Generated Code

The following is c code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 223 entries in the algebraic variable array.
   There are a total of 43 entries in each of the rate and state variable arrays.
   There are a total of 163 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (millisecond).
 * CONSTANTS[0] is celltype in component environment (dimensionless).
 * CONSTANTS[1] is nao in component extracellular (millimolar).
 * CONSTANTS[2] is cao in component extracellular (millimolar).
 * CONSTANTS[3] is ko in component extracellular (millimolar).
 * CONSTANTS[4] is clo in component extracellular (millimolar).
 * CONSTANTS[5] is R in component physical_constants (joule_per_kilomole_kelvin).
 * CONSTANTS[6] is T in component physical_constants (kelvin).
 * CONSTANTS[7] is F in component physical_constants (coulomb_per_mole).
 * CONSTANTS[8] is zna in component physical_constants (dimensionless).
 * CONSTANTS[9] is zca in component physical_constants (dimensionless).
 * CONSTANTS[10] is zk in component physical_constants (dimensionless).
 * CONSTANTS[11] is zcl in component physical_constants (dimensionless).
 * CONSTANTS[12] is L in component cell_geometry (centimeter).
 * CONSTANTS[13] is rad in component cell_geometry (centimeter).
 * CONSTANTS[112] is vcell in component cell_geometry (microliter).
 * CONSTANTS[130] is Ageo in component cell_geometry (centimeter_squared).
 * CONSTANTS[136] is Acap in component cell_geometry (centimeter_squared).
 * CONSTANTS[142] is vmyo in component cell_geometry (microliter).
 * CONSTANTS[143] is vnsr in component cell_geometry (microliter).
 * CONSTANTS[144] is vjsr in component cell_geometry (microliter).
 * CONSTANTS[145] is vss in component cell_geometry (microliter).
 * STATES[0] is v in component membrane (millivolt).
 * ALGEBRAIC[25] is vffrt in component membrane (coulomb_per_mole).
 * ALGEBRAIC[28] is vfrt in component membrane (dimensionless).
 * ALGEBRAIC[68] is INa in component INa (microA_per_microF).
 * ALGEBRAIC[70] is INaL in component INaL (microA_per_microF).
 * ALGEBRAIC[76] is Ito in component Ito (microA_per_microF).
 * ALGEBRAIC[112] is ICaL in component ICaL (microA_per_microF).
 * ALGEBRAIC[113] is ICaNa in component ICaL (microA_per_microF).
 * ALGEBRAIC[114] is ICaK in component ICaL (microA_per_microF).
 * ALGEBRAIC[115] is IKr in component IKr (microA_per_microF).
 * ALGEBRAIC[117] is IKs in component IKs (microA_per_microF).
 * ALGEBRAIC[121] is IK1 in component IK1 (microA_per_microF).
 * ALGEBRAIC[153] is INaCa_i in component INaCa (microA_per_microF).
 * ALGEBRAIC[183] is INaCa_ss in component INaCa (microA_per_microF).
 * ALGEBRAIC[202] is INaK in component INaK (microA_per_microF).
 * ALGEBRAIC[205] is INab in component INab (microA_per_microF).
 * ALGEBRAIC[204] is IKb in component IKb (microA_per_microF).
 * ALGEBRAIC[209] is IpCa in component IpCa (microA_per_microF).
 * ALGEBRAIC[207] is ICab in component ICab (microA_per_microF).
 * ALGEBRAIC[214] is IClCa in component ICl (microA_per_microF).
 * ALGEBRAIC[216] is IClb in component ICl (microA_per_microF).
 * ALGEBRAIC[66] is I_katp in component I_katp (microA_per_microF).
 * ALGEBRAIC[11] is Istim in component membrane (microA_per_microF).
 * CONSTANTS[14] is i_Stim_Start in component membrane (millisecond).
 * CONSTANTS[15] is i_Stim_End in component membrane (millisecond).
 * CONSTANTS[16] is i_Stim_Amplitude in component membrane (microA_per_microF).
 * CONSTANTS[17] is i_Stim_Period in component membrane (millisecond).
 * CONSTANTS[18] is i_Stim_PulseDuration in component membrane (millisecond).
 * CONSTANTS[19] is KmCaMK in component CaMK (millimolar).
 * CONSTANTS[20] is aCaMK in component CaMK (per_millimolar_per_millisecond).
 * CONSTANTS[21] is bCaMK in component CaMK (per_millisecond).
 * CONSTANTS[22] is CaMKo in component CaMK (dimensionless).
 * CONSTANTS[23] is KmCaM in component CaMK (millimolar).
 * ALGEBRAIC[43] is CaMKb in component CaMK (millimolar).
 * ALGEBRAIC[49] is CaMKa in component CaMK (millimolar).
 * STATES[1] is CaMKt in component CaMK (millimolar).
 * STATES[2] is cass in component intracellular_ions (millimolar).
 * CONSTANTS[24] is cmdnmax_b in component intracellular_ions (millimolar).
 * CONSTANTS[113] is cmdnmax in component intracellular_ions (millimolar).
 * CONSTANTS[25] is kmcmdn in component intracellular_ions (millimolar).
 * CONSTANTS[26] is trpnmax in component intracellular_ions (millimolar).
 * CONSTANTS[27] is kmtrpn in component intracellular_ions (millimolar).
 * CONSTANTS[28] is BSRmax in component intracellular_ions (millimolar).
 * CONSTANTS[29] is KmBSR in component intracellular_ions (millimolar).
 * CONSTANTS[30] is BSLmax in component intracellular_ions (millimolar).
 * CONSTANTS[31] is KmBSL in component intracellular_ions (millimolar).
 * CONSTANTS[32] is csqnmax in component intracellular_ions (millimolar).
 * CONSTANTS[33] is kmcsqn in component intracellular_ions (millimolar).
 * STATES[3] is nai in component intracellular_ions (millimolar).
 * STATES[4] is nass in component intracellular_ions (millimolar).
 * STATES[5] is ki in component intracellular_ions (millimolar).
 * STATES[6] is kss in component intracellular_ions (millimolar).
 * STATES[7] is cansr in component intracellular_ions (millimolar).
 * STATES[8] is cajsr in component intracellular_ions (millimolar).
 * STATES[9] is cai in component intracellular_ions (millimolar).
 * CONSTANTS[34] is cli in component intracellular_ions (millimolar).
 * ALGEBRAIC[91] is ICaL_ss in component ICaL (microA_per_microF).
 * ALGEBRAIC[92] is ICaNa_ss in component ICaL (microA_per_microF).
 * ALGEBRAIC[95] is ICaK_ss in component ICaL (microA_per_microF).
 * ALGEBRAIC[109] is ICaL_i in component ICaL (microA_per_microF).
 * ALGEBRAIC[110] is ICaNa_i in component ICaL (microA_per_microF).
 * ALGEBRAIC[111] is ICaK_i in component ICaL (microA_per_microF).
 * ALGEBRAIC[208] is JdiffNa in component diff (millimolar_per_millisecond).
 * ALGEBRAIC[211] is Jdiff in component diff (millimolar_per_millisecond).
 * ALGEBRAIC[221] is Jup in component SERCA (millimolar_per_millisecond).
 * ALGEBRAIC[206] is JdiffK in component diff (millimolar_per_millisecond).
 * ALGEBRAIC[215] is Jrel in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[222] is Jtr in component trans_flux (millimolar_per_millisecond).
 * ALGEBRAIC[53] is Bcai in component intracellular_ions (dimensionless).
 * ALGEBRAIC[59] is Bcajsr in component intracellular_ions (dimensionless).
 * ALGEBRAIC[56] is Bcass in component intracellular_ions (dimensionless).
 * CONSTANTS[35] is PKNa in component reversal_potentials (dimensionless).
 * ALGEBRAIC[63] is ENa in component reversal_potentials (millivolt).
 * ALGEBRAIC[64] is EK in component reversal_potentials (millivolt).
 * ALGEBRAIC[65] is EKs in component reversal_potentials (millivolt).
 * CONSTANTS[114] is ECl in component reversal_potentials (millivolt).
 * CONSTANTS[36] is gkatp in component I_katp (milliS_per_microF).
 * CONSTANTS[37] is fkatp in component I_katp (dimensionless).
 * CONSTANTS[38] is K_o_n in component I_katp (millimolar).
 * CONSTANTS[39] is A_atp in component I_katp (millimolar).
 * CONSTANTS[40] is K_atp in component I_katp (millimolar).
 * CONSTANTS[115] is akik in component I_katp (dimensionless).
 * CONSTANTS[116] is bkik in component I_katp (dimensionless).
 * ALGEBRAIC[0] is mss in component INa (dimensionless).
 * ALGEBRAIC[13] is tm in component INa (millisecond).
 * STATES[10] is m in component INa (dimensionless).
 * ALGEBRAIC[1] is hss in component INa (dimensionless).
 * ALGEBRAIC[14] is ah in component INa (dimensionless).
 * ALGEBRAIC[29] is bh in component INa (dimensionless).
 * ALGEBRAIC[37] is th in component INa (millisecond).
 * STATES[11] is h in component INa (dimensionless).
 * ALGEBRAIC[38] is jss in component INa (dimensionless).
 * ALGEBRAIC[15] is aj in component INa (dimensionless).
 * ALGEBRAIC[30] is bj in component INa (dimensionless).
 * ALGEBRAIC[44] is tj in component INa (millisecond).
 * STATES[12] is j in component INa (dimensionless).
 * ALGEBRAIC[45] is hssp in component INa (dimensionless).
 * STATES[13] is hp in component INa (dimensionless).
 * ALGEBRAIC[50] is tjp in component INa (millisecond).
 * STATES[14] is jp in component INa (dimensionless).
 * ALGEBRAIC[67] is fINap in component INa (dimensionless).
 * CONSTANTS[41] is GNa in component INa (milliS_per_microF).
 * ALGEBRAIC[2] is mLss in component INaL (dimensionless).
 * ALGEBRAIC[16] is tmL in component INaL (millisecond).
 * STATES[15] is mL in component INaL (dimensionless).
 * CONSTANTS[42] is thL in component INaL (millisecond).
 * ALGEBRAIC[3] is hLss in component INaL (dimensionless).
 * STATES[16] is hL in component INaL (dimensionless).
 * ALGEBRAIC[4] is hLssp in component INaL (dimensionless).
 * CONSTANTS[117] is thLp in component INaL (millisecond).
 * STATES[17] is hLp in component INaL (dimensionless).
 * CONSTANTS[43] is GNaL_b in component INaL (milliS_per_microF).
 * CONSTANTS[118] is GNaL in component INaL (milliS_per_microF).
 * ALGEBRAIC[69] is fINaLp in component INaL (dimensionless).
 * CONSTANTS[44] is Gto_b in component Ito (milliS_per_microF).
 * ALGEBRAIC[5] is ass in component Ito (dimensionless).
 * ALGEBRAIC[17] is ta in component Ito (millisecond).
 * STATES[18] is a in component Ito (dimensionless).
 * CONSTANTS[45] is EKshift in component Ito (millivolt).
 * ALGEBRAIC[6] is iss in component Ito (dimensionless).
 * ALGEBRAIC[18] is delta_epi in component Ito (dimensionless).
 * ALGEBRAIC[31] is tiF_b in component Ito (millisecond).
 * ALGEBRAIC[39] is tiS_b in component Ito (millisecond).
 * ALGEBRAIC[46] is tiF in component Ito (millisecond).
 * ALGEBRAIC[51] is tiS in component Ito (millisecond).
 * ALGEBRAIC[71] is AiF in component Ito (dimensionless).
 * ALGEBRAIC[72] is AiS in component Ito (dimensionless).
 * STATES[19] is iF in component Ito (dimensionless).
 * STATES[20] is iS in component Ito (dimensionless).
 * ALGEBRAIC[73] is i in component Ito (dimensionless).
 * ALGEBRAIC[32] is assp in component Ito (dimensionless).
 * STATES[21] is ap in component Ito (dimensionless).
 * ALGEBRAIC[54] is dti_develop in component Ito (dimensionless).
 * ALGEBRAIC[57] is dti_recover in component Ito (dimensionless).
 * ALGEBRAIC[60] is tiFp in component Ito (millisecond).
 * ALGEBRAIC[61] is tiSp in component Ito (millisecond).
 * STATES[22] is iFp in component Ito (dimensionless).
 * STATES[23] is iSp in component Ito (dimensionless).
 * ALGEBRAIC[74] is ip in component Ito (dimensionless).
 * CONSTANTS[119] is Gto in component Ito (milliS_per_microF).
 * ALGEBRAIC[75] is fItop in component Ito (dimensionless).
 * CONSTANTS[46] is Kmn in component ICaL (millimolar).
 * CONSTANTS[47] is k2n in component ICaL (per_millisecond).
 * CONSTANTS[48] is PCa_b in component ICaL (dimensionless).
 * ALGEBRAIC[7] is dss in component ICaL (dimensionless).
 * STATES[24] is d in component ICaL (dimensionless).
 * ALGEBRAIC[8] is fss in component ICaL (dimensionless).
 * CONSTANTS[49] is Aff in component ICaL (dimensionless).
 * CONSTANTS[120] is Afs in component ICaL (dimensionless).
 * STATES[25] is ff in component ICaL (dimensionless).
 * STATES[26] is fs in component ICaL (dimensionless).
 * ALGEBRAIC[77] is f in component ICaL (dimensionless).
 * ALGEBRAIC[19] is fcass in component ICaL (dimensionless).
 * ALGEBRAIC[9] is jcass in component ICaL (dimensionless).
 * ALGEBRAIC[78] is Afcaf in component ICaL (dimensionless).
 * ALGEBRAIC[79] is Afcas in component ICaL (dimensionless).
 * STATES[27] is fcaf in component ICaL (dimensionless).
 * STATES[28] is fcas in component ICaL (dimensionless).
 * ALGEBRAIC[80] is fca in component ICaL (dimensionless).
 * STATES[29] is jca in component ICaL (dimensionless).
 * STATES[30] is ffp in component ICaL (dimensionless).
 * ALGEBRAIC[81] is fp in component ICaL (dimensionless).
 * STATES[31] is fcafp in component ICaL (dimensionless).
 * ALGEBRAIC[82] is fcap in component ICaL (dimensionless).
 * ALGEBRAIC[10] is km2n in component ICaL (per_millisecond).
 * ALGEBRAIC[20] is anca_ss in component ICaL (dimensionless).
 * STATES[32] is nca_ss in component ICaL (dimensionless).
 * ALGEBRAIC[21] is anca_i in component ICaL (dimensionless).
 * STATES[33] is nca_i in component ICaL (dimensionless).
 * ALGEBRAIC[87] is PhiCaL_ss in component ICaL (dimensionless).
 * ALGEBRAIC[88] is PhiCaNa_ss in component ICaL (dimensionless).
 * ALGEBRAIC[89] is PhiCaK_ss in component ICaL (dimensionless).
 * ALGEBRAIC[106] is PhiCaL_i in component ICaL (dimensionless).
 * ALGEBRAIC[107] is PhiCaNa_i in component ICaL (dimensionless).
 * ALGEBRAIC[108] is PhiCaK_i in component ICaL (dimensionless).
 * CONSTANTS[121] is PCa in component ICaL (dimensionless).
 * CONSTANTS[131] is PCap in component ICaL (dimensionless).
 * CONSTANTS[132] is PCaNa in component ICaL (dimensionless).
 * CONSTANTS[133] is PCaK in component ICaL (dimensionless).
 * CONSTANTS[137] is PCaNap in component ICaL (dimensionless).
 * CONSTANTS[138] is PCaKp in component ICaL (dimensionless).
 * ALGEBRAIC[90] is fICaLp in component ICaL (dimensionless).
 * ALGEBRAIC[22] is td in component ICaL (millisecond).
 * ALGEBRAIC[23] is tff in component ICaL (millisecond).
 * ALGEBRAIC[24] is tfs in component ICaL (millisecond).
 * ALGEBRAIC[33] is tfcaf in component ICaL (millisecond).
 * ALGEBRAIC[34] is tfcas in component ICaL (millisecond).
 * CONSTANTS[50] is tjca in component ICaL (millisecond).
 * ALGEBRAIC[35] is tffp in component ICaL (millisecond).
 * ALGEBRAIC[40] is tfcafp in component ICaL (millisecond).
 * CONSTANTS[51] is vShift in component ICaL (millivolt).
 * CONSTANTS[52] is offset in component ICaL (millisecond).
 * CONSTANTS[122] is Io in component ICaL (dimensionless).
 * ALGEBRAIC[83] is Iss in component ICaL (dimensionless).
 * ALGEBRAIC[98] is Ii in component ICaL (dimensionless).
 * CONSTANTS[53] is dielConstant in component ICaL (per_kelvin).
 * CONSTANTS[134] is constA in component ICaL (dimensionless).
 * CONSTANTS[139] is gamma_cao in component ICaL (dimensionless).
 * ALGEBRAIC[84] is gamma_cass in component ICaL (dimensionless).
 * ALGEBRAIC[101] is gamma_cai in component ICaL (dimensionless).
 * CONSTANTS[140] is gamma_nao in component ICaL (dimensionless).
 * ALGEBRAIC[85] is gamma_nass in component ICaL (dimensionless).
 * ALGEBRAIC[104] is gamma_nai in component ICaL (dimensionless).
 * CONSTANTS[141] is gamma_ko in component ICaL (dimensionless).
 * ALGEBRAIC[86] is gamma_kss in component ICaL (dimensionless).
 * ALGEBRAIC[105] is gamma_ki in component ICaL (dimensionless).
 * CONSTANTS[54] is ICaL_fractionSS in component ICaL (dimensionless).
 * CONSTANTS[55] is GKr_b in component IKr (milliS_per_microF).
 * STATES[34] is C1 in component IKr (dimensionless).
 * STATES[35] is C2 in component IKr (dimensionless).
 * STATES[36] is C3 in component IKr (dimensionless).
 * STATES[37] is I in component IKr (dimensionless).
 * STATES[38] is O in component IKr (dimensionless).
 * ALGEBRAIC[41] is alpha in component IKr (per_millisecond).
 * ALGEBRAIC[47] is beta in component IKr (per_millisecond).
 * CONSTANTS[56] is alpha_1 in component IKr (per_millisecond).
 * CONSTANTS[57] is beta_1 in component IKr (per_millisecond).
 * ALGEBRAIC[42] is alpha_2 in component IKr (per_millisecond).
 * ALGEBRAIC[48] is beta_2 in component IKr (per_millisecond).
 * ALGEBRAIC[52] is alpha_i in component IKr (per_millisecond).
 * ALGEBRAIC[55] is beta_i in component IKr (per_millisecond).
 * ALGEBRAIC[58] is alpha_C2ToI in component IKr (per_millisecond).
 * ALGEBRAIC[62] is beta_ItoC2 in component IKr (per_millisecond).
 * CONSTANTS[123] is GKr in component IKr (milliS_per_microF).
 * CONSTANTS[58] is GKs_b in component IKs (milliS_per_microF).
 * CONSTANTS[124] is GKs in component IKs (milliS_per_microF).
 * ALGEBRAIC[12] is xs1ss in component IKs (dimensionless).
 * ALGEBRAIC[26] is xs2ss in component IKs (dimensionless).
 * ALGEBRAIC[27] is txs1 in component IKs (millisecond).
 * STATES[39] is xs1 in component IKs (dimensionless).
 * STATES[40] is xs2 in component IKs (dimensionless).
 * ALGEBRAIC[116] is KsCa in component IKs (dimensionless).
 * ALGEBRAIC[36] is txs2 in component IKs (millisecond).
 * CONSTANTS[125] is GK1 in component IK1 (milliS_per_microF).
 * CONSTANTS[59] is GK1_b in component IK1 (milliS_per_microF).
 * ALGEBRAIC[118] is aK1 in component IK1 (dimensionless).
 * ALGEBRAIC[119] is bK1 in component IK1 (dimensionless).
 * ALGEBRAIC[120] is K1ss in component IK1 (dimensionless).
 * CONSTANTS[60] is INaCa_fractionSS in component INaCa (dimensionless).
 * CONSTANTS[61] is kna1 in component INaCa (per_millisecond).
 * CONSTANTS[62] is kna2 in component INaCa (per_millisecond).
 * CONSTANTS[63] is kna3 in component INaCa (per_millisecond).
 * CONSTANTS[64] is kasymm in component INaCa (dimensionless).
 * CONSTANTS[65] is wna in component INaCa (dimensionless).
 * CONSTANTS[66] is wca in component INaCa (dimensionless).
 * CONSTANTS[67] is wnaca in component INaCa (dimensionless).
 * CONSTANTS[68] is kcaon in component INaCa (per_millisecond).
 * CONSTANTS[69] is kcaoff in component INaCa (per_millisecond).
 * CONSTANTS[70] is qna in component INaCa (dimensionless).
 * CONSTANTS[71] is qca in component INaCa (dimensionless).
 * ALGEBRAIC[123] is hna in component INaCa (dimensionless).
 * ALGEBRAIC[122] is hca in component INaCa (dimensionless).
 * CONSTANTS[72] is KmCaAct in component INaCa (millimolar).
 * CONSTANTS[73] is Gncx_b in component INaCa (milliS_per_microF).
 * CONSTANTS[152] is Gncx in component INaCa (milliS_per_microF).
 * ALGEBRAIC[124] is h1_i in component INaCa (dimensionless).
 * ALGEBRAIC[125] is h2_i in component INaCa (dimensionless).
 * ALGEBRAIC[126] is h3_i in component INaCa (dimensionless).
 * ALGEBRAIC[127] is h4_i in component INaCa (dimensionless).
 * ALGEBRAIC[128] is h5_i in component INaCa (dimensionless).
 * ALGEBRAIC[129] is h6_i in component INaCa (dimensionless).
 * ALGEBRAIC[130] is h7_i in component INaCa (dimensionless).
 * ALGEBRAIC[131] is h8_i in component INaCa (dimensionless).
 * ALGEBRAIC[132] is h9_i in component INaCa (dimensionless).
 * CONSTANTS[146] is h10_i in component INaCa (dimensionless).
 * CONSTANTS[147] is h11_i in component INaCa (dimensionless).
 * CONSTANTS[148] is h12_i in component INaCa (dimensionless).
 * CONSTANTS[149] is k1_i in component INaCa (dimensionless).
 * CONSTANTS[150] is k2_i in component INaCa (dimensionless).
 * ALGEBRAIC[133] is k3p_i in component INaCa (dimensionless).
 * ALGEBRAIC[134] is k3pp_i in component INaCa (dimensionless).
 * ALGEBRAIC[135] is k3_i in component INaCa (dimensionless).
 * ALGEBRAIC[138] is k4_i in component INaCa (dimensionless).
 * ALGEBRAIC[136] is k4p_i in component INaCa (dimensionless).
 * ALGEBRAIC[137] is k4pp_i in component INaCa (dimensionless).
 * CONSTANTS[151] is k5_i in component INaCa (dimensionless).
 * ALGEBRAIC[139] is k6_i in component INaCa (dimensionless).
 * ALGEBRAIC[140] is k7_i in component INaCa (dimensionless).
 * ALGEBRAIC[141] is k8_i in component INaCa (dimensionless).
 * ALGEBRAIC[142] is x1_i in component INaCa (dimensionless).
 * ALGEBRAIC[143] is x2_i in component INaCa (dimensionless).
 * ALGEBRAIC[144] is x3_i in component INaCa (dimensionless).
 * ALGEBRAIC[145] is x4_i in component INaCa (dimensionless).
 * ALGEBRAIC[146] is E1_i in component INaCa (dimensionless).
 * ALGEBRAIC[147] is E2_i in component INaCa (dimensionless).
 * ALGEBRAIC[148] is E3_i in component INaCa (dimensionless).
 * ALGEBRAIC[149] is E4_i in component INaCa (dimensionless).
 * ALGEBRAIC[150] is allo_i in component INaCa (dimensionless).
 * ALGEBRAIC[151] is JncxNa_i in component INaCa (millimolar_per_millisecond).
 * ALGEBRAIC[152] is JncxCa_i in component INaCa (millimolar_per_millisecond).
 * ALGEBRAIC[154] is h1_ss in component INaCa (dimensionless).
 * ALGEBRAIC[155] is h2_ss in component INaCa (dimensionless).
 * ALGEBRAIC[156] is h3_ss in component INaCa (dimensionless).
 * ALGEBRAIC[157] is h4_ss in component INaCa (dimensionless).
 * ALGEBRAIC[158] is h5_ss in component INaCa (dimensionless).
 * ALGEBRAIC[159] is h6_ss in component INaCa (dimensionless).
 * ALGEBRAIC[160] is h7_ss in component INaCa (dimensionless).
 * ALGEBRAIC[161] is h8_ss in component INaCa (dimensionless).
 * ALGEBRAIC[162] is h9_ss in component INaCa (dimensionless).
 * CONSTANTS[153] is h10_ss in component INaCa (dimensionless).
 * CONSTANTS[154] is h11_ss in component INaCa (dimensionless).
 * CONSTANTS[155] is h12_ss in component INaCa (dimensionless).
 * CONSTANTS[156] is k1_ss in component INaCa (dimensionless).
 * CONSTANTS[157] is k2_ss in component INaCa (dimensionless).
 * ALGEBRAIC[163] is k3p_ss in component INaCa (dimensionless).
 * ALGEBRAIC[164] is k3pp_ss in component INaCa (dimensionless).
 * ALGEBRAIC[165] is k3_ss in component INaCa (dimensionless).
 * ALGEBRAIC[168] is k4_ss in component INaCa (dimensionless).
 * ALGEBRAIC[166] is k4p_ss in component INaCa (dimensionless).
 * ALGEBRAIC[167] is k4pp_ss in component INaCa (dimensionless).
 * CONSTANTS[158] is k5_ss in component INaCa (dimensionless).
 * ALGEBRAIC[169] is k6_ss in component INaCa (dimensionless).
 * ALGEBRAIC[170] is k7_ss in component INaCa (dimensionless).
 * ALGEBRAIC[171] is k8_ss in component INaCa (dimensionless).
 * ALGEBRAIC[172] is x1_ss in component INaCa (dimensionless).
 * ALGEBRAIC[173] is x2_ss in component INaCa (dimensionless).
 * ALGEBRAIC[174] is x3_ss in component INaCa (dimensionless).
 * ALGEBRAIC[175] is x4_ss in component INaCa (dimensionless).
 * ALGEBRAIC[176] is E1_ss in component INaCa (dimensionless).
 * ALGEBRAIC[177] is E2_ss in component INaCa (dimensionless).
 * ALGEBRAIC[178] is E3_ss in component INaCa (dimensionless).
 * ALGEBRAIC[179] is E4_ss in component INaCa (dimensionless).
 * ALGEBRAIC[180] is allo_ss in component INaCa (dimensionless).
 * ALGEBRAIC[181] is JncxNa_ss in component INaCa (millimolar_per_millisecond).
 * ALGEBRAIC[182] is JncxCa_ss in component INaCa (millimolar_per_millisecond).
 * CONSTANTS[74] is k1p in component INaK (per_millisecond).
 * CONSTANTS[75] is k1m in component INaK (per_millisecond).
 * CONSTANTS[76] is k2p in component INaK (per_millisecond).
 * CONSTANTS[77] is k2m in component INaK (per_millisecond).
 * CONSTANTS[78] is k3p in component INaK (per_millisecond).
 * CONSTANTS[79] is k3m in component INaK (per_millisecond).
 * CONSTANTS[80] is k4p in component INaK (per_millisecond).
 * CONSTANTS[81] is k4m in component INaK (per_millisecond).
 * CONSTANTS[82] is Knai0 in component INaK (millimolar).
 * CONSTANTS[83] is Knao0 in component INaK (millimolar).
 * CONSTANTS[84] is delta in component INaK (millivolt).
 * CONSTANTS[85] is Kki in component INaK (per_millisecond).
 * CONSTANTS[86] is Kko in component INaK (per_millisecond).
 * CONSTANTS[87] is MgADP in component INaK (millimolar).
 * CONSTANTS[88] is MgATP in component INaK (millimolar).
 * CONSTANTS[89] is Kmgatp in component INaK (millimolar).
 * CONSTANTS[90] is H in component INaK (millimolar).
 * CONSTANTS[91] is eP in component INaK (dimensionless).
 * CONSTANTS[92] is Khp in component INaK (millimolar).
 * CONSTANTS[93] is Knap in component INaK (millimolar).
 * CONSTANTS[94] is Kxkur in component INaK (millimolar).
 * CONSTANTS[95] is Pnak_b in component INaK (milliS_per_microF).
 * CONSTANTS[162] is Pnak in component INaK (milliS_per_microF).
 * ALGEBRAIC[184] is Knai in component INaK (millimolar).
 * ALGEBRAIC[185] is Knao in component INaK (millimolar).
 * ALGEBRAIC[186] is P in component INaK (dimensionless).
 * ALGEBRAIC[187] is a1 in component INaK (dimensionless).
 * CONSTANTS[159] is b1 in component INaK (dimensionless).
 * CONSTANTS[160] is a2 in component INaK (dimensionless).
 * ALGEBRAIC[188] is b2 in component INaK (dimensionless).
 * ALGEBRAIC[189] is a3 in component INaK (dimensionless).
 * ALGEBRAIC[190] is b3 in component INaK (dimensionless).
 * CONSTANTS[161] is a4 in component INaK (dimensionless).
 * ALGEBRAIC[191] is b4 in component INaK (dimensionless).
 * ALGEBRAIC[192] is x1 in component INaK (dimensionless).
 * ALGEBRAIC[193] is x2 in component INaK (dimensionless).
 * ALGEBRAIC[194] is x3 in component INaK (dimensionless).
 * ALGEBRAIC[195] is x4 in component INaK (dimensionless).
 * ALGEBRAIC[196] is E1 in component INaK (dimensionless).
 * ALGEBRAIC[197] is E2 in component INaK (dimensionless).
 * ALGEBRAIC[198] is E3 in component INaK (dimensionless).
 * ALGEBRAIC[199] is E4 in component INaK (dimensionless).
 * ALGEBRAIC[200] is JnakNa in component INaK (millimolar_per_millisecond).
 * ALGEBRAIC[201] is JnakK in component INaK (millimolar_per_millisecond).
 * ALGEBRAIC[203] is xkb in component IKb (dimensionless).
 * CONSTANTS[96] is GKb_b in component IKb (milliS_per_microF).
 * CONSTANTS[126] is GKb in component IKb (milliS_per_microF).
 * CONSTANTS[97] is PNab in component INab (milliS_per_microF).
 * CONSTANTS[98] is PCab in component ICab (milliS_per_microF).
 * CONSTANTS[99] is GpCa in component IpCa (milliS_per_microF).
 * CONSTANTS[100] is KmCap in component IpCa (millimolar).
 * CONSTANTS[101] is GClCa in component ICl (milliS_per_microF).
 * CONSTANTS[102] is GClb in component ICl (milliS_per_microF).
 * CONSTANTS[103] is KdClCa in component ICl (millimolar).
 * CONSTANTS[104] is Fjunc in component ICl (dimensionless).
 * ALGEBRAIC[210] is IClCa_junc in component ICl (microA_per_microF).
 * ALGEBRAIC[212] is IClCa_sl in component ICl (microA_per_microF).
 * CONSTANTS[105] is tauNa in component diff (millisecond).
 * CONSTANTS[106] is tauK in component diff (millisecond).
 * CONSTANTS[107] is tauCa in component diff (millisecond).
 * CONSTANTS[108] is bt in component ryr (millisecond).
 * CONSTANTS[127] is a_rel in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[93] is Jrel_inf_b in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[96] is Jrel_inf in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[99] is tau_rel_b in component ryr (millisecond).
 * ALGEBRAIC[102] is tau_rel in component ryr (millisecond).
 * STATES[41] is Jrel_np in component ryr (millimolar_per_millisecond).
 * CONSTANTS[128] is btp in component ryr (millisecond).
 * CONSTANTS[135] is a_relp in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[94] is Jrel_infp_b in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[97] is Jrel_infp in component ryr (millimolar_per_millisecond).
 * ALGEBRAIC[100] is tau_relp_b in component ryr (millisecond).
 * ALGEBRAIC[103] is tau_relp in component ryr (millisecond).
 * STATES[42] is Jrel_p in component ryr (millimolar_per_millisecond).
 * CONSTANTS[109] is cajsr_half in component ryr (millimolar).
 * ALGEBRAIC[213] is fJrelp in component ryr (dimensionless).
 * CONSTANTS[110] is Jrel_b in component ryr (dimensionless).
 * CONSTANTS[129] is upScale in component SERCA (dimensionless).
 * ALGEBRAIC[217] is Jupnp in component SERCA (millimolar_per_millisecond).
 * ALGEBRAIC[218] is Jupp in component SERCA (millimolar_per_millisecond).
 * ALGEBRAIC[219] is fJupp in component SERCA (dimensionless).
 * ALGEBRAIC[220] is Jleak in component SERCA (millimolar_per_millisecond).
 * CONSTANTS[111] is Jup_b in component SERCA (dimensionless).
 * RATES[0] is d/dt v in component membrane (millivolt).
 * RATES[1] is d/dt CaMKt in component CaMK (millimolar).
 * RATES[3] is d/dt nai in component intracellular_ions (millimolar).
 * RATES[4] is d/dt nass in component intracellular_ions (millimolar).
 * RATES[5] is d/dt ki in component intracellular_ions (millimolar).
 * RATES[6] is d/dt kss in component intracellular_ions (millimolar).
 * RATES[9] is d/dt cai in component intracellular_ions (millimolar).
 * RATES[2] is d/dt cass in component intracellular_ions (millimolar).
 * RATES[7] is d/dt cansr in component intracellular_ions (millimolar).
 * RATES[8] is d/dt cajsr in component intracellular_ions (millimolar).
 * RATES[10] is d/dt m in component INa (dimensionless).
 * RATES[11] is d/dt h in component INa (dimensionless).
 * RATES[12] is d/dt j in component INa (dimensionless).
 * RATES[13] is d/dt hp in component INa (dimensionless).
 * RATES[14] is d/dt jp in component INa (dimensionless).
 * RATES[15] is d/dt mL in component INaL (dimensionless).
 * RATES[16] is d/dt hL in component INaL (dimensionless).
 * RATES[17] is d/dt hLp in component INaL (dimensionless).
 * RATES[18] is d/dt a in component Ito (dimensionless).
 * RATES[19] is d/dt iF in component Ito (dimensionless).
 * RATES[20] is d/dt iS in component Ito (dimensionless).
 * RATES[21] is d/dt ap in component Ito (dimensionless).
 * RATES[22] is d/dt iFp in component Ito (dimensionless).
 * RATES[23] is d/dt iSp in component Ito (dimensionless).
 * RATES[24] is d/dt d in component ICaL (dimensionless).
 * RATES[25] is d/dt ff in component ICaL (dimensionless).
 * RATES[26] is d/dt fs in component ICaL (dimensionless).
 * RATES[27] is d/dt fcaf in component ICaL (dimensionless).
 * RATES[28] is d/dt fcas in component ICaL (dimensionless).
 * RATES[29] is d/dt jca in component ICaL (dimensionless).
 * RATES[30] is d/dt ffp in component ICaL (dimensionless).
 * RATES[31] is d/dt fcafp in component ICaL (dimensionless).
 * RATES[32] is d/dt nca_ss in component ICaL (dimensionless).
 * RATES[33] is d/dt nca_i in component ICaL (dimensionless).
 * RATES[36] is d/dt C3 in component IKr (dimensionless).
 * RATES[35] is d/dt C2 in component IKr (dimensionless).
 * RATES[34] is d/dt C1 in component IKr (dimensionless).
 * RATES[38] is d/dt O in component IKr (dimensionless).
 * RATES[37] is d/dt I in component IKr (dimensionless).
 * RATES[39] is d/dt xs1 in component IKs (dimensionless).
 * RATES[40] is d/dt xs2 in component IKs (dimensionless).
 * RATES[41] is d/dt Jrel_np in component ryr (millimolar_per_millisecond).
 * RATES[42] is d/dt Jrel_p in component ryr (millimolar_per_millisecond).
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 2;
CONSTANTS[1] = 140.0;
CONSTANTS[2] = 1.8;
CONSTANTS[3] = 5.0;
CONSTANTS[4] = 150.0;
CONSTANTS[5] = 8314;
CONSTANTS[6] = 310;
CONSTANTS[7] = 96485;
CONSTANTS[8] = 1;
CONSTANTS[9] = 2;
CONSTANTS[10] = 1;
CONSTANTS[11] = -1;
CONSTANTS[12] = 0.01;
CONSTANTS[13] = 0.0011;
STATES[0] = -89.1704;
CONSTANTS[14] = 0;
CONSTANTS[15] = 100000000000000000;
CONSTANTS[16] = -53;
CONSTANTS[17] = 1000;
CONSTANTS[18] = 1.0;
CONSTANTS[19] = 0.15;
CONSTANTS[20] = 0.05;
CONSTANTS[21] = 0.00068;
CONSTANTS[22] = 0.05;
CONSTANTS[23] = 0.0015;
STATES[1] = 0.0192;
STATES[2] = 6.5781e-05;
CONSTANTS[24] = 0.05;
CONSTANTS[25] = 0.00238;
CONSTANTS[26] = 0.07;
CONSTANTS[27] = 0.0005;
CONSTANTS[28] = 0.047;
CONSTANTS[29] = 0.00087;
CONSTANTS[30] = 1.124;
CONSTANTS[31] = 0.0087;
CONSTANTS[32] = 10;
CONSTANTS[33] = 0.8;
STATES[3] = 15.0038;
STATES[4] = 15.0043;
STATES[5] = 143.0403;
STATES[6] = 143.0402;
STATES[7] = 1.9557;
STATES[8] = 1.9593;
STATES[9] = 8.166e-05;
CONSTANTS[34] = 24.0;
CONSTANTS[35] = 0.01833;
CONSTANTS[36] = 4.3195;
CONSTANTS[37] = 0.0;
CONSTANTS[38] = 5;
CONSTANTS[39] = 2;
CONSTANTS[40] = 0.25;
STATES[10] = 0.00073818;
STATES[11] = 0.8365;
STATES[12] = 0.8363;
STATES[13] = 0.6838;
STATES[14] = 0.8358;
CONSTANTS[41] = 11.7802;
STATES[15] = 0.00015079;
CONSTANTS[42] = 200;
STATES[16] = 0.5327;
STATES[17] = 0.2834;
CONSTANTS[43] = 0.0279;
CONSTANTS[44] = 0.16;
STATES[18] = 0.00092527;
CONSTANTS[45] = 0;
STATES[19] = 0.9996;
STATES[20] = 0.5671;
STATES[21] = 0.00047143;
STATES[22] = 0.9996;
STATES[23] = 0.6261;
CONSTANTS[46] = 0.002;
CONSTANTS[47] = 500;
CONSTANTS[48] = 8.3757e-05;
STATES[24] = 0;
CONSTANTS[49] = 0.6;
STATES[25] = 1.0;
STATES[26] = 0.92;
STATES[27] = 1.0;
STATES[28] = 0.9998;
STATES[29] = 1.0;
STATES[30] = 1.0;
STATES[31] = 1.0;
STATES[32] = 0.00051399;
STATES[33] = 0.0012;
CONSTANTS[50] = 75;
CONSTANTS[51] = 0;
CONSTANTS[52] = 0;
CONSTANTS[53] = 74;
CONSTANTS[54] = 0.8;
CONSTANTS[55] = 0.0321;
STATES[34] = 0.00069560;
STATES[35] = 0.00082672;
STATES[36] = 0.9979;
STATES[37] = 1.8784e-05;
STATES[38] = 0.00054206;
CONSTANTS[56] = 0.154375;
CONSTANTS[57] = 0.1911;
CONSTANTS[58] = 0.0011;
STATES[39] = 0.2653;
STATES[40] = 0.00016921;
CONSTANTS[59] = 0.6992;
CONSTANTS[60] = 0.35;
CONSTANTS[61] = 15;
CONSTANTS[62] = 5;
CONSTANTS[63] = 88.12;
CONSTANTS[64] = 12.5;
CONSTANTS[65] = 6e4;
CONSTANTS[66] = 6e4;
CONSTANTS[67] = 5e3;
CONSTANTS[68] = 1.5e6;
CONSTANTS[69] = 5e3;
CONSTANTS[70] = 0.5224;
CONSTANTS[71] = 0.167;
CONSTANTS[72] = 150e-6;
CONSTANTS[73] = 0.0034;
CONSTANTS[74] = 949.5;
CONSTANTS[75] = 182.4;
CONSTANTS[76] = 687.2;
CONSTANTS[77] = 39.4;
CONSTANTS[78] = 1899;
CONSTANTS[79] = 79300;
CONSTANTS[80] = 639;
CONSTANTS[81] = 40;
CONSTANTS[82] = 9.073;
CONSTANTS[83] = 27.78;
CONSTANTS[84] = -0.155;
CONSTANTS[85] = 0.5;
CONSTANTS[86] = 0.3582;
CONSTANTS[87] = 0.05;
CONSTANTS[88] = 9.8;
CONSTANTS[89] = 1.698e-7;
CONSTANTS[90] = 1e-7;
CONSTANTS[91] = 4.2;
CONSTANTS[92] = 1.698e-7;
CONSTANTS[93] = 224;
CONSTANTS[94] = 292;
CONSTANTS[95] = 15.4509;
CONSTANTS[96] = 0.0189;
CONSTANTS[97] = 1.9239e-09;
CONSTANTS[98] = 5.9194e-08;
CONSTANTS[99] = 5e-04;
CONSTANTS[100] = 0.0005;
CONSTANTS[101] = 0.2843;
CONSTANTS[102] = 1.98e-3;
CONSTANTS[103] = 0.1;
CONSTANTS[104] = 1;
CONSTANTS[105] = 2.0;
CONSTANTS[106] = 2.0;
CONSTANTS[107] = 0.2;
CONSTANTS[108] = 4.75;
STATES[41] = 0;
STATES[42] = 0;
CONSTANTS[109] = 1.7;
CONSTANTS[110] = 1.5378;
CONSTANTS[111] = 1.0;
CONSTANTS[112] =  1000.00*3.14000*CONSTANTS[13]*CONSTANTS[13]*CONSTANTS[12];
CONSTANTS[113] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[24]*1.30000 : CONSTANTS[24]);
CONSTANTS[114] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[11]*CONSTANTS[7]))*log(CONSTANTS[4]/CONSTANTS[34]);
CONSTANTS[115] = pow(CONSTANTS[3]/CONSTANTS[38], 0.240000);
CONSTANTS[116] = 1.00000/(1.00000+pow(CONSTANTS[39]/CONSTANTS[40], 2.00000));
CONSTANTS[117] =  3.00000*CONSTANTS[42];
CONSTANTS[118] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[43]*0.600000 : CONSTANTS[43]);
CONSTANTS[119] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[44]*2.00000 : CONSTANTS[0]==2.00000 ?  CONSTANTS[44]*2.00000 : CONSTANTS[44]);
CONSTANTS[120] = 1.00000 - CONSTANTS[49];
CONSTANTS[121] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[48]*1.20000 : CONSTANTS[0]==2.00000 ?  CONSTANTS[48]*2.00000 : CONSTANTS[48]);
CONSTANTS[122] = ( 0.500000*(CONSTANTS[1]+CONSTANTS[3]+CONSTANTS[4]+ 4.00000*CONSTANTS[2]))/1000.00;
CONSTANTS[123] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[55]*1.30000 : CONSTANTS[0]==2.00000 ?  CONSTANTS[55]*0.800000 : CONSTANTS[55]);
CONSTANTS[124] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[58]*1.40000 : CONSTANTS[58]);
CONSTANTS[125] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[59]*1.20000 : CONSTANTS[0]==2.00000 ?  CONSTANTS[59]*1.30000 : CONSTANTS[59]);
CONSTANTS[126] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[96]*0.600000 : CONSTANTS[96]);
CONSTANTS[127] = ( 0.500000*CONSTANTS[108])/1.00000;
CONSTANTS[128] =  1.25000*CONSTANTS[108];
CONSTANTS[129] = (CONSTANTS[0]==1.00000 ? 1.30000 : 1.00000);
CONSTANTS[130] =  2.00000*3.14000*CONSTANTS[13]*CONSTANTS[13]+ 2.00000*3.14000*CONSTANTS[13]*CONSTANTS[12];
CONSTANTS[131] =  1.10000*CONSTANTS[121];
CONSTANTS[132] =  0.00125000*CONSTANTS[121];
CONSTANTS[133] =  0.000357400*CONSTANTS[121];
CONSTANTS[134] =  1.82000e+06*pow( CONSTANTS[53]*CONSTANTS[6], - 1.50000);
CONSTANTS[135] = ( 0.500000*CONSTANTS[128])/1.00000;
CONSTANTS[136] =  2.00000*CONSTANTS[130];
CONSTANTS[137] =  0.00125000*CONSTANTS[131];
CONSTANTS[138] =  0.000357400*CONSTANTS[131];
CONSTANTS[139] = exp( - CONSTANTS[134]*4.00000*( pow(CONSTANTS[122], 1.0 / 2)/(1.00000+ pow(CONSTANTS[122], 1.0 / 2)) -  0.300000*CONSTANTS[122]));
CONSTANTS[140] = exp( - CONSTANTS[134]*1.00000*( pow(CONSTANTS[122], 1.0 / 2)/(1.00000+ pow(CONSTANTS[122], 1.0 / 2)) -  0.300000*CONSTANTS[122]));
CONSTANTS[141] = exp( - CONSTANTS[134]*1.00000*( pow(CONSTANTS[122], 1.0 / 2)/(1.00000+ pow(CONSTANTS[122], 1.0 / 2)) -  0.300000*CONSTANTS[122]));
CONSTANTS[142] =  0.680000*CONSTANTS[112];
CONSTANTS[143] =  0.0552000*CONSTANTS[112];
CONSTANTS[144] =  0.00480000*CONSTANTS[112];
CONSTANTS[145] =  0.0200000*CONSTANTS[112];
CONSTANTS[146] = CONSTANTS[64]+1.00000+ (CONSTANTS[1]/CONSTANTS[61])*(1.00000+CONSTANTS[1]/CONSTANTS[62]);
CONSTANTS[147] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[146]*CONSTANTS[61]*CONSTANTS[62]);
CONSTANTS[148] = 1.00000/CONSTANTS[146];
CONSTANTS[149] =  CONSTANTS[148]*CONSTANTS[2]*CONSTANTS[68];
CONSTANTS[150] = CONSTANTS[69];
CONSTANTS[151] = CONSTANTS[69];
CONSTANTS[152] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[73]*1.10000 : CONSTANTS[0]==2.00000 ?  CONSTANTS[73]*1.40000 : CONSTANTS[73]);
CONSTANTS[153] = CONSTANTS[64]+1.00000+ (CONSTANTS[1]/CONSTANTS[61])*(1.00000+CONSTANTS[1]/CONSTANTS[62]);
CONSTANTS[154] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[153]*CONSTANTS[61]*CONSTANTS[62]);
CONSTANTS[155] = 1.00000/CONSTANTS[153];
CONSTANTS[156] =  CONSTANTS[155]*CONSTANTS[2]*CONSTANTS[68];
CONSTANTS[157] = CONSTANTS[69];
CONSTANTS[158] = CONSTANTS[69];
CONSTANTS[159] =  CONSTANTS[75]*CONSTANTS[87];
CONSTANTS[160] = CONSTANTS[76];
CONSTANTS[161] = (( CONSTANTS[80]*CONSTANTS[88])/CONSTANTS[89])/(1.00000+CONSTANTS[88]/CONSTANTS[89]);
CONSTANTS[162] = (CONSTANTS[0]==1.00000 ?  CONSTANTS[95]*0.900000 : CONSTANTS[0]==2.00000 ?  CONSTANTS[95]*0.700000 : CONSTANTS[95]);
}
void
computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800));
RATES[16] = (ALGEBRAIC[3] - STATES[16])/CONSTANTS[42];
ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800));
RATES[17] = (ALGEBRAIC[4] - STATES[17])/CONSTANTS[117];
ALGEBRAIC[9] = 1.00000/(1.00000+exp((STATES[0]+18.0800)/2.79160));
RATES[29] = (ALGEBRAIC[9] - STATES[29])/CONSTANTS[50];
ALGEBRAIC[0] = 1.00000/pow(1.00000+exp(- (STATES[0]+56.8600)/9.03000), 2.00000);
ALGEBRAIC[13] =  0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000));
RATES[10] = (ALGEBRAIC[0] - STATES[10])/ALGEBRAIC[13];
ALGEBRAIC[2] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400));
ALGEBRAIC[16] =  0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000));
RATES[15] = (ALGEBRAIC[2] - STATES[15])/ALGEBRAIC[16];
ALGEBRAIC[5] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 14.3400)/14.8200));
ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+CONSTANTS[45]+100.000)/29.3814)));
RATES[18] = (ALGEBRAIC[5] - STATES[18])/ALGEBRAIC[17];
ALGEBRAIC[7] = (STATES[0]>=31.4978 ? 1.00000 :  1.07630*exp( - 1.00700*exp( - 0.0829000*STATES[0])));
ALGEBRAIC[22] = CONSTANTS[52]+0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+CONSTANTS[51]+6.00000))+exp( 0.0900000*(STATES[0]+CONSTANTS[51]+14.0000)));
RATES[24] = (ALGEBRAIC[7] - STATES[24])/ALGEBRAIC[22];
ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600));
ALGEBRAIC[23] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000));
RATES[25] = (ALGEBRAIC[8] - STATES[25])/ALGEBRAIC[23];
ALGEBRAIC[24] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000));
RATES[26] = (ALGEBRAIC[8] - STATES[26])/ALGEBRAIC[24];
ALGEBRAIC[10] =  STATES[29]*1.00000;
ALGEBRAIC[20] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[2], 4.00000));
RATES[32] =  ALGEBRAIC[20]*CONSTANTS[47] -  STATES[32]*ALGEBRAIC[10];
ALGEBRAIC[21] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[9], 4.00000));
RATES[33] =  ALGEBRAIC[21]*CONSTANTS[47] -  STATES[33]*ALGEBRAIC[10];
ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200));
ALGEBRAIC[27] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000));
RATES[39] = (ALGEBRAIC[12] - STATES[39])/ALGEBRAIC[27];
ALGEBRAIC[32] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 24.3400)/14.8200));
RATES[21] = (ALGEBRAIC[32] - STATES[21])/ALGEBRAIC[17];
ALGEBRAIC[19] = ALGEBRAIC[8];
ALGEBRAIC[33] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000));
RATES[27] = (ALGEBRAIC[19] - STATES[27])/ALGEBRAIC[33];
ALGEBRAIC[34] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000));
RATES[28] = (ALGEBRAIC[19] - STATES[28])/ALGEBRAIC[34];
ALGEBRAIC[35] =  2.50000*ALGEBRAIC[23];
RATES[30] = (ALGEBRAIC[8] - STATES[30])/ALGEBRAIC[35];
ALGEBRAIC[26] = ALGEBRAIC[12];
ALGEBRAIC[36] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000));
RATES[40] = (ALGEBRAIC[26] - STATES[40])/ALGEBRAIC[36];
ALGEBRAIC[43] = ( CONSTANTS[22]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[23]/STATES[2]);
RATES[1] =  CONSTANTS[20]*ALGEBRAIC[43]*(ALGEBRAIC[43]+STATES[1]) -  CONSTANTS[21]*STATES[1];
ALGEBRAIC[1] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000);
ALGEBRAIC[14] = (STATES[0]>=- 40.0000 ? 0.00000 :  0.0570000*exp(- (STATES[0]+80.0000)/6.80000));
ALGEBRAIC[29] = (STATES[0]>=- 40.0000 ? 0.770000/( 0.130000*(1.00000+exp(- (STATES[0]+10.6600)/11.1000))) :  2.70000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.348500*STATES[0]));
ALGEBRAIC[37] = 1.00000/(ALGEBRAIC[14]+ALGEBRAIC[29]);
RATES[11] = (ALGEBRAIC[1] - STATES[11])/ALGEBRAIC[37];
ALGEBRAIC[40] =  2.50000*ALGEBRAIC[33];
RATES[31] = (ALGEBRAIC[19] - STATES[31])/ALGEBRAIC[40];
ALGEBRAIC[38] = ALGEBRAIC[1];
ALGEBRAIC[15] = (STATES[0]>=- 40.0000 ? 0.00000 : ( ( - 25428.0*exp( 0.244400*STATES[0]) -  6.94800e-06*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))));
ALGEBRAIC[30] = (STATES[0]>=- 40.0000 ? ( 0.600000*exp( 0.0570000*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))) : ( 0.0242400*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))));
ALGEBRAIC[44] = 1.00000/(ALGEBRAIC[15]+ALGEBRAIC[30]);
RATES[12] = (ALGEBRAIC[38] - STATES[12])/ALGEBRAIC[44];
ALGEBRAIC[45] = 1.00000/pow(1.00000+exp((STATES[0]+77.5500)/7.43000), 2.00000);
RATES[13] = (ALGEBRAIC[45] - STATES[13])/ALGEBRAIC[37];
ALGEBRAIC[6] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[45]+43.9400)/5.71100));
ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/5.00000)) : 1.00000);
ALGEBRAIC[31] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+CONSTANTS[45]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+CONSTANTS[45]+50.0000)/16.5900));
ALGEBRAIC[46] =  ALGEBRAIC[31]*ALGEBRAIC[18];
RATES[19] = (ALGEBRAIC[6] - STATES[19])/ALGEBRAIC[46];
ALGEBRAIC[28] = ( STATES[0]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]);
ALGEBRAIC[41] =  0.116100*exp( 0.299000*ALGEBRAIC[28]);
ALGEBRAIC[47] =  0.244200*exp( - 1.60400*ALGEBRAIC[28]);
RATES[36] =  ALGEBRAIC[47]*STATES[35] -  ALGEBRAIC[41]*STATES[36];
RATES[35] = ( ALGEBRAIC[41]*STATES[36]+ CONSTANTS[57]*STATES[34]) -  (ALGEBRAIC[47]+CONSTANTS[56])*STATES[35];
ALGEBRAIC[50] =  1.46000*ALGEBRAIC[44];
RATES[14] = (ALGEBRAIC[38] - STATES[14])/ALGEBRAIC[50];
ALGEBRAIC[39] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+CONSTANTS[45]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+CONSTANTS[45]+114.100)/8.07900));
ALGEBRAIC[51] =  ALGEBRAIC[39]*ALGEBRAIC[18];
RATES[20] = (ALGEBRAIC[6] - STATES[20])/ALGEBRAIC[51];
ALGEBRAIC[42] =  0.0578000*exp( 0.971000*ALGEBRAIC[28]);
ALGEBRAIC[48] =  0.000349000*exp( - 1.06200*ALGEBRAIC[28]);
ALGEBRAIC[52] =  0.253300*exp( 0.595300*ALGEBRAIC[28]);
ALGEBRAIC[55] =  0.0652500*exp( - 0.820900*ALGEBRAIC[28]);
RATES[38] = ( ALGEBRAIC[42]*STATES[34]+ ALGEBRAIC[55]*STATES[37]) -  (ALGEBRAIC[48]+ALGEBRAIC[52])*STATES[38];
ALGEBRAIC[54] = 1.35400+0.000100000/(exp(((STATES[0]+CONSTANTS[45]) - 167.400)/15.8900)+exp(- ((STATES[0]+CONSTANTS[45]) - 12.2300)/0.215400));
ALGEBRAIC[57] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/20.0000));
ALGEBRAIC[60] =  ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[46];
RATES[22] = (ALGEBRAIC[6] - STATES[22])/ALGEBRAIC[60];
ALGEBRAIC[61] =  ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[51];
RATES[23] = (ALGEBRAIC[6] - STATES[23])/ALGEBRAIC[61];
ALGEBRAIC[58] =  5.20000e-05*exp( 1.52500*ALGEBRAIC[28]);
ALGEBRAIC[62] = ( ALGEBRAIC[48]*ALGEBRAIC[55]*ALGEBRAIC[58])/( ALGEBRAIC[42]*ALGEBRAIC[52]);
RATES[34] = ( CONSTANTS[56]*STATES[35]+ ALGEBRAIC[48]*STATES[38]+ ALGEBRAIC[62]*STATES[37]) -  (CONSTANTS[57]+ALGEBRAIC[42]+ALGEBRAIC[58])*STATES[34];
RATES[37] = ( ALGEBRAIC[58]*STATES[34]+ ALGEBRAIC[52]*STATES[38]) -  (ALGEBRAIC[62]+ALGEBRAIC[55])*STATES[37];
ALGEBRAIC[77] =  CONSTANTS[49]*STATES[25]+ CONSTANTS[120]*STATES[26];
ALGEBRAIC[78] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000));
ALGEBRAIC[79] = 1.00000 - ALGEBRAIC[78];
ALGEBRAIC[80] =  ALGEBRAIC[78]*STATES[27]+ ALGEBRAIC[79]*STATES[28];
ALGEBRAIC[81] =  CONSTANTS[49]*STATES[30]+ CONSTANTS[120]*STATES[26];
ALGEBRAIC[82] =  ALGEBRAIC[78]*STATES[31]+ ALGEBRAIC[79]*STATES[28];
ALGEBRAIC[25] = ( STATES[0]*CONSTANTS[7]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]);
ALGEBRAIC[83] = ( 0.500000*(STATES[4]+STATES[6]+CONSTANTS[34]+ 4.00000*STATES[2]))/1000.00;
ALGEBRAIC[84] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) -  0.300000*ALGEBRAIC[83]));
ALGEBRAIC[87] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[84]*STATES[2]*exp( 2.00000*ALGEBRAIC[28]) -  CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[49] = ALGEBRAIC[43]+STATES[1];
ALGEBRAIC[90] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[91] =  CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32]));
ALGEBRAIC[93] = (( - CONSTANTS[127]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000));
ALGEBRAIC[96] = (CONSTANTS[0]==2.00000 ?  ALGEBRAIC[93]*1.70000 : ALGEBRAIC[93]);
ALGEBRAIC[99] = CONSTANTS[108]/(1.00000+0.0123000/STATES[8]);
ALGEBRAIC[102] = (ALGEBRAIC[99]<0.00100000 ? 0.00100000 : ALGEBRAIC[99]);
RATES[41] = (ALGEBRAIC[96] - STATES[41])/ALGEBRAIC[102];
ALGEBRAIC[94] = (( - CONSTANTS[135]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000));
ALGEBRAIC[97] = (CONSTANTS[0]==2.00000 ?  ALGEBRAIC[94]*1.70000 : ALGEBRAIC[94]);
ALGEBRAIC[100] = CONSTANTS[128]/(1.00000+0.0123000/STATES[8]);
ALGEBRAIC[103] = (ALGEBRAIC[100]<0.00100000 ? 0.00100000 : ALGEBRAIC[100]);
RATES[42] = (ALGEBRAIC[97] - STATES[42])/ALGEBRAIC[103];
ALGEBRAIC[64] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log(CONSTANTS[3]/STATES[5]);
ALGEBRAIC[71] = 1.00000/(1.00000+exp(((STATES[0]+CONSTANTS[45]) - 213.600)/151.200));
ALGEBRAIC[72] = 1.00000 - ALGEBRAIC[71];
ALGEBRAIC[73] =  ALGEBRAIC[71]*STATES[19]+ ALGEBRAIC[72]*STATES[20];
ALGEBRAIC[74] =  ALGEBRAIC[71]*STATES[22]+ ALGEBRAIC[72]*STATES[23];
ALGEBRAIC[75] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[76] =  CONSTANTS[119]*(STATES[0] - ALGEBRAIC[64])*( (1.00000 - ALGEBRAIC[75])*STATES[18]*ALGEBRAIC[73]+ ALGEBRAIC[75]*STATES[21]*ALGEBRAIC[74]);
ALGEBRAIC[115] =  CONSTANTS[123]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*STATES[38]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[65] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log((CONSTANTS[3]+ CONSTANTS[35]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[35]*STATES[3]));
ALGEBRAIC[116] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000));
ALGEBRAIC[117] =  CONSTANTS[124]*ALGEBRAIC[116]*STATES[39]*STATES[40]*(STATES[0] - ALGEBRAIC[65]);
ALGEBRAIC[118] = 4.09400/(1.00000+exp( 0.121700*((STATES[0] - ALGEBRAIC[64]) - 49.9340)));
ALGEBRAIC[119] = ( 15.7200*exp( 0.0674000*((STATES[0] - ALGEBRAIC[64]) - 3.25700))+exp( 0.0618000*((STATES[0] - ALGEBRAIC[64]) - 594.310)))/(1.00000+exp( - 0.162900*((STATES[0] - ALGEBRAIC[64])+14.2070)));
ALGEBRAIC[120] = ALGEBRAIC[118]/(ALGEBRAIC[118]+ALGEBRAIC[119]);
ALGEBRAIC[121] =  CONSTANTS[125]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*ALGEBRAIC[120]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[185] =  CONSTANTS[83]*exp(( (1.00000 - CONSTANTS[84])*ALGEBRAIC[28])/3.00000);
ALGEBRAIC[189] = ( CONSTANTS[78]*pow(CONSTANTS[3]/CONSTANTS[86], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000);
ALGEBRAIC[186] = CONSTANTS[91]/(1.00000+CONSTANTS[90]/CONSTANTS[92]+STATES[3]/CONSTANTS[93]+STATES[5]/CONSTANTS[94]);
ALGEBRAIC[190] = ( CONSTANTS[79]*ALGEBRAIC[186]*CONSTANTS[90])/(1.00000+CONSTANTS[88]/CONSTANTS[89]);
ALGEBRAIC[184] =  CONSTANTS[82]*exp(( CONSTANTS[84]*ALGEBRAIC[28])/3.00000);
ALGEBRAIC[187] = ( CONSTANTS[74]*pow(STATES[3]/ALGEBRAIC[184], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000);
ALGEBRAIC[188] = ( CONSTANTS[77]*pow(CONSTANTS[1]/ALGEBRAIC[185], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000);
ALGEBRAIC[191] = ( CONSTANTS[81]*pow(STATES[5]/CONSTANTS[85], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000);
ALGEBRAIC[192] =  CONSTANTS[161]*ALGEBRAIC[187]*CONSTANTS[160]+ ALGEBRAIC[188]*ALGEBRAIC[191]*ALGEBRAIC[190]+ CONSTANTS[160]*ALGEBRAIC[191]*ALGEBRAIC[190]+ ALGEBRAIC[190]*ALGEBRAIC[187]*CONSTANTS[160];
ALGEBRAIC[193] =  ALGEBRAIC[188]*CONSTANTS[159]*ALGEBRAIC[191]+ ALGEBRAIC[187]*CONSTANTS[160]*ALGEBRAIC[189]+ ALGEBRAIC[189]*CONSTANTS[159]*ALGEBRAIC[191]+ CONSTANTS[160]*ALGEBRAIC[189]*ALGEBRAIC[191];
ALGEBRAIC[194] =  CONSTANTS[160]*ALGEBRAIC[189]*CONSTANTS[161]+ ALGEBRAIC[190]*ALGEBRAIC[188]*CONSTANTS[159]+ ALGEBRAIC[188]*CONSTANTS[159]*CONSTANTS[161]+ ALGEBRAIC[189]*CONSTANTS[161]*CONSTANTS[159];
ALGEBRAIC[195] =  ALGEBRAIC[191]*ALGEBRAIC[190]*ALGEBRAIC[188]+ ALGEBRAIC[189]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[188]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[190]*ALGEBRAIC[188]*ALGEBRAIC[187];
ALGEBRAIC[196] = ALGEBRAIC[192]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[197] = ALGEBRAIC[193]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[200] =  3.00000*( ALGEBRAIC[196]*ALGEBRAIC[189] -  ALGEBRAIC[197]*ALGEBRAIC[190]);
ALGEBRAIC[198] = ALGEBRAIC[194]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[199] = ALGEBRAIC[195]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[201] =  2.00000*( ALGEBRAIC[199]*CONSTANTS[159] -  ALGEBRAIC[198]*ALGEBRAIC[187]);
ALGEBRAIC[202] =  CONSTANTS[162]*( CONSTANTS[8]*ALGEBRAIC[200]+ CONSTANTS[10]*ALGEBRAIC[201]);
ALGEBRAIC[203] = 1.00000/(1.00000+exp(- (STATES[0] - 10.8968)/23.9871));
ALGEBRAIC[204] =  CONSTANTS[126]*ALGEBRAIC[203]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[66] =  CONSTANTS[37]*CONSTANTS[36]*CONSTANTS[115]*CONSTANTS[116]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[11] = (VOI>=CONSTANTS[14]&&VOI<=CONSTANTS[15]&&(VOI - CONSTANTS[14]) -  floor((VOI - CONSTANTS[14])/CONSTANTS[17])*CONSTANTS[17]<=CONSTANTS[18] ? CONSTANTS[16] : 0.00000);
ALGEBRAIC[98] = ( 0.500000*(STATES[3]+STATES[5]+CONSTANTS[34]+ 4.00000*STATES[9]))/1000.00;
ALGEBRAIC[105] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) -  0.300000*ALGEBRAIC[98]));
ALGEBRAIC[108] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[105]*STATES[5]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[111] =  (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33]));
ALGEBRAIC[206] = (STATES[6] - STATES[5])/CONSTANTS[106];
RATES[5] = ( - (((ALGEBRAIC[76]+ALGEBRAIC[115]+ALGEBRAIC[117]+ALGEBRAIC[121]+ALGEBRAIC[204]+ALGEBRAIC[66]+ALGEBRAIC[11]) -  2.00000*ALGEBRAIC[202])+ALGEBRAIC[111])*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[142])+( ALGEBRAIC[206]*CONSTANTS[145])/CONSTANTS[142];
ALGEBRAIC[86] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) -  0.300000*ALGEBRAIC[83]));
ALGEBRAIC[89] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[86]*STATES[6]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[95] =  CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32]));
RATES[6] = ( - ALGEBRAIC[95]*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[145]) - ALGEBRAIC[206];
ALGEBRAIC[63] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[8]*CONSTANTS[7]))*log(CONSTANTS[1]/STATES[3]);
ALGEBRAIC[67] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[68] =  CONSTANTS[41]*(STATES[0] - ALGEBRAIC[63])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[67])*STATES[11]*STATES[12]+ ALGEBRAIC[67]*STATES[13]*STATES[14]);
ALGEBRAIC[69] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[70] =  CONSTANTS[118]*(STATES[0] - ALGEBRAIC[63])*STATES[15]*( (1.00000 - ALGEBRAIC[69])*STATES[16]+ ALGEBRAIC[69]*STATES[17]);
ALGEBRAIC[150] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[9], 2.00000));
ALGEBRAIC[123] = exp( CONSTANTS[70]*ALGEBRAIC[28]);
ALGEBRAIC[130] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]);
ALGEBRAIC[131] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[130]);
ALGEBRAIC[134] =  ALGEBRAIC[131]*CONSTANTS[67];
ALGEBRAIC[124] = 1.00000+ (STATES[3]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]);
ALGEBRAIC[125] = ( STATES[3]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[124]);
ALGEBRAIC[137] =  ALGEBRAIC[125]*CONSTANTS[67];
ALGEBRAIC[127] = 1.00000+ (STATES[3]/CONSTANTS[61])*(1.00000+STATES[3]/CONSTANTS[62]);
ALGEBRAIC[128] = ( STATES[3]*STATES[3])/( ALGEBRAIC[127]*CONSTANTS[61]*CONSTANTS[62]);
ALGEBRAIC[140] =  ALGEBRAIC[128]*ALGEBRAIC[125]*CONSTANTS[65];
ALGEBRAIC[141] =  ALGEBRAIC[131]*CONSTANTS[147]*CONSTANTS[65];
ALGEBRAIC[132] = 1.00000/ALGEBRAIC[130];
ALGEBRAIC[133] =  ALGEBRAIC[132]*CONSTANTS[66];
ALGEBRAIC[135] = ALGEBRAIC[133]+ALGEBRAIC[134];
ALGEBRAIC[122] = exp( CONSTANTS[71]*ALGEBRAIC[28]);
ALGEBRAIC[126] = 1.00000/ALGEBRAIC[124];
ALGEBRAIC[136] = ( ALGEBRAIC[126]*CONSTANTS[66])/ALGEBRAIC[122];
ALGEBRAIC[138] = ALGEBRAIC[136]+ALGEBRAIC[137];
ALGEBRAIC[129] = 1.00000/ALGEBRAIC[127];
ALGEBRAIC[139] =  ALGEBRAIC[129]*STATES[9]*CONSTANTS[68];
ALGEBRAIC[142] =  CONSTANTS[150]*ALGEBRAIC[138]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ CONSTANTS[151]*ALGEBRAIC[140]*(CONSTANTS[150]+ALGEBRAIC[135]);
ALGEBRAIC[143] =  CONSTANTS[149]*ALGEBRAIC[140]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[138]*ALGEBRAIC[139]*(CONSTANTS[149]+ALGEBRAIC[141]);
ALGEBRAIC[144] =  CONSTANTS[149]*ALGEBRAIC[135]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ ALGEBRAIC[141]*ALGEBRAIC[139]*(CONSTANTS[150]+ALGEBRAIC[135]);
ALGEBRAIC[145] =  CONSTANTS[150]*ALGEBRAIC[141]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[135]*CONSTANTS[151]*(CONSTANTS[149]+ALGEBRAIC[141]);
ALGEBRAIC[146] = ALGEBRAIC[142]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[147] = ALGEBRAIC[143]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[148] = ALGEBRAIC[144]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[149] = ALGEBRAIC[145]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[151] = ( 3.00000*( ALGEBRAIC[149]*ALGEBRAIC[140] -  ALGEBRAIC[146]*ALGEBRAIC[141])+ ALGEBRAIC[148]*ALGEBRAIC[137]) -  ALGEBRAIC[147]*ALGEBRAIC[134];
ALGEBRAIC[152] =  ALGEBRAIC[147]*CONSTANTS[150] -  ALGEBRAIC[146]*CONSTANTS[149];
ALGEBRAIC[153] =  (1.00000 - CONSTANTS[60])*CONSTANTS[152]*ALGEBRAIC[150]*( CONSTANTS[8]*ALGEBRAIC[151]+ CONSTANTS[9]*ALGEBRAIC[152]);
ALGEBRAIC[205] = ( CONSTANTS[97]*ALGEBRAIC[25]*( STATES[3]*exp(ALGEBRAIC[28]) - CONSTANTS[1]))/(exp(ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[104] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) -  0.300000*ALGEBRAIC[98]));
ALGEBRAIC[107] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[104]*STATES[3]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[110] =  (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33]));
ALGEBRAIC[208] = (STATES[4] - STATES[3])/CONSTANTS[105];
RATES[3] = ( - (ALGEBRAIC[68]+ALGEBRAIC[70]+ 3.00000*ALGEBRAIC[153]+ALGEBRAIC[110]+ 3.00000*ALGEBRAIC[202]+ALGEBRAIC[205])*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[142])+( ALGEBRAIC[208]*CONSTANTS[145])/CONSTANTS[142];
ALGEBRAIC[180] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[2], 2.00000));
ALGEBRAIC[160] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]);
ALGEBRAIC[161] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[160]);
ALGEBRAIC[164] =  ALGEBRAIC[161]*CONSTANTS[67];
ALGEBRAIC[154] = 1.00000+ (STATES[4]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]);
ALGEBRAIC[155] = ( STATES[4]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[154]);
ALGEBRAIC[167] =  ALGEBRAIC[155]*CONSTANTS[67];
ALGEBRAIC[157] = 1.00000+ (STATES[4]/CONSTANTS[61])*(1.00000+STATES[4]/CONSTANTS[62]);
ALGEBRAIC[158] = ( STATES[4]*STATES[4])/( ALGEBRAIC[157]*CONSTANTS[61]*CONSTANTS[62]);
ALGEBRAIC[170] =  ALGEBRAIC[158]*ALGEBRAIC[155]*CONSTANTS[65];
ALGEBRAIC[171] =  ALGEBRAIC[161]*CONSTANTS[154]*CONSTANTS[65];
ALGEBRAIC[162] = 1.00000/ALGEBRAIC[160];
ALGEBRAIC[163] =  ALGEBRAIC[162]*CONSTANTS[66];
ALGEBRAIC[165] = ALGEBRAIC[163]+ALGEBRAIC[164];
ALGEBRAIC[156] = 1.00000/ALGEBRAIC[154];
ALGEBRAIC[166] = ( ALGEBRAIC[156]*CONSTANTS[66])/ALGEBRAIC[122];
ALGEBRAIC[168] = ALGEBRAIC[166]+ALGEBRAIC[167];
ALGEBRAIC[159] = 1.00000/ALGEBRAIC[157];
ALGEBRAIC[169] =  ALGEBRAIC[159]*STATES[2]*CONSTANTS[68];
ALGEBRAIC[172] =  CONSTANTS[157]*ALGEBRAIC[168]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ CONSTANTS[158]*ALGEBRAIC[170]*(CONSTANTS[157]+ALGEBRAIC[165]);
ALGEBRAIC[173] =  CONSTANTS[156]*ALGEBRAIC[170]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[168]*ALGEBRAIC[169]*(CONSTANTS[156]+ALGEBRAIC[171]);
ALGEBRAIC[174] =  CONSTANTS[156]*ALGEBRAIC[165]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ ALGEBRAIC[171]*ALGEBRAIC[169]*(CONSTANTS[157]+ALGEBRAIC[165]);
ALGEBRAIC[175] =  CONSTANTS[157]*ALGEBRAIC[171]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[165]*CONSTANTS[158]*(CONSTANTS[156]+ALGEBRAIC[171]);
ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[177] = ALGEBRAIC[173]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[178] = ALGEBRAIC[174]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[179] = ALGEBRAIC[175]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[181] = ( 3.00000*( ALGEBRAIC[179]*ALGEBRAIC[170] -  ALGEBRAIC[176]*ALGEBRAIC[171])+ ALGEBRAIC[178]*ALGEBRAIC[167]) -  ALGEBRAIC[177]*ALGEBRAIC[164];
ALGEBRAIC[182] =  ALGEBRAIC[177]*CONSTANTS[157] -  ALGEBRAIC[176]*CONSTANTS[156];
ALGEBRAIC[183] =  CONSTANTS[60]*CONSTANTS[152]*ALGEBRAIC[180]*( CONSTANTS[8]*ALGEBRAIC[181]+ CONSTANTS[9]*ALGEBRAIC[182]);
ALGEBRAIC[85] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) -  0.300000*ALGEBRAIC[83]));
ALGEBRAIC[88] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[85]*STATES[4]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[92] =  CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32]));
RATES[4] = ( - (ALGEBRAIC[92]+ 3.00000*ALGEBRAIC[183])*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[145]) - ALGEBRAIC[208];
ALGEBRAIC[211] = (STATES[2] - STATES[9])/CONSTANTS[107];
ALGEBRAIC[213] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[215] =  CONSTANTS[110]*( (1.00000 - ALGEBRAIC[213])*STATES[41]+ ALGEBRAIC[213]*STATES[42]);
ALGEBRAIC[56] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[2], 2.00000)+( CONSTANTS[30]*CONSTANTS[31])/pow(CONSTANTS[31]+STATES[2], 2.00000));
RATES[2] =  ALGEBRAIC[56]*((( - (ALGEBRAIC[91] -  2.00000*ALGEBRAIC[183])*CONSTANTS[136])/( 2.00000*CONSTANTS[7]*CONSTANTS[145])+( ALGEBRAIC[215]*CONSTANTS[144])/CONSTANTS[145]) - ALGEBRAIC[211]);
ALGEBRAIC[101] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) -  0.300000*ALGEBRAIC[98]));
ALGEBRAIC[106] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) -  CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[109] =  (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33]));
ALGEBRAIC[112] = ALGEBRAIC[91]+ALGEBRAIC[109];
ALGEBRAIC[113] = ALGEBRAIC[92]+ALGEBRAIC[110];
ALGEBRAIC[114] = ALGEBRAIC[95]+ALGEBRAIC[111];
ALGEBRAIC[209] = ( CONSTANTS[99]*STATES[9])/(CONSTANTS[100]+STATES[9]);
ALGEBRAIC[207] = ( CONSTANTS[98]*4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) -  CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[210] =  (( CONSTANTS[104]*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[2]))*(STATES[0] - CONSTANTS[114]);
ALGEBRAIC[212] =  (( (1.00000 - CONSTANTS[104])*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[9]))*(STATES[0] - CONSTANTS[114]);
ALGEBRAIC[214] = ALGEBRAIC[210]+ALGEBRAIC[212];
ALGEBRAIC[216] =  CONSTANTS[102]*(STATES[0] - CONSTANTS[114]);
RATES[0] = - (ALGEBRAIC[68]+ALGEBRAIC[70]+ALGEBRAIC[76]+ALGEBRAIC[112]+ALGEBRAIC[113]+ALGEBRAIC[114]+ALGEBRAIC[115]+ALGEBRAIC[117]+ALGEBRAIC[121]+ALGEBRAIC[153]+ALGEBRAIC[183]+ALGEBRAIC[202]+ALGEBRAIC[205]+ALGEBRAIC[204]+ALGEBRAIC[209]+ALGEBRAIC[207]+ALGEBRAIC[214]+ALGEBRAIC[216]+ALGEBRAIC[66]+ALGEBRAIC[11]);
ALGEBRAIC[217] = ( CONSTANTS[129]*0.00542500*STATES[9])/(STATES[9]+0.000920000);
ALGEBRAIC[218] = ( CONSTANTS[129]*2.75000*0.00542500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000);
ALGEBRAIC[219] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[220] = ( 0.00488250*STATES[7])/15.0000;
ALGEBRAIC[221] =  CONSTANTS[111]*(( (1.00000 - ALGEBRAIC[219])*ALGEBRAIC[217]+ ALGEBRAIC[219]*ALGEBRAIC[218]) - ALGEBRAIC[220]);
ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[113]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[9], 2.00000)+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[9], 2.00000));
RATES[9] =  ALGEBRAIC[53]*((( - ((ALGEBRAIC[109]+ALGEBRAIC[209]+ALGEBRAIC[207]) -  2.00000*ALGEBRAIC[153])*CONSTANTS[136])/( 2.00000*CONSTANTS[7]*CONSTANTS[142]) - ( ALGEBRAIC[221]*CONSTANTS[143])/CONSTANTS[142])+( ALGEBRAIC[211]*CONSTANTS[145])/CONSTANTS[142]);
ALGEBRAIC[222] = (STATES[7] - STATES[8])/60.0000;
RATES[7] = ALGEBRAIC[221] - ( ALGEBRAIC[222]*CONSTANTS[144])/CONSTANTS[143];
ALGEBRAIC[59] = 1.00000/(1.00000+( CONSTANTS[32]*CONSTANTS[33])/pow(CONSTANTS[33]+STATES[8], 2.00000));
RATES[8] =  ALGEBRAIC[59]*(ALGEBRAIC[222] - ALGEBRAIC[215]);
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800));
ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800));
ALGEBRAIC[9] = 1.00000/(1.00000+exp((STATES[0]+18.0800)/2.79160));
ALGEBRAIC[0] = 1.00000/pow(1.00000+exp(- (STATES[0]+56.8600)/9.03000), 2.00000);
ALGEBRAIC[13] =  0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000));
ALGEBRAIC[2] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400));
ALGEBRAIC[16] =  0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000));
ALGEBRAIC[5] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 14.3400)/14.8200));
ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+CONSTANTS[45]+100.000)/29.3814)));
ALGEBRAIC[7] = (STATES[0]>=31.4978 ? 1.00000 :  1.07630*exp( - 1.00700*exp( - 0.0829000*STATES[0])));
ALGEBRAIC[22] = CONSTANTS[52]+0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+CONSTANTS[51]+6.00000))+exp( 0.0900000*(STATES[0]+CONSTANTS[51]+14.0000)));
ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600));
ALGEBRAIC[23] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000));
ALGEBRAIC[24] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000));
ALGEBRAIC[10] =  STATES[29]*1.00000;
ALGEBRAIC[20] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[2], 4.00000));
ALGEBRAIC[21] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[9], 4.00000));
ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200));
ALGEBRAIC[27] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000));
ALGEBRAIC[32] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 24.3400)/14.8200));
ALGEBRAIC[19] = ALGEBRAIC[8];
ALGEBRAIC[33] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000));
ALGEBRAIC[34] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000));
ALGEBRAIC[35] =  2.50000*ALGEBRAIC[23];
ALGEBRAIC[26] = ALGEBRAIC[12];
ALGEBRAIC[36] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000));
ALGEBRAIC[43] = ( CONSTANTS[22]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[23]/STATES[2]);
ALGEBRAIC[1] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000);
ALGEBRAIC[14] = (STATES[0]>=- 40.0000 ? 0.00000 :  0.0570000*exp(- (STATES[0]+80.0000)/6.80000));
ALGEBRAIC[29] = (STATES[0]>=- 40.0000 ? 0.770000/( 0.130000*(1.00000+exp(- (STATES[0]+10.6600)/11.1000))) :  2.70000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.348500*STATES[0]));
ALGEBRAIC[37] = 1.00000/(ALGEBRAIC[14]+ALGEBRAIC[29]);
ALGEBRAIC[40] =  2.50000*ALGEBRAIC[33];
ALGEBRAIC[38] = ALGEBRAIC[1];
ALGEBRAIC[15] = (STATES[0]>=- 40.0000 ? 0.00000 : ( ( - 25428.0*exp( 0.244400*STATES[0]) -  6.94800e-06*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300))));
ALGEBRAIC[30] = (STATES[0]>=- 40.0000 ? ( 0.600000*exp( 0.0570000*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))) : ( 0.0242400*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400))));
ALGEBRAIC[44] = 1.00000/(ALGEBRAIC[15]+ALGEBRAIC[30]);
ALGEBRAIC[45] = 1.00000/pow(1.00000+exp((STATES[0]+77.5500)/7.43000), 2.00000);
ALGEBRAIC[6] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[45]+43.9400)/5.71100));
ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/5.00000)) : 1.00000);
ALGEBRAIC[31] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+CONSTANTS[45]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+CONSTANTS[45]+50.0000)/16.5900));
ALGEBRAIC[46] =  ALGEBRAIC[31]*ALGEBRAIC[18];
ALGEBRAIC[28] = ( STATES[0]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]);
ALGEBRAIC[41] =  0.116100*exp( 0.299000*ALGEBRAIC[28]);
ALGEBRAIC[47] =  0.244200*exp( - 1.60400*ALGEBRAIC[28]);
ALGEBRAIC[50] =  1.46000*ALGEBRAIC[44];
ALGEBRAIC[39] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+CONSTANTS[45]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+CONSTANTS[45]+114.100)/8.07900));
ALGEBRAIC[51] =  ALGEBRAIC[39]*ALGEBRAIC[18];
ALGEBRAIC[42] =  0.0578000*exp( 0.971000*ALGEBRAIC[28]);
ALGEBRAIC[48] =  0.000349000*exp( - 1.06200*ALGEBRAIC[28]);
ALGEBRAIC[52] =  0.253300*exp( 0.595300*ALGEBRAIC[28]);
ALGEBRAIC[55] =  0.0652500*exp( - 0.820900*ALGEBRAIC[28]);
ALGEBRAIC[54] = 1.35400+0.000100000/(exp(((STATES[0]+CONSTANTS[45]) - 167.400)/15.8900)+exp(- ((STATES[0]+CONSTANTS[45]) - 12.2300)/0.215400));
ALGEBRAIC[57] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/20.0000));
ALGEBRAIC[60] =  ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[46];
ALGEBRAIC[61] =  ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[51];
ALGEBRAIC[58] =  5.20000e-05*exp( 1.52500*ALGEBRAIC[28]);
ALGEBRAIC[62] = ( ALGEBRAIC[48]*ALGEBRAIC[55]*ALGEBRAIC[58])/( ALGEBRAIC[42]*ALGEBRAIC[52]);
ALGEBRAIC[77] =  CONSTANTS[49]*STATES[25]+ CONSTANTS[120]*STATES[26];
ALGEBRAIC[78] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000));
ALGEBRAIC[79] = 1.00000 - ALGEBRAIC[78];
ALGEBRAIC[80] =  ALGEBRAIC[78]*STATES[27]+ ALGEBRAIC[79]*STATES[28];
ALGEBRAIC[81] =  CONSTANTS[49]*STATES[30]+ CONSTANTS[120]*STATES[26];
ALGEBRAIC[82] =  ALGEBRAIC[78]*STATES[31]+ ALGEBRAIC[79]*STATES[28];
ALGEBRAIC[25] = ( STATES[0]*CONSTANTS[7]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]);
ALGEBRAIC[83] = ( 0.500000*(STATES[4]+STATES[6]+CONSTANTS[34]+ 4.00000*STATES[2]))/1000.00;
ALGEBRAIC[84] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) -  0.300000*ALGEBRAIC[83]));
ALGEBRAIC[87] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[84]*STATES[2]*exp( 2.00000*ALGEBRAIC[28]) -  CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[49] = ALGEBRAIC[43]+STATES[1];
ALGEBRAIC[90] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[91] =  CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32]));
ALGEBRAIC[93] = (( - CONSTANTS[127]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000));
ALGEBRAIC[96] = (CONSTANTS[0]==2.00000 ?  ALGEBRAIC[93]*1.70000 : ALGEBRAIC[93]);
ALGEBRAIC[99] = CONSTANTS[108]/(1.00000+0.0123000/STATES[8]);
ALGEBRAIC[102] = (ALGEBRAIC[99]<0.00100000 ? 0.00100000 : ALGEBRAIC[99]);
ALGEBRAIC[94] = (( - CONSTANTS[135]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000));
ALGEBRAIC[97] = (CONSTANTS[0]==2.00000 ?  ALGEBRAIC[94]*1.70000 : ALGEBRAIC[94]);
ALGEBRAIC[100] = CONSTANTS[128]/(1.00000+0.0123000/STATES[8]);
ALGEBRAIC[103] = (ALGEBRAIC[100]<0.00100000 ? 0.00100000 : ALGEBRAIC[100]);
ALGEBRAIC[64] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log(CONSTANTS[3]/STATES[5]);
ALGEBRAIC[71] = 1.00000/(1.00000+exp(((STATES[0]+CONSTANTS[45]) - 213.600)/151.200));
ALGEBRAIC[72] = 1.00000 - ALGEBRAIC[71];
ALGEBRAIC[73] =  ALGEBRAIC[71]*STATES[19]+ ALGEBRAIC[72]*STATES[20];
ALGEBRAIC[74] =  ALGEBRAIC[71]*STATES[22]+ ALGEBRAIC[72]*STATES[23];
ALGEBRAIC[75] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[76] =  CONSTANTS[119]*(STATES[0] - ALGEBRAIC[64])*( (1.00000 - ALGEBRAIC[75])*STATES[18]*ALGEBRAIC[73]+ ALGEBRAIC[75]*STATES[21]*ALGEBRAIC[74]);
ALGEBRAIC[115] =  CONSTANTS[123]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*STATES[38]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[65] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log((CONSTANTS[3]+ CONSTANTS[35]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[35]*STATES[3]));
ALGEBRAIC[116] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000));
ALGEBRAIC[117] =  CONSTANTS[124]*ALGEBRAIC[116]*STATES[39]*STATES[40]*(STATES[0] - ALGEBRAIC[65]);
ALGEBRAIC[118] = 4.09400/(1.00000+exp( 0.121700*((STATES[0] - ALGEBRAIC[64]) - 49.9340)));
ALGEBRAIC[119] = ( 15.7200*exp( 0.0674000*((STATES[0] - ALGEBRAIC[64]) - 3.25700))+exp( 0.0618000*((STATES[0] - ALGEBRAIC[64]) - 594.310)))/(1.00000+exp( - 0.162900*((STATES[0] - ALGEBRAIC[64])+14.2070)));
ALGEBRAIC[120] = ALGEBRAIC[118]/(ALGEBRAIC[118]+ALGEBRAIC[119]);
ALGEBRAIC[121] =  CONSTANTS[125]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*ALGEBRAIC[120]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[185] =  CONSTANTS[83]*exp(( (1.00000 - CONSTANTS[84])*ALGEBRAIC[28])/3.00000);
ALGEBRAIC[189] = ( CONSTANTS[78]*pow(CONSTANTS[3]/CONSTANTS[86], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000);
ALGEBRAIC[186] = CONSTANTS[91]/(1.00000+CONSTANTS[90]/CONSTANTS[92]+STATES[3]/CONSTANTS[93]+STATES[5]/CONSTANTS[94]);
ALGEBRAIC[190] = ( CONSTANTS[79]*ALGEBRAIC[186]*CONSTANTS[90])/(1.00000+CONSTANTS[88]/CONSTANTS[89]);
ALGEBRAIC[184] =  CONSTANTS[82]*exp(( CONSTANTS[84]*ALGEBRAIC[28])/3.00000);
ALGEBRAIC[187] = ( CONSTANTS[74]*pow(STATES[3]/ALGEBRAIC[184], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000);
ALGEBRAIC[188] = ( CONSTANTS[77]*pow(CONSTANTS[1]/ALGEBRAIC[185], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000);
ALGEBRAIC[191] = ( CONSTANTS[81]*pow(STATES[5]/CONSTANTS[85], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000);
ALGEBRAIC[192] =  CONSTANTS[161]*ALGEBRAIC[187]*CONSTANTS[160]+ ALGEBRAIC[188]*ALGEBRAIC[191]*ALGEBRAIC[190]+ CONSTANTS[160]*ALGEBRAIC[191]*ALGEBRAIC[190]+ ALGEBRAIC[190]*ALGEBRAIC[187]*CONSTANTS[160];
ALGEBRAIC[193] =  ALGEBRAIC[188]*CONSTANTS[159]*ALGEBRAIC[191]+ ALGEBRAIC[187]*CONSTANTS[160]*ALGEBRAIC[189]+ ALGEBRAIC[189]*CONSTANTS[159]*ALGEBRAIC[191]+ CONSTANTS[160]*ALGEBRAIC[189]*ALGEBRAIC[191];
ALGEBRAIC[194] =  CONSTANTS[160]*ALGEBRAIC[189]*CONSTANTS[161]+ ALGEBRAIC[190]*ALGEBRAIC[188]*CONSTANTS[159]+ ALGEBRAIC[188]*CONSTANTS[159]*CONSTANTS[161]+ ALGEBRAIC[189]*CONSTANTS[161]*CONSTANTS[159];
ALGEBRAIC[195] =  ALGEBRAIC[191]*ALGEBRAIC[190]*ALGEBRAIC[188]+ ALGEBRAIC[189]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[188]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[190]*ALGEBRAIC[188]*ALGEBRAIC[187];
ALGEBRAIC[196] = ALGEBRAIC[192]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[197] = ALGEBRAIC[193]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[200] =  3.00000*( ALGEBRAIC[196]*ALGEBRAIC[189] -  ALGEBRAIC[197]*ALGEBRAIC[190]);
ALGEBRAIC[198] = ALGEBRAIC[194]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[199] = ALGEBRAIC[195]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]);
ALGEBRAIC[201] =  2.00000*( ALGEBRAIC[199]*CONSTANTS[159] -  ALGEBRAIC[198]*ALGEBRAIC[187]);
ALGEBRAIC[202] =  CONSTANTS[162]*( CONSTANTS[8]*ALGEBRAIC[200]+ CONSTANTS[10]*ALGEBRAIC[201]);
ALGEBRAIC[203] = 1.00000/(1.00000+exp(- (STATES[0] - 10.8968)/23.9871));
ALGEBRAIC[204] =  CONSTANTS[126]*ALGEBRAIC[203]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[66] =  CONSTANTS[37]*CONSTANTS[36]*CONSTANTS[115]*CONSTANTS[116]*(STATES[0] - ALGEBRAIC[64]);
ALGEBRAIC[11] = (VOI>=CONSTANTS[14]&&VOI<=CONSTANTS[15]&&(VOI - CONSTANTS[14]) -  floor((VOI - CONSTANTS[14])/CONSTANTS[17])*CONSTANTS[17]<=CONSTANTS[18] ? CONSTANTS[16] : 0.00000);
ALGEBRAIC[98] = ( 0.500000*(STATES[3]+STATES[5]+CONSTANTS[34]+ 4.00000*STATES[9]))/1000.00;
ALGEBRAIC[105] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) -  0.300000*ALGEBRAIC[98]));
ALGEBRAIC[108] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[105]*STATES[5]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[111] =  (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33]));
ALGEBRAIC[206] = (STATES[6] - STATES[5])/CONSTANTS[106];
ALGEBRAIC[86] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) -  0.300000*ALGEBRAIC[83]));
ALGEBRAIC[89] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[86]*STATES[6]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[95] =  CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32]));
ALGEBRAIC[63] =  (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[8]*CONSTANTS[7]))*log(CONSTANTS[1]/STATES[3]);
ALGEBRAIC[67] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[68] =  CONSTANTS[41]*(STATES[0] - ALGEBRAIC[63])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[67])*STATES[11]*STATES[12]+ ALGEBRAIC[67]*STATES[13]*STATES[14]);
ALGEBRAIC[69] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[70] =  CONSTANTS[118]*(STATES[0] - ALGEBRAIC[63])*STATES[15]*( (1.00000 - ALGEBRAIC[69])*STATES[16]+ ALGEBRAIC[69]*STATES[17]);
ALGEBRAIC[150] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[9], 2.00000));
ALGEBRAIC[123] = exp( CONSTANTS[70]*ALGEBRAIC[28]);
ALGEBRAIC[130] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]);
ALGEBRAIC[131] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[130]);
ALGEBRAIC[134] =  ALGEBRAIC[131]*CONSTANTS[67];
ALGEBRAIC[124] = 1.00000+ (STATES[3]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]);
ALGEBRAIC[125] = ( STATES[3]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[124]);
ALGEBRAIC[137] =  ALGEBRAIC[125]*CONSTANTS[67];
ALGEBRAIC[127] = 1.00000+ (STATES[3]/CONSTANTS[61])*(1.00000+STATES[3]/CONSTANTS[62]);
ALGEBRAIC[128] = ( STATES[3]*STATES[3])/( ALGEBRAIC[127]*CONSTANTS[61]*CONSTANTS[62]);
ALGEBRAIC[140] =  ALGEBRAIC[128]*ALGEBRAIC[125]*CONSTANTS[65];
ALGEBRAIC[141] =  ALGEBRAIC[131]*CONSTANTS[147]*CONSTANTS[65];
ALGEBRAIC[132] = 1.00000/ALGEBRAIC[130];
ALGEBRAIC[133] =  ALGEBRAIC[132]*CONSTANTS[66];
ALGEBRAIC[135] = ALGEBRAIC[133]+ALGEBRAIC[134];
ALGEBRAIC[122] = exp( CONSTANTS[71]*ALGEBRAIC[28]);
ALGEBRAIC[126] = 1.00000/ALGEBRAIC[124];
ALGEBRAIC[136] = ( ALGEBRAIC[126]*CONSTANTS[66])/ALGEBRAIC[122];
ALGEBRAIC[138] = ALGEBRAIC[136]+ALGEBRAIC[137];
ALGEBRAIC[129] = 1.00000/ALGEBRAIC[127];
ALGEBRAIC[139] =  ALGEBRAIC[129]*STATES[9]*CONSTANTS[68];
ALGEBRAIC[142] =  CONSTANTS[150]*ALGEBRAIC[138]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ CONSTANTS[151]*ALGEBRAIC[140]*(CONSTANTS[150]+ALGEBRAIC[135]);
ALGEBRAIC[143] =  CONSTANTS[149]*ALGEBRAIC[140]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[138]*ALGEBRAIC[139]*(CONSTANTS[149]+ALGEBRAIC[141]);
ALGEBRAIC[144] =  CONSTANTS[149]*ALGEBRAIC[135]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ ALGEBRAIC[141]*ALGEBRAIC[139]*(CONSTANTS[150]+ALGEBRAIC[135]);
ALGEBRAIC[145] =  CONSTANTS[150]*ALGEBRAIC[141]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[135]*CONSTANTS[151]*(CONSTANTS[149]+ALGEBRAIC[141]);
ALGEBRAIC[146] = ALGEBRAIC[142]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[147] = ALGEBRAIC[143]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[148] = ALGEBRAIC[144]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[149] = ALGEBRAIC[145]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]);
ALGEBRAIC[151] = ( 3.00000*( ALGEBRAIC[149]*ALGEBRAIC[140] -  ALGEBRAIC[146]*ALGEBRAIC[141])+ ALGEBRAIC[148]*ALGEBRAIC[137]) -  ALGEBRAIC[147]*ALGEBRAIC[134];
ALGEBRAIC[152] =  ALGEBRAIC[147]*CONSTANTS[150] -  ALGEBRAIC[146]*CONSTANTS[149];
ALGEBRAIC[153] =  (1.00000 - CONSTANTS[60])*CONSTANTS[152]*ALGEBRAIC[150]*( CONSTANTS[8]*ALGEBRAIC[151]+ CONSTANTS[9]*ALGEBRAIC[152]);
ALGEBRAIC[205] = ( CONSTANTS[97]*ALGEBRAIC[25]*( STATES[3]*exp(ALGEBRAIC[28]) - CONSTANTS[1]))/(exp(ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[104] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) -  0.300000*ALGEBRAIC[98]));
ALGEBRAIC[107] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[104]*STATES[3]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[110] =  (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33]));
ALGEBRAIC[208] = (STATES[4] - STATES[3])/CONSTANTS[105];
ALGEBRAIC[180] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[2], 2.00000));
ALGEBRAIC[160] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]);
ALGEBRAIC[161] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[160]);
ALGEBRAIC[164] =  ALGEBRAIC[161]*CONSTANTS[67];
ALGEBRAIC[154] = 1.00000+ (STATES[4]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]);
ALGEBRAIC[155] = ( STATES[4]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[154]);
ALGEBRAIC[167] =  ALGEBRAIC[155]*CONSTANTS[67];
ALGEBRAIC[157] = 1.00000+ (STATES[4]/CONSTANTS[61])*(1.00000+STATES[4]/CONSTANTS[62]);
ALGEBRAIC[158] = ( STATES[4]*STATES[4])/( ALGEBRAIC[157]*CONSTANTS[61]*CONSTANTS[62]);
ALGEBRAIC[170] =  ALGEBRAIC[158]*ALGEBRAIC[155]*CONSTANTS[65];
ALGEBRAIC[171] =  ALGEBRAIC[161]*CONSTANTS[154]*CONSTANTS[65];
ALGEBRAIC[162] = 1.00000/ALGEBRAIC[160];
ALGEBRAIC[163] =  ALGEBRAIC[162]*CONSTANTS[66];
ALGEBRAIC[165] = ALGEBRAIC[163]+ALGEBRAIC[164];
ALGEBRAIC[156] = 1.00000/ALGEBRAIC[154];
ALGEBRAIC[166] = ( ALGEBRAIC[156]*CONSTANTS[66])/ALGEBRAIC[122];
ALGEBRAIC[168] = ALGEBRAIC[166]+ALGEBRAIC[167];
ALGEBRAIC[159] = 1.00000/ALGEBRAIC[157];
ALGEBRAIC[169] =  ALGEBRAIC[159]*STATES[2]*CONSTANTS[68];
ALGEBRAIC[172] =  CONSTANTS[157]*ALGEBRAIC[168]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ CONSTANTS[158]*ALGEBRAIC[170]*(CONSTANTS[157]+ALGEBRAIC[165]);
ALGEBRAIC[173] =  CONSTANTS[156]*ALGEBRAIC[170]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[168]*ALGEBRAIC[169]*(CONSTANTS[156]+ALGEBRAIC[171]);
ALGEBRAIC[174] =  CONSTANTS[156]*ALGEBRAIC[165]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ ALGEBRAIC[171]*ALGEBRAIC[169]*(CONSTANTS[157]+ALGEBRAIC[165]);
ALGEBRAIC[175] =  CONSTANTS[157]*ALGEBRAIC[171]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[165]*CONSTANTS[158]*(CONSTANTS[156]+ALGEBRAIC[171]);
ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[177] = ALGEBRAIC[173]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[178] = ALGEBRAIC[174]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[179] = ALGEBRAIC[175]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]);
ALGEBRAIC[181] = ( 3.00000*( ALGEBRAIC[179]*ALGEBRAIC[170] -  ALGEBRAIC[176]*ALGEBRAIC[171])+ ALGEBRAIC[178]*ALGEBRAIC[167]) -  ALGEBRAIC[177]*ALGEBRAIC[164];
ALGEBRAIC[182] =  ALGEBRAIC[177]*CONSTANTS[157] -  ALGEBRAIC[176]*CONSTANTS[156];
ALGEBRAIC[183] =  CONSTANTS[60]*CONSTANTS[152]*ALGEBRAIC[180]*( CONSTANTS[8]*ALGEBRAIC[181]+ CONSTANTS[9]*ALGEBRAIC[182]);
ALGEBRAIC[85] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) -  0.300000*ALGEBRAIC[83]));
ALGEBRAIC[88] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[85]*STATES[4]*exp( 1.00000*ALGEBRAIC[28]) -  CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[92] =  CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32]));
ALGEBRAIC[211] = (STATES[2] - STATES[9])/CONSTANTS[107];
ALGEBRAIC[213] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[215] =  CONSTANTS[110]*( (1.00000 - ALGEBRAIC[213])*STATES[41]+ ALGEBRAIC[213]*STATES[42]);
ALGEBRAIC[56] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[2], 2.00000)+( CONSTANTS[30]*CONSTANTS[31])/pow(CONSTANTS[31]+STATES[2], 2.00000));
ALGEBRAIC[101] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) -  0.300000*ALGEBRAIC[98]));
ALGEBRAIC[106] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) -  CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[109] =  (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33]));
ALGEBRAIC[112] = ALGEBRAIC[91]+ALGEBRAIC[109];
ALGEBRAIC[113] = ALGEBRAIC[92]+ALGEBRAIC[110];
ALGEBRAIC[114] = ALGEBRAIC[95]+ALGEBRAIC[111];
ALGEBRAIC[209] = ( CONSTANTS[99]*STATES[9])/(CONSTANTS[100]+STATES[9]);
ALGEBRAIC[207] = ( CONSTANTS[98]*4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) -  CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000);
ALGEBRAIC[210] =  (( CONSTANTS[104]*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[2]))*(STATES[0] - CONSTANTS[114]);
ALGEBRAIC[212] =  (( (1.00000 - CONSTANTS[104])*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[9]))*(STATES[0] - CONSTANTS[114]);
ALGEBRAIC[214] = ALGEBRAIC[210]+ALGEBRAIC[212];
ALGEBRAIC[216] =  CONSTANTS[102]*(STATES[0] - CONSTANTS[114]);
ALGEBRAIC[217] = ( CONSTANTS[129]*0.00542500*STATES[9])/(STATES[9]+0.000920000);
ALGEBRAIC[218] = ( CONSTANTS[129]*2.75000*0.00542500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000);
ALGEBRAIC[219] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]);
ALGEBRAIC[220] = ( 0.00488250*STATES[7])/15.0000;
ALGEBRAIC[221] =  CONSTANTS[111]*(( (1.00000 - ALGEBRAIC[219])*ALGEBRAIC[217]+ ALGEBRAIC[219]*ALGEBRAIC[218]) - ALGEBRAIC[220]);
ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[113]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[9], 2.00000)+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[9], 2.00000));
ALGEBRAIC[222] = (STATES[7] - STATES[8])/60.0000;
ALGEBRAIC[59] = 1.00000/(1.00000+( CONSTANTS[32]*CONSTANTS[33])/pow(CONSTANTS[33]+STATES[8], 2.00000));
}