.3000); ALGEBRAIC[46] = ( 0.000379330*exp(- STATES[0]/7.70000))/2.50000; ALGEBRAIC[48] = 8.40000+ 0.0200000*STATES[0]; ALGEBRAIC[44] = 9178.00*exp(STATES[0]/29.6800); ALGEBRAIC[50] = ( ALGEBRAIC[24]*ALGEBRAIC[44]*ALGEBRAIC[46])/( ALGEBRAIC[42]*ALGEBRAIC[48]); ALGEBRAIC[52] = ALGEBRAIC[44]/100.000; ALGEBRAIC[54] = ALGEBRAIC[46]; ALGEBRAIC[56] = ALGEBRAIC[44]/35000.0; ALGEBRAIC[58] = ALGEBRAIC[46]/20.0000; ALGEBRAIC[57] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[21]/STATES[16]); ALGEBRAIC[59] = CONSTANTS[66]*STATES[21]*(STATES[0] - ALGEBRAIC[57]); ALGEBRAIC[61] = 1.17000*0.433000*(1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[15], 1.40000))); ALGEBRAIC[60] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[21]+ CONSTANTS[26]*CONSTANTS[10])/(STATES[16]+ CONSTANTS[26]*STATES[1])); ALGEBRAIC[62] = ALGEBRAIC[61]*STATES[26]*STATES[27]*(STATES[0] - ALGEBRAIC[60]); ALGEBRAIC[63] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[21]/STATES[16]); ALGEBRAIC[70] = 0.850000/(1.00000+pow(CONSTANTS[29]/STATES[1], CONSTANTS[28])); ALGEBRAIC[71] = 0.800000 - 0.650000/(1.00000+exp((STATES[0]+125.000)/15.0000)); ALGEBRAIC[72] = CONSTANTS[68]*ALGEBRAIC[70]*ALGEBRAIC[71]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[73] = CONSTANTS[77]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[74] = exp(STATES[0]/100.000); ALGEBRAIC[75] = CONSTANTS[70]*pow(STATES[28], 3.00000)*STATES[29]*ALGEBRAIC[74]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[64] = 1020.00/(1.00000+exp( 0.238500*((STATES[0] - ALGEBRAIC[63]) - 59.2150))); ALGEBRAIC[65] = ( 1000.00*( 0.491240*exp( 0.0803200*((STATES[0] - ALGEBRAIC[63])+5.47600))+exp( 0.0617500*((STATES[0] - ALGEBRAIC[63]) - 594.310))))/(1.00000+exp( - 0.514300*((STATES[0] - ALGEBRAIC[63])+4.75300))); ALGEBRAIC[66] = ALGEBRAIC[64]/(ALGEBRAIC[64]+ALGEBRAIC[65]); ALGEBRAIC[67] = CONSTANTS[67]*ALGEBRAIC[66]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[68] = 1.00000/(1.00000+exp((7.48800 - STATES[0])/5.98000)); ALGEBRAIC[69] = CONSTANTS[27]*ALGEBRAIC[68]*(STATES[0] - ALGEBRAIC[63]); ALGEBRAIC[81] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[71]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[82] = ( (( CONSTANTS[40]*ALGEBRAIC[81]*1.00000)/(1.00000+pow(CONSTANTS[41]/STATES[1], 2.00000)))*CONSTANTS[21])/(CONSTANTS[21]+CONSTANTS[42]); ALGEBRAIC[45] = ( (( CONSTANTS[17]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[13]*STATES[16]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[14]*CONSTANTS[21]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[47] = 1.00000/(1.00000+STATES[15]/CONSTANTS[22]); ALGEBRAIC[53] = STATES[17]*STATES[18]*ALGEBRAIC[47]*ALGEBRAIC[45]; ALGEBRAIC[84] = ( (( CONSTANTS[72]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[13]*STATES[16]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[14]*CONSTANTS[21]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[86] = ( ALGEBRAIC[84]*1.00000)/(1.00000+pow(CONSTANTS[43]/STATES[15], 3.00000)); ALGEBRAIC[11] = (VOI>=CONSTANTS[4]&&VOI<=CONSTANTS[5]&&(VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]<=CONSTANTS[7] ? CONSTANTS[8] : 0.00000); ALGEBRAIC[23] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[30] = STATES[2]+STATES[3]; ALGEBRAIC[37] = CONSTANTS[9]*ALGEBRAIC[30]*(STATES[0] - ALGEBRAIC[23]); ALGEBRAIC[41] = ( (( CONSTANTS[15]*pow(2.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[18]*STATES[15]*exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[19]*CONSTANTS[20]))/(exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[49] = STATES[17]*STATES[18]*ALGEBRAIC[47]*ALGEBRAIC[41]; ALGEBRAIC[43] = ( (( CONSTANTS[16]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[11]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*CONSTANTS[10]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[51] = STATES[17]*STATES[18]*ALGEBRAIC[47]*ALGEBRAIC[43]; ALGEBRAIC[55] = ALGEBRAIC[49]+ALGEBRAIC[53]+ALGEBRAIC[51]; ALGEBRAIC[78] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[20]/STATES[15]); ALGEBRAIC[79] = CONSTANTS[23]*STATES[19]*STATES[19]*STATES[20]*(STATES[0] - ALGEBRAIC[78]); ALGEBRAIC[88] = ( CONSTANTS[44]*exp(( (CONSTANTS[46] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[20] - pow(CONSTANTS[10], 3.00000)*STATES[15]))/(1.00000+ CONSTANTS[45]*exp(( (CONSTANTS[46] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[20]+ pow(CONSTANTS[10], 3.00000)*STATES[15])); ALGEBRAIC[76] = ( CONSTANTS[37]*STATES[15])/(CONSTANTS[36]+STATES[15]); ALGEBRAIC[77] = CONSTANTS[38]*(STATES[0] - ALGEBRAIC[23]); ALGEBRAIC[80] = CONSTANTS[39]*(STATES[0] - ALGEBRAIC[78]); ALGEBRAIC[83] = ( (( CONSTANTS[72]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[11]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*CONSTANTS[10]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[85] = ( ALGEBRAIC[83]*1.00000)/(1.00000+pow(CONSTANTS[43]/STATES[15], 3.00000)); ALGEBRAIC[87] = ALGEBRAIC[85]+ALGEBRAIC[86]; ALGEBRAIC[89] = (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[37]+ALGEBRAIC[55]+ALGEBRAIC[79]+ALGEBRAIC[59]+ALGEBRAIC[62]+ALGEBRAIC[72]+ALGEBRAIC[73]+ALGEBRAIC[75]+ALGEBRAIC[67]+ALGEBRAIC[69]+ALGEBRAIC[88]+ALGEBRAIC[76]+ALGEBRAIC[77]+ALGEBRAIC[80]+ALGEBRAIC[82]+ALGEBRAIC[87]+ALGEBRAIC[11]); ALGEBRAIC[90] = (STATES[35]>CONSTANTS[51] ? (( CONSTANTS[47]*(STATES[35] - CONSTANTS[51]))/((CONSTANTS[50]+STATES[35]) - CONSTANTS[51]))*(1.00000 - STATES[33])*STATES[33] : STATES[35]<=CONSTANTS[51]&&STATES[37]>0.00000 ? CONSTANTS[48]*(1.00000 - STATES[37])*STATES[37] : 0.00000); ALGEBRAIC[91] = ALGEBRAIC[90]*(STATES[30] - STATES[15]); ALGEBRAIC[92] = ( CONSTANTS[55]*STATES[15])/(STATES[15]+CONSTANTS[54]); ALGEBRAIC[93] = CONSTANTS[73]*STATES[31]; ALGEBRAIC[94] = (STATES[31] - STATES[30])/CONSTANTS[49]; }