Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 90 entries in the algebraic variable array. There are a total of 32 entries in each of the rate and state variable arrays. There are a total of 82 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[0] is I_st in component membrane (microA_per_microF). * ALGEBRAIC[80] is i_Na in component fast_sodium_current (microA_per_microF). * ALGEBRAIC[85] is i_Ca_L in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[86] is i_Ca_T in component T_type_Ca_channel (microA_per_microF). * ALGEBRAIC[87] is i_Kr in component rapid_delayed_rectifier_potassium_current (microA_per_microF). * ALGEBRAIC[38] is i_Ks in component slow_delayed_rectifier_potassium_current (microA_per_microF). * ALGEBRAIC[51] is i_K_Na in component sodium_activated_potassium_current (microA_per_microF). * ALGEBRAIC[52] is i_K_ATP in component ATP_sensitive_potassium_current (microA_per_microF). * ALGEBRAIC[54] is i_to in component transient_outward_current (microA_per_microF). * ALGEBRAIC[74] is i_NaCa in component Na_Ca_exchanger (microA_per_microF). * ALGEBRAIC[88] is i_K1 in component time_independent_potassium_current (microA_per_microF). * ALGEBRAIC[48] is i_Kp in component plateau_potassium_current (microA_per_microF). * ALGEBRAIC[63] is i_p_Ca in component sarcolemmal_calcium_pump (microA_per_microF). * ALGEBRAIC[64] is i_Na_b in component sodium_background_current (microA_per_microF). * ALGEBRAIC[66] is i_Ca_b in component calcium_background_current (microA_per_microF). * ALGEBRAIC[68] is i_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[73] is i_ns_Ca in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[89] is dVdt in component membrane (dimensionless). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (dimensionless). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (microA_per_microF). * ALGEBRAIC[1] is E_Na in component fast_sodium_current (millivolt). * CONSTANTS[9] is g_Na in component fast_sodium_current (milliS_per_microF). * CONSTANTS[10] is Nao in component ionic_concentrations (millimolar). * STATES[1] is Nai in component ionic_concentrations (millimolar). * STATES[2] is P_O_Na in component Na_channel_states (dimensionless). * STATES[3] is P_C1 in component Na_channel_states (dimensionless). * STATES[4] is P_C2 in component Na_channel_states (dimensionless). * STATES[5] is P_C3 in component Na_channel_states (dimensionless). * STATES[6] is P_IF in component Na_channel_states (dimensionless). * STATES[7] is P_IS in component Na_channel_states (dimensionless). * ALGEBRAIC[2] is alpha_11 in component Na_channel_states (per_second). * ALGEBRAIC[5] is beta_11 in component Na_channel_states (per_second). * ALGEBRAIC[3] is alpha_12 in component Na_channel_states (per_second). * ALGEBRAIC[6] is beta_12 in component Na_channel_states (per_second). * ALGEBRAIC[4] is alpha_13 in component Na_channel_states (per_second). * ALGEBRAIC[7] is beta_13 in component Na_channel_states (per_second). * ALGEBRAIC[8] is alpha_2 in component Na_channel_states (per_second). * ALGEBRAIC[81] is beta_2 in component Na_channel_states (per_second). * ALGEBRAIC[9] is alpha_3 in component Na_channel_states (per_second). * ALGEBRAIC[10] is beta_3 in component Na_channel_states (per_second). * ALGEBRAIC[11] is alpha_4 in component Na_channel_states (per_second). * ALGEBRAIC[12] is beta_4 in component Na_channel_states (per_second). * ALGEBRAIC[82] is i_CaCa in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[84] is i_CaK in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[83] is i_CaNa in component L_type_Ca_channel (microA_per_microF). * CONSTANTS[11] is gamma_Nai in component L_type_Ca_channel (dimensionless). * CONSTANTS[12] is gamma_Nao in component L_type_Ca_channel (dimensionless). * CONSTANTS[13] is gamma_Ki in component L_type_Ca_channel (dimensionless). * CONSTANTS[14] is gamma_Ko in component L_type_Ca_channel (dimensionless). * ALGEBRAIC[13] is I_CaCa in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[15] is I_CaK in component L_type_Ca_channel (microA_per_microF). * ALGEBRAIC[14] is I_CaNa in component L_type_Ca_channel (microA_per_microF). * CONSTANTS[15] is P_Ca in component L_type_Ca_channel (cm_per_second). * CONSTANTS[16] is P_Na in component L_type_Ca_channel (cm_per_second). * CONSTANTS[17] is P_K in component L_type_Ca_channel (cm_per_second). * CONSTANTS[18] is gamma_Cai in component L_type_Ca_channel (dimensionless). * CONSTANTS[19] is gamma_Cao in component L_type_Ca_channel (dimensionless). * STATES[8] is Cai in component calcium_dynamics (millimolar). * CONSTANTS[20] is Cao in component calcium_dynamics (millimolar). * CONSTANTS[21] is Ko in component ionic_concentrations (millimolar). * STATES[9] is Ki in component ionic_concentrations (millimolar). * STATES[10] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[11] is f in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[25] is f_Ca in component L_type_Ca_channel_f_Ca_gate (dimensionless). * ALGEBRAIC[19] is alpha_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[20] is beta_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[17] is d_infinity in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[18] is tau_d in component L_type_Ca_channel_d_gate (second). * ALGEBRAIC[16] is E0_d in component L_type_Ca_channel_d_gate (millivolt). * ALGEBRAIC[23] is alpha_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[24] is beta_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[21] is f_infinity in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[22] is tau_f in component L_type_Ca_channel_f_gate (second). * CONSTANTS[22] is Km_Ca in component L_type_Ca_channel_f_Ca_gate (millimolar). * CONSTANTS[23] is g_CaT in component T_type_Ca_channel (milliS_per_microF). * ALGEBRAIC[65] is E_Ca in component calcium_background_current (millivolt). * STATES[12] is b in component T_type_Ca_channel_b_gate (dimensionless). * STATES[13] is g in component T_type_Ca_channel_g_gate (dimensionless). * ALGEBRAIC[26] is b_inf in component T_type_Ca_channel_b_gate (dimensionless). * ALGEBRAIC[27] is tau_b in component T_type_Ca_channel_b_gate (second). * ALGEBRAIC[28] is g_inf in component T_type_Ca_channel_g_gate (dimensionless). * ALGEBRAIC[29] is tau_g in component T_type_Ca_channel_g_gate (second). * CONSTANTS[66] is g_Kr in component rapid_delayed_rectifier_potassium_current (milliS_per_microF). * ALGEBRAIC[30] is E_Kr in component rapid_delayed_rectifier_potassium_current (millivolt). * STATES[14] is P_O in component Kr_channel_states (dimensionless). * STATES[15] is P_C1 in component Kr_channel_states (dimensionless). * STATES[16] is P_C2 in component Kr_channel_states (dimensionless). * STATES[17] is P_C3 in component Kr_channel_states (dimensionless). * STATES[18] is P_I in component Kr_channel_states (dimensionless). * ALGEBRAIC[31] is alpha in component Kr_channel_states (per_second). * ALGEBRAIC[32] is beta in component Kr_channel_states (per_second). * CONSTANTS[24] is alpha_in in component Kr_channel_states (per_second). * CONSTANTS[25] is beta_in in component Kr_channel_states (per_second). * ALGEBRAIC[33] is alpha_alpha in component Kr_channel_states (per_second). * ALGEBRAIC[34] is beta_beta in component Kr_channel_states (per_second). * ALGEBRAIC[35] is alpha_i in component Kr_channel_states (per_second). * CONSTANTS[67] is beta_i in component Kr_channel_states (per_second). * CONSTANTS[68] is mu in component Kr_channel_states (per_second). * ALGEBRAIC[37] is g_Ks in component slow_delayed_rectifier_potassium_current (milliS_per_microF). * ALGEBRAIC[36] is E_Ks in component slow_delayed_rectifier_potassium_current (millivolt). * CONSTANTS[26] is PNaK in component slow_delayed_rectifier_potassium_current (dimensionless). * STATES[19] is xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * STATES[20] is xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * ALGEBRAIC[39] is xs1_infinity in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * ALGEBRAIC[40] is tau_xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (second). * ALGEBRAIC[41] is xs2_infinity in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * ALGEBRAIC[42] is tau_xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (second). * ALGEBRAIC[43] is E_K in component time_independent_potassium_current (millivolt). * CONSTANTS[69] is g_K1 in component time_independent_potassium_current (milliS_per_cm2). * ALGEBRAIC[46] is K1_infinity in component time_independent_potassium_current_K1_gate (dimensionless). * ALGEBRAIC[44] is alpha_K1 in component time_independent_potassium_current_K1_gate (per_second). * ALGEBRAIC[45] is beta_K1 in component time_independent_potassium_current_K1_gate (per_second). * CONSTANTS[27] is g_Kp in component plateau_potassium_current (milliS_per_microF). * ALGEBRAIC[47] is Kp in component plateau_potassium_current (dimensionless). * CONSTANTS[70] is g_K_Na in component sodium_activated_potassium_current (milliS_per_microF). * CONSTANTS[28] is nKNa in component sodium_activated_potassium_current (dimensionless). * ALGEBRAIC[49] is pona in component sodium_activated_potassium_current (dimensionless). * ALGEBRAIC[50] is pov in component sodium_activated_potassium_current (dimensionless). * CONSTANTS[29] is kdKNa in component sodium_activated_potassium_current (millimolar). * CONSTANTS[71] is g_K_ATP in component ATP_sensitive_potassium_current (milliS_per_microF). * CONSTANTS[30] is i_K_ATP_on in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[31] is nATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[32] is nicholsarea in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[33] is ATPi in component ATP_sensitive_potassium_current (millimolar). * CONSTANTS[34] is hATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[35] is kATP in component ATP_sensitive_potassium_current (millimolar). * CONSTANTS[77] is pATP in component ATP_sensitive_potassium_current (dimensionless). * CONSTANTS[79] is GKbaraATP in component ATP_sensitive_potassium_current (milliS_per_microF). * CONSTANTS[72] is g_to in component transient_outward_current (milliS_per_microF). * ALGEBRAIC[53] is rvdv in component transient_outward_current (dimensionless). * STATES[21] is zdv in component transient_outward_current_zdv_gate (dimensionless). * STATES[22] is ydv in component transient_outward_current_ydv_gate (dimensionless). * ALGEBRAIC[55] is alpha_zdv in component transient_outward_current_zdv_gate (per_second). * ALGEBRAIC[56] is beta_zdv in component transient_outward_current_zdv_gate (per_second). * ALGEBRAIC[57] is tau_zdv in component transient_outward_current_zdv_gate (second). * ALGEBRAIC[58] is zdv_ss in component transient_outward_current_zdv_gate (dimensionless). * ALGEBRAIC[59] is alpha_ydv in component transient_outward_current_ydv_gate (per_second). * ALGEBRAIC[60] is beta_ydv in component transient_outward_current_ydv_gate (per_second). * ALGEBRAIC[61] is tau_ydv in component transient_outward_current_ydv_gate (second). * ALGEBRAIC[62] is ydv_ss in component transient_outward_current_ydv_gate (dimensionless). * CONSTANTS[36] is K_mpCa in component sarcolemmal_calcium_pump (millimolar). * CONSTANTS[37] is I_pCa in component sarcolemmal_calcium_pump (microA_per_microF). * CONSTANTS[38] is g_Nab in component sodium_background_current (milliS_per_microF). * CONSTANTS[39] is g_Cab in component calcium_background_current (milliS_per_microF). * CONSTANTS[40] is I_NaK in component sodium_potassium_pump (microA_per_microF). * ALGEBRAIC[67] is f_NaK in component sodium_potassium_pump (dimensionless). * CONSTANTS[41] is K_mNai in component sodium_potassium_pump (millimolar). * CONSTANTS[42] is K_mKo in component sodium_potassium_pump (millimolar). * CONSTANTS[73] is sigma in component sodium_potassium_pump (dimensionless). * ALGEBRAIC[71] is i_ns_Na in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[72] is i_ns_K in component non_specific_calcium_activated_current (microA_per_microF). * CONSTANTS[74] is P_ns_Ca in component non_specific_calcium_activated_current (cm_per_second). * ALGEBRAIC[69] is I_ns_Na in component non_specific_calcium_activated_current (microA_per_microF). * ALGEBRAIC[70] is I_ns_K in component non_specific_calcium_activated_current (microA_per_microF). * CONSTANTS[43] is K_m_ns_Ca in component non_specific_calcium_activated_current (millimolar). * CONSTANTS[44] is c1 in component Na_Ca_exchanger (microA_per_microF). * CONSTANTS[45] is c2 in component Na_Ca_exchanger (millimolar). * CONSTANTS[46] is gamma in component Na_Ca_exchanger (dimensionless). * ALGEBRAIC[76] is i_rel in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[77] is i_up in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[78] is i_leak in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[79] is i_tr in component calcium_dynamics (millimolar_per_second). * ALGEBRAIC[75] is G_rel in component calcium_dynamics (per_second). * CONSTANTS[47] is G_rel_max in component calcium_dynamics (per_second). * CONSTANTS[48] is G_rel_overload in component calcium_dynamics (per_second). * CONSTANTS[49] is tau_tr in component calcium_dynamics (second). * CONSTANTS[50] is K_mrel in component calcium_dynamics (millimolar). * CONSTANTS[51] is delta_Ca_ith in component calcium_dynamics (millimolar). * CONSTANTS[52] is CSQN_max in component calcium_dynamics (millimolar). * CONSTANTS[53] is K_mCSQN in component calcium_dynamics (millimolar). * CONSTANTS[54] is K_mup in component calcium_dynamics (millimolar). * CONSTANTS[75] is K_leak in component calcium_dynamics (per_second). * CONSTANTS[55] is I_up in component calcium_dynamics (millimolar_per_second). * CONSTANTS[56] is Ca_NSR_max in component calcium_dynamics (millimolar). * STATES[23] is Ca_JSR in component calcium_dynamics (millimolar). * STATES[24] is Ca_NSR in component calcium_dynamics (millimolar). * CONSTANTS[78] is V_myo in component ionic_concentrations (micro_litre). * CONSTANTS[57] is A_cap in component ionic_concentrations (mm2). * CONSTANTS[80] is V_JSR in component calcium_dynamics (micro_litre). * CONSTANTS[81] is V_NSR in component calcium_dynamics (micro_litre). * CONSTANTS[58] is K_mTn in component calcium_dynamics (millimolar). * CONSTANTS[59] is K_mCMDN in component calcium_dynamics (millimolar). * CONSTANTS[60] is Tn_max in component calcium_dynamics (millimolar). * CONSTANTS[61] is CMDN_max in component calcium_dynamics (millimolar). * STATES[25] is APtrack in component calcium_dynamics (dimensionless). * STATES[26] is APtrack2 in component calcium_dynamics (dimensionless). * STATES[27] is APtrack3 in component calcium_dynamics (dimensionless). * STATES[28] is Cainfluxtrack in component calcium_dynamics (dimensionless). * STATES[29] is OVRLDtrack in component calcium_dynamics (dimensionless). * STATES[30] is OVRLDtrack2 in component calcium_dynamics (dimensionless). * STATES[31] is OVRLDtrack3 in component calcium_dynamics (dimensionless). * CONSTANTS[62] is CSQNthresh in component calcium_dynamics (millimolar). * CONSTANTS[63] is Logicthresh in component calcium_dynamics (dimensionless). * CONSTANTS[64] is preplength in component ionic_concentrations (mm). * CONSTANTS[65] is radius in component ionic_concentrations (mm). * CONSTANTS[76] is volume in component ionic_concentrations (micro_litre). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[5] is d/dt P_C3 in component Na_channel_states (dimensionless). * RATES[4] is d/dt P_C2 in component Na_channel_states (dimensionless). * RATES[3] is d/dt P_C1 in component Na_channel_states (dimensionless). * RATES[2] is d/dt P_O_Na in component Na_channel_states (dimensionless). * RATES[6] is d/dt P_IF in component Na_channel_states (dimensionless). * RATES[7] is d/dt P_IS in component Na_channel_states (dimensionless). * RATES[10] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[11] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[12] is d/dt b in component T_type_Ca_channel_b_gate (dimensionless). * RATES[13] is d/dt g in component T_type_Ca_channel_g_gate (dimensionless). * RATES[17] is d/dt P_C3 in component Kr_channel_states (dimensionless). * RATES[16] is d/dt P_C2 in component Kr_channel_states (dimensionless). * RATES[15] is d/dt P_C1 in component Kr_channel_states (dimensionless). * RATES[14] is d/dt P_O in component Kr_channel_states (dimensionless). * RATES[18] is d/dt P_I in component Kr_channel_states (dimensionless). * RATES[19] is d/dt xs1 in component slow_delayed_rectifier_potassium_current_xs1_gate (dimensionless). * RATES[20] is d/dt xs2 in component slow_delayed_rectifier_potassium_current_xs2_gate (dimensionless). * RATES[21] is d/dt zdv in component transient_outward_current_zdv_gate (dimensionless). * RATES[22] is d/dt ydv in component transient_outward_current_ydv_gate (dimensionless). * RATES[25] is d/dt APtrack in component calcium_dynamics (dimensionless). * RATES[26] is d/dt APtrack2 in component calcium_dynamics (dimensionless). * RATES[27] is d/dt APtrack3 in component calcium_dynamics (dimensionless). * RATES[28] is d/dt Cainfluxtrack in component calcium_dynamics (dimensionless). * RATES[29] is d/dt OVRLDtrack in component calcium_dynamics (dimensionless). * RATES[30] is d/dt OVRLDtrack2 in component calcium_dynamics (dimensionless). * RATES[31] is d/dt OVRLDtrack3 in component calcium_dynamics (dimensionless). * RATES[23] is d/dt Ca_JSR in component calcium_dynamics (millimolar). * RATES[24] is d/dt Ca_NSR in component calcium_dynamics (millimolar). * RATES[8] is d/dt Cai in component calcium_dynamics (millimolar). * RATES[1] is d/dt Nai in component ionic_concentrations (millimolar). * RATES[9] is d/dt Ki in component ionic_concentrations (millimolar). * There are a total of 23 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -90; CONSTANTS[0] = 8314; CONSTANTS[1] = 310; CONSTANTS[2] = 96485; CONSTANTS[3] = 0.001; CONSTANTS[4] = 0.1; CONSTANTS[5] = 9; CONSTANTS[6] = 1; CONSTANTS[7] = 0.002; CONSTANTS[8] = -25.5; CONSTANTS[9] = 18.5; CONSTANTS[10] = 132; STATES[1] = 9; STATES[2] = 1.78e-6; STATES[3] = 1.119e-4; STATES[4] = 0.0071021; STATES[5] = 0.8294071; STATES[6] = 0.10199797; STATES[7] = 0.0613826; CONSTANTS[11] = 0.75; CONSTANTS[12] = 0.75; CONSTANTS[13] = 0.75; CONSTANTS[14] = 0.75; CONSTANTS[15] = 0.00054; CONSTANTS[16] = 6.75e-7; CONSTANTS[17] = 1.93e-7; CONSTANTS[18] = 1; CONSTANTS[19] = 0.341; STATES[8] = 6e-5; CONSTANTS[20] = 1.8; CONSTANTS[21] = 4.5; STATES[9] = 141.2; STATES[10] = 3.210618e-6; STATES[11] = 0.999837; CONSTANTS[22] = 0.0006; CONSTANTS[23] = 0.05; STATES[12] = 0.000970231; STATES[13] = 0.994305; STATES[14] = 0.000001; STATES[15] = 0.000001; STATES[16] = 0.000001; STATES[17] = 0.000001; STATES[18] = 0.000001; CONSTANTS[24] = 2172; CONSTANTS[25] = 1077; CONSTANTS[26] = 0.01833; STATES[19] = 0.00445683; STATES[20] = 0.00445683; CONSTANTS[27] = 0.00552; CONSTANTS[28] = 2.8; CONSTANTS[29] = 66; CONSTANTS[30] = 1; CONSTANTS[31] = 0.24; CONSTANTS[32] = 5e-5; CONSTANTS[33] = 3; CONSTANTS[34] = 2; CONSTANTS[35] = 0.00025; STATES[21] = 0.5; STATES[22] = 0.5; CONSTANTS[36] = 0.0005; CONSTANTS[37] = 1.15; CONSTANTS[38] = 0.004; CONSTANTS[39] = 0.003016; CONSTANTS[40] = 2.25; CONSTANTS[41] = 10; CONSTANTS[42] = 1.5; CONSTANTS[43] = 0.0012; CONSTANTS[44] = 0.00025; CONSTANTS[45] = 0.0001; CONSTANTS[46] = 0.15; CONSTANTS[47] = 60000; CONSTANTS[48] = 4000; CONSTANTS[49] = 0.18; CONSTANTS[50] = 0.0008; CONSTANTS[51] = 0.00018; CONSTANTS[52] = 10; CONSTANTS[53] = 0.8; CONSTANTS[54] = 0.00092; CONSTANTS[55] = 8.75; CONSTANTS[56] = 15; STATES[23] = 1.8; STATES[24] = 1.8; CONSTANTS[57] = 1.434e-7; CONSTANTS[58] = 0.0005; CONSTANTS[59] = 0.00238; CONSTANTS[60] = 0.07; CONSTANTS[61] = 0.05; STATES[25] = 0; STATES[26] = 0; STATES[27] = 0; STATES[28] = 0; STATES[29] = 0; STATES[30] = 0; STATES[31] = 0; CONSTANTS[62] = 0.7; CONSTANTS[63] = 0.98; CONSTANTS[64] = 0.001; CONSTANTS[65] = 1.1e-4; CONSTANTS[66] = 2.70000*0.0135000*pow(CONSTANTS[21], 0.590000); CONSTANTS[67] = 0.00000; CONSTANTS[68] = 1.00000e+06; CONSTANTS[69] = 0.750000* pow((CONSTANTS[21]/5.40000), 1.0 / 2); CONSTANTS[70] = 0.00000*0.128480; CONSTANTS[71] = ( CONSTANTS[30]*0.000193000)/CONSTANTS[32]; CONSTANTS[72] = 0.00000*0.500000; CONSTANTS[73] = (1.00000/7.00000)*(exp(CONSTANTS[10]/67.3000) - 1.00000); CONSTANTS[74] = 0.00000*1.75000e-07; CONSTANTS[75] = CONSTANTS[55]/CONSTANTS[56]; CONSTANTS[76] = 3.14159265358979*CONSTANTS[64]*pow(CONSTANTS[65], 2.00000); CONSTANTS[77] = 1.00000/(1.00000+pow(CONSTANTS[33]/CONSTANTS[35], CONSTANTS[34])); CONSTANTS[78] = 0.680000*CONSTANTS[76]; CONSTANTS[79] = CONSTANTS[71]*CONSTANTS[77]*pow(CONSTANTS[21]/4.00000, CONSTANTS[31]); CONSTANTS[80] = (0.00480000/0.680000)*CONSTANTS[78]; CONSTANTS[81] = (0.0552000/0.680000)*CONSTANTS[78]; RATES[0] = 0.1001; RATES[5] = 0.1001; RATES[4] = 0.1001; RATES[3] = 0.1001; RATES[2] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[17] = 0.1001; RATES[16] = 0.1001; RATES[15] = 0.1001; RATES[14] = 0.1001; RATES[18] = 0.1001; RATES[19] = 0.1001; RATES[20] = 0.1001; RATES[21] = 0.1001; RATES[22] = 0.1001; RATES[25] = 0.1001; RATES[26] = 0.1001; RATES[27] = 0.1001; RATES[28] = 0.1001; RATES[29] = 0.1001; RATES[30] = 0.1001; RATES[31] = 0.1001; RATES[23] = 0.1001; RATES[24] = 0.1001; RATES[8] = 0.1001; RATES[1] = 0.1001; RATES[9] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[80]+ALGEBRAIC[85]+ALGEBRAIC[86]+ALGEBRAIC[87]+ALGEBRAIC[38]+ALGEBRAIC[51]+ALGEBRAIC[52]+ALGEBRAIC[54]+ALGEBRAIC[88]+ALGEBRAIC[48]+ALGEBRAIC[74]+ALGEBRAIC[63]+ALGEBRAIC[64]+ALGEBRAIC[66]+ALGEBRAIC[68]+ALGEBRAIC[73]+ALGEBRAIC[0]); resid[1] = RATES[5] - ALGEBRAIC[5]*STATES[4] - ALGEBRAIC[2]*STATES[5]; resid[2] = RATES[4] - - (ALGEBRAIC[5]+ALGEBRAIC[3])*STATES[4]+ ALGEBRAIC[2]*STATES[5]+ ALGEBRAIC[6]*STATES[3]; resid[3] = RATES[3] - - (ALGEBRAIC[6]+ALGEBRAIC[4]+ALGEBRAIC[10])*STATES[3]+ ALGEBRAIC[3]*STATES[4]+ ALGEBRAIC[7]*STATES[2]+ ALGEBRAIC[9]*STATES[6]; resid[4] = RATES[2] - - (ALGEBRAIC[8]+ALGEBRAIC[7])*STATES[2]+ ALGEBRAIC[81]*STATES[6]+ ALGEBRAIC[4]*STATES[3]; resid[5] = RATES[6] - - (ALGEBRAIC[81]+ALGEBRAIC[9]+ALGEBRAIC[11])*STATES[6]+ ALGEBRAIC[10]*STATES[3]+ ALGEBRAIC[12]*STATES[7]+ ALGEBRAIC[8]*STATES[2]; resid[6] = RATES[7] - ALGEBRAIC[11]*STATES[6] - ALGEBRAIC[12]*STATES[7]; resid[7] = RATES[10] - ALGEBRAIC[19]*(1.00000 - STATES[10]) - ALGEBRAIC[20]*STATES[10]; resid[8] = RATES[11] - ALGEBRAIC[23]*(1.00000 - STATES[11]) - ALGEBRAIC[24]*STATES[11]; resid[9] = RATES[12] - (ALGEBRAIC[26] - STATES[12])/ALGEBRAIC[27]; resid[10] = RATES[13] - (ALGEBRAIC[28] - STATES[13])/ALGEBRAIC[29]; resid[11] = RATES[17] - ALGEBRAIC[32]*STATES[16] - ALGEBRAIC[31]*STATES[17]; resid[12] = RATES[16] - - (ALGEBRAIC[32]+CONSTANTS[24])*STATES[16]+ ALGEBRAIC[31]*STATES[17]+ CONSTANTS[25]*STATES[15]; resid[13] = RATES[15] - - (CONSTANTS[25]+ALGEBRAIC[33]+ALGEBRAIC[33])*STATES[15]+ CONSTANTS[24]*STATES[16]+ ALGEBRAIC[34]*STATES[14]+ CONSTANTS[68]*STATES[18]; resid[14] = RATES[14] - - (ALGEBRAIC[34]+CONSTANTS[67])*STATES[14]+ ALGEBRAIC[33]*STATES[15]+ ALGEBRAIC[35]*STATES[18]; resid[15] = RATES[18] - - (CONSTANTS[68]+ALGEBRAIC[35])*STATES[18]+ ALGEBRAIC[33]*STATES[15]+ CONSTANTS[67]*STATES[14]; resid[16] = RATES[19] - (ALGEBRAIC[39] - STATES[19])/ALGEBRAIC[40]; resid[17] = RATES[20] - (ALGEBRAIC[41] - STATES[20])/ALGEBRAIC[42]; resid[18] = RATES[21] - (ALGEBRAIC[58] - STATES[21])/ALGEBRAIC[57]; resid[19] = RATES[22] - (ALGEBRAIC[62] - STATES[22])/ALGEBRAIC[61]; resid[20] = RATES[25] - (CONDVAR[5]>0.00000 ? 100000.*(1.00000 - STATES[25]) - 500.000*STATES[25] : - 500.000*STATES[25]); resid[21] = RATES[26] - (CONDVAR[6]<0.00000&&CONDVAR[7]>0.00000 ? 100000.*(1.00000 - STATES[26]) - 500.000*STATES[26] : - 500.000*STATES[26]); resid[22] = RATES[27] - (CONDVAR[8]<0.00000&&CONDVAR[9]>0.00000 ? 100000.*(1.00000 - STATES[27]) - 500.000*STATES[27] : - 10.0000*STATES[27]); resid[23] = RATES[28] - (CONDVAR[10]>0.00000 ? ( - CONSTANTS[57]*(((ALGEBRAIC[82]+ALGEBRAIC[86]) - ALGEBRAIC[74])+ALGEBRAIC[63]+ALGEBRAIC[66]))/( 2.00000*CONSTANTS[78]*CONSTANTS[2]) : CONDVAR[11]>0.00000&&CONDVAR[12]<=0.00000 ? 0.00000 : - 500.000*STATES[28]); resid[24] = RATES[29] - (CONDVAR[13]>0.00000&&CONDVAR[14]<0.00000&&CONDVAR[15]<0.00000 ? 50000.0*(1.00000 - STATES[29]) : - 500.000*STATES[29]); resid[25] = RATES[30] - (CONDVAR[16]>0.00000&&CONDVAR[17]<0.00000 ? 50000.0*(1.00000 - STATES[30]) : - 500.000*STATES[30]); resid[26] = RATES[31] - (CONDVAR[18]>0.00000&&CONDVAR[19]<0.00000 ? 50000.0*(1.00000 - STATES[31]) : - 10.0000*STATES[31]); resid[27] = RATES[23] - (1.00000/(1.00000+( CONSTANTS[52]*CONSTANTS[53])/pow(CONSTANTS[53]+STATES[23], 2.00000)))*(ALGEBRAIC[79] - ALGEBRAIC[76]); resid[28] = RATES[24] - (( - ALGEBRAIC[79]*CONSTANTS[80])/CONSTANTS[81] - ALGEBRAIC[78])+ALGEBRAIC[77]; resid[29] = RATES[8] - (1.00000/(1.00000+( CONSTANTS[61]*CONSTANTS[59])/pow(CONSTANTS[59]+STATES[8], 2.00000)+( CONSTANTS[60]*CONSTANTS[58])/pow(CONSTANTS[58]+STATES[8], 2.00000)))*(( - CONSTANTS[57]*(((ALGEBRAIC[82]+ALGEBRAIC[86]) - 2.00000*ALGEBRAIC[74])+ALGEBRAIC[63]+ALGEBRAIC[66]))/( 2.00000*CONSTANTS[78]*CONSTANTS[2])+( ALGEBRAIC[76]*CONSTANTS[80])/CONSTANTS[78]+( (ALGEBRAIC[78] - ALGEBRAIC[77])*CONSTANTS[81])/CONSTANTS[78]); resid[30] = RATES[1] - ( - (ALGEBRAIC[80]+ALGEBRAIC[83]+ALGEBRAIC[64]+ALGEBRAIC[71]+ ALGEBRAIC[74]*3.00000+ ALGEBRAIC[68]*3.00000)*CONSTANTS[57])/( CONSTANTS[78]*CONSTANTS[2]); resid[31] = RATES[9] - ( - (ALGEBRAIC[84]+ALGEBRAIC[87]+ALGEBRAIC[38]+ALGEBRAIC[88]+ALGEBRAIC[48]+ALGEBRAIC[51]+ALGEBRAIC[52]+ALGEBRAIC[54]+ALGEBRAIC[72]+ - ALGEBRAIC[68]*2.00000)*CONSTANTS[57])/( CONSTANTS[78]*CONSTANTS[2]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[2] = 3802.00/( 0.102700*exp(- STATES[0]/17.0000)+ 0.200000*exp(- STATES[0]/150.000)); ALGEBRAIC[3] = 3802.00/( 0.102700*exp(- STATES[0]/15.0000)+ 0.230000*exp(- STATES[0]/150.000)); ALGEBRAIC[4] = 3802.00/( 0.102700*exp(- STATES[0]/12.0000)+ 0.250000*exp(- STATES[0]/150.000)); ALGEBRAIC[5] = 191.700*exp(- STATES[0]/20.3000); ALGEBRAIC[6] = 200.000*exp(- (STATES[0] - 5.00000)/20.3000); ALGEBRAIC[7] = 220.000*exp(- (STATES[0] - 10.0000)/20.3000); ALGEBRAIC[8] = 9178.00*exp(STATES[0]/29.6800); ALGEBRAIC[9] = 3.79330e-07*exp(- STATES[0]/5.20000); ALGEBRAIC[10] = 8.40000+ 0.0200000*STATES[0]; ALGEBRAIC[11] = ALGEBRAIC[8]/100.000; ALGEBRAIC[12] = ALGEBRAIC[9]; ALGEBRAIC[16] = STATES[0]+10.0000; ALGEBRAIC[17] = 1.00000/(1.00000+exp(- ALGEBRAIC[16]/6.24000)); ALGEBRAIC[18] = (CONDVAR[3]<0.00000 ? 0.00100000/( 0.0350000*6.24000) : ( 0.00100000*ALGEBRAIC[17]*(1.00000 - exp(- ALGEBRAIC[16]/6.24000)))/( 0.0350000*ALGEBRAIC[16])); ALGEBRAIC[19] = ALGEBRAIC[17]/ALGEBRAIC[18]; ALGEBRAIC[20] = (1.00000 - ALGEBRAIC[17])/ALGEBRAIC[18]; ALGEBRAIC[21] = 1.00000/(1.00000+exp((STATES[0]+32.0000)/8.00000))+0.600000/(1.00000+exp((50.0000 - STATES[0])/20.0000)); ALGEBRAIC[22] = 0.00100000/( 0.0197000*exp(- pow( 0.0337000*(STATES[0]+10.0000), 2.00000))+0.0200000); ALGEBRAIC[23] = ALGEBRAIC[21]/ALGEBRAIC[22]; ALGEBRAIC[24] = (1.00000 - ALGEBRAIC[21])/ALGEBRAIC[22]; ALGEBRAIC[26] = 1.00000/(1.00000+exp(- (STATES[0]+14.0000)/10.8000)); ALGEBRAIC[27] = 0.00370000+0.00610000/(1.00000+exp((STATES[0]+25.0000)/4.50000)); ALGEBRAIC[28] = 1.00000/(1.00000+exp((STATES[0]+60.0000)/5.60000)); ALGEBRAIC[29] = (CONDVAR[4]<=0.00000 ? - 0.000875000*STATES[0]+0.0120000 : 0.0120000); ALGEBRAIC[31] = 55.5000*exp( 0.0554715*(STATES[0] - 12.0000)); ALGEBRAIC[32] = 2.35700*exp( - 0.0365880*STATES[0]); ALGEBRAIC[33] = 65.5000*exp( 0.0554715*(STATES[0] - 36.0000)); ALGEBRAIC[34] = 2.93570*exp( - 0.0215800*STATES[0]); ALGEBRAIC[35] = ( 439.000*exp( - 0.0235200*(STATES[0]+25.0000))*4.50000)/CONSTANTS[21]; ALGEBRAIC[37] = 1.64400*0.433000*(1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[8], 1.40000))); ALGEBRAIC[36] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[21]+ CONSTANTS[26]*CONSTANTS[10])/(STATES[9]+ CONSTANTS[26]*STATES[1])); ALGEBRAIC[38] = ALGEBRAIC[37]*STATES[19]*STATES[20]*(STATES[0] - ALGEBRAIC[36]); ALGEBRAIC[39] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[40] = 0.00100000/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); ALGEBRAIC[41] = 1.00000/(1.00000+exp(- (STATES[0] - 1.50000)/16.7000)); ALGEBRAIC[42] = ( 4.00000*0.00100000)/(( 7.19000e-05*(STATES[0]+30.0000))/(1.00000 - exp( - 0.148000*(STATES[0]+30.0000)))+( 0.000131000*(STATES[0]+30.0000))/(exp( 0.0687000*(STATES[0]+30.0000)) - 1.00000)); ALGEBRAIC[43] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[21]/STATES[9]); ALGEBRAIC[47] = 1.00000/(1.00000+exp((7.48800 - STATES[0])/5.98000)); ALGEBRAIC[48] = CONSTANTS[27]*ALGEBRAIC[47]*(STATES[0] - ALGEBRAIC[43]); ALGEBRAIC[49] = 0.850000/(1.00000+pow(CONSTANTS[29]/STATES[1], CONSTANTS[28])); ALGEBRAIC[50] = 0.800000 - 0.650000/(1.00000+exp((STATES[0]+125.000)/15.0000)); ALGEBRAIC[51] = CONSTANTS[70]*ALGEBRAIC[49]*ALGEBRAIC[50]*(STATES[0] - ALGEBRAIC[43]); ALGEBRAIC[52] = CONSTANTS[79]*(STATES[0] - ALGEBRAIC[43]); ALGEBRAIC[53] = exp(STATES[0]/100.000); ALGEBRAIC[54] = CONSTANTS[72]*pow(STATES[21], 3.00000)*STATES[22]*ALGEBRAIC[53]*(STATES[0] - ALGEBRAIC[43]); ALGEBRAIC[55] = ( 10000.0*exp((STATES[0] - 40.0000)/25.0000))/(1.00000+exp((STATES[0] - 40.0000)/25.0000)); ALGEBRAIC[56] = ( 10000.0*exp(- (STATES[0]+90.0000)/25.0000))/(1.00000+exp(- (STATES[0]+90.0000)/25.0000)); ALGEBRAIC[57] = 1.00000/(ALGEBRAIC[55]+ALGEBRAIC[56]); ALGEBRAIC[58] = ALGEBRAIC[55]/(ALGEBRAIC[55]+ALGEBRAIC[56]); ALGEBRAIC[59] = 15.0000/(1.00000+exp((STATES[0]+60.0000)/5.00000)); ALGEBRAIC[60] = ( 100.000*exp((STATES[0]+25.0000)/5.00000))/(1.00000+exp((STATES[0]+25.0000)/5.00000)); ALGEBRAIC[61] = 1.00000/(ALGEBRAIC[59]+ALGEBRAIC[60]); ALGEBRAIC[62] = ALGEBRAIC[59]/(ALGEBRAIC[59]+ALGEBRAIC[60]); ALGEBRAIC[63] = ( CONSTANTS[37]*STATES[8])/(CONSTANTS[36]+STATES[8]); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]); ALGEBRAIC[64] = CONSTANTS[38]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[65] = (( CONSTANTS[0]*CONSTANTS[1])/( 2.00000*CONSTANTS[2]))*log(CONSTANTS[20]/STATES[8]); ALGEBRAIC[66] = CONSTANTS[39]*(STATES[0] - ALGEBRAIC[65]); ALGEBRAIC[67] = 1.00000/(1.00000+ 0.124500*exp(( - 0.100000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))+ 0.0365000*CONSTANTS[73]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[68] = ( (( CONSTANTS[40]*ALGEBRAIC[67]*1.00000)/(1.00000+pow(CONSTANTS[41]/STATES[1], 2.00000)))*CONSTANTS[21])/(CONSTANTS[21]+CONSTANTS[42]); ALGEBRAIC[69] = ( (( CONSTANTS[74]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[11]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*CONSTANTS[10]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[71] = ( ALGEBRAIC[69]*1.00000)/(1.00000+pow(CONSTANTS[43]/STATES[8], 3.00000)); ALGEBRAIC[70] = ( (( CONSTANTS[74]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[13]*STATES[9]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[14]*CONSTANTS[21]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[72] = ( ALGEBRAIC[70]*1.00000)/(1.00000+pow(CONSTANTS[43]/STATES[8], 3.00000)); ALGEBRAIC[73] = ALGEBRAIC[71]+ALGEBRAIC[72]; ALGEBRAIC[74] = ( CONSTANTS[44]*exp(( (CONSTANTS[46] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[20] - pow(CONSTANTS[10], 3.00000)*STATES[8]))/(1.00000+ CONSTANTS[45]*exp(( (CONSTANTS[46] - 1.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*( exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[1], 3.00000)*CONSTANTS[20]+ pow(CONSTANTS[10], 3.00000)*STATES[8])); ALGEBRAIC[75] = (CONDVAR[20]>0.00000 ? (( CONSTANTS[47]*(STATES[28] - CONSTANTS[51]))/((CONSTANTS[50]+STATES[28]) - CONSTANTS[51]))*(1.00000 - STATES[26])*STATES[26] : CONDVAR[21]<=0.00000&&CONDVAR[22]>0.00000 ? CONSTANTS[48]*(1.00000 - STATES[30])*STATES[30] : 0.00000); ALGEBRAIC[76] = ALGEBRAIC[75]*(STATES[23] - STATES[8]); ALGEBRAIC[77] = ( CONSTANTS[55]*STATES[8])/(STATES[8]+CONSTANTS[54]); ALGEBRAIC[78] = CONSTANTS[75]*STATES[24]; ALGEBRAIC[79] = (STATES[24] - STATES[23])/CONSTANTS[49]; ALGEBRAIC[80] = CONSTANTS[9]*STATES[2]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[81] = ( ALGEBRAIC[4]*ALGEBRAIC[8]*ALGEBRAIC[9])/( ALGEBRAIC[7]*ALGEBRAIC[10]); ALGEBRAIC[13] = ( (( CONSTANTS[15]*pow(2.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[18]*STATES[8]*exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[19]*CONSTANTS[20]))/(exp(( 2.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[25] = 1.00000/(1.00000+STATES[8]/CONSTANTS[22]); ALGEBRAIC[82] = STATES[10]*STATES[11]*ALGEBRAIC[25]*ALGEBRAIC[13]; ALGEBRAIC[14] = ( (( CONSTANTS[16]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[11]*STATES[1]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[12]*CONSTANTS[10]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[83] = STATES[10]*STATES[11]*ALGEBRAIC[25]*ALGEBRAIC[14]; ALGEBRAIC[15] = ( (( CONSTANTS[17]*pow(1.00000, 2.00000)*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*( CONSTANTS[13]*STATES[9]*exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[14]*CONSTANTS[21]))/(exp(( 1.00000*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[84] = STATES[10]*STATES[11]*ALGEBRAIC[25]*ALGEBRAIC[15]; ALGEBRAIC[85] = ALGEBRAIC[82]+ALGEBRAIC[84]+ALGEBRAIC[83]; ALGEBRAIC[86] = CONSTANTS[23]*STATES[12]*STATES[12]*STATES[13]*(STATES[0] - ALGEBRAIC[65]); ALGEBRAIC[30] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[21]+ 0.650000*CONSTANTS[10])/(STATES[9]+ 0.650000*STATES[1])); ALGEBRAIC[87] = CONSTANTS[66]*STATES[14]*(STATES[0] - ALGEBRAIC[30]); ALGEBRAIC[44] = 1020.00/(1.00000+exp( 0.238500*((STATES[0] - ALGEBRAIC[43]) - 59.2150))); ALGEBRAIC[45] = ( 1000.00*( 0.491240*exp( 0.0803200*((STATES[0] - ALGEBRAIC[43])+5.47600))+exp( 0.0617500*((STATES[0] - ALGEBRAIC[43]) - 594.310))))/(1.00000+exp( - 0.514300*((STATES[0] - ALGEBRAIC[43])+4.75300))); ALGEBRAIC[46] = ALGEBRAIC[44]/(ALGEBRAIC[44]+ALGEBRAIC[45]); ALGEBRAIC[88] = CONSTANTS[69]*ALGEBRAIC[46]*(STATES[0] - ALGEBRAIC[43]); ALGEBRAIC[89] = (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[80]+ALGEBRAIC[85]+ALGEBRAIC[86]+ALGEBRAIC[87]+ALGEBRAIC[38]+ALGEBRAIC[51]+ALGEBRAIC[52]+ALGEBRAIC[54]+ALGEBRAIC[88]+ALGEBRAIC[48]+ALGEBRAIC[74]+ALGEBRAIC[63]+ALGEBRAIC[64]+ALGEBRAIC[66]+ALGEBRAIC[68]+ALGEBRAIC[73]+ALGEBRAIC[0]); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; SI[21] = 1.0; SI[22] = 1.0; SI[23] = 1.0; SI[24] = 1.0; SI[25] = 1.0; SI[26] = 1.0; SI[27] = 1.0; SI[28] = 1.0; SI[29] = 1.0; SI[30] = 1.0; SI[31] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = fabs(ALGEBRAIC[16]) - 1.00000e-05; CONDVAR[4] = STATES[0] - 0.00000; CONDVAR[5] = ALGEBRAIC[89] - 150000.; CONDVAR[6] = STATES[25] - 0.200000; CONDVAR[7] = STATES[25] - 0.180000; CONDVAR[8] = STATES[25] - 0.200000; CONDVAR[9] = STATES[25] - 0.180000; CONDVAR[10] = STATES[25] - 0.200000; CONDVAR[11] = STATES[26] - 0.0100000; CONDVAR[12] = STATES[25] - 0.200000; CONDVAR[13] = 1.00000/(1.00000+CONSTANTS[53]/STATES[24]) - CONSTANTS[62]; CONDVAR[14] = STATES[31] - 0.370000; CONDVAR[15] = STATES[27] - 0.370000; CONDVAR[16] = STATES[29] - CONSTANTS[63]; CONDVAR[17] = STATES[30] - CONSTANTS[63]; CONDVAR[18] = STATES[29] - CONSTANTS[63]; CONDVAR[19] = STATES[31] - CONSTANTS[63]; CONDVAR[20] = STATES[28] - CONSTANTS[51]; CONDVAR[21] = STATES[28] - CONSTANTS[51]; CONDVAR[22] = STATES[30] - 0.00000; }