Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 223 entries in the algebraic variable array. There are a total of 43 entries in each of the rate and state variable arrays. There are a total of 163 entries in the constant variable array. */ /* * VOI is time in component environment (millisecond). * CONSTANTS[0] is celltype in component environment (dimensionless). * CONSTANTS[1] is nao in component extracellular (millimolar). * CONSTANTS[2] is cao in component extracellular (millimolar). * CONSTANTS[3] is ko in component extracellular (millimolar). * CONSTANTS[4] is clo in component extracellular (millimolar). * CONSTANTS[5] is R in component physical_constants (joule_per_kilomole_kelvin). * CONSTANTS[6] is T in component physical_constants (kelvin). * CONSTANTS[7] is F in component physical_constants (coulomb_per_mole). * CONSTANTS[8] is zna in component physical_constants (dimensionless). * CONSTANTS[9] is zca in component physical_constants (dimensionless). * CONSTANTS[10] is zk in component physical_constants (dimensionless). * CONSTANTS[11] is zcl in component physical_constants (dimensionless). * CONSTANTS[12] is L in component cell_geometry (centimeter). * CONSTANTS[13] is rad in component cell_geometry (centimeter). * CONSTANTS[112] is vcell in component cell_geometry (microliter). * CONSTANTS[130] is Ageo in component cell_geometry (centimeter_squared). * CONSTANTS[136] is Acap in component cell_geometry (centimeter_squared). * CONSTANTS[142] is vmyo in component cell_geometry (microliter). * CONSTANTS[143] is vnsr in component cell_geometry (microliter). * CONSTANTS[144] is vjsr in component cell_geometry (microliter). * CONSTANTS[145] is vss in component cell_geometry (microliter). * STATES[0] is v in component membrane (millivolt). * ALGEBRAIC[25] is vffrt in component membrane (coulomb_per_mole). * ALGEBRAIC[28] is vfrt in component membrane (dimensionless). * ALGEBRAIC[68] is INa in component INa (microA_per_microF). * ALGEBRAIC[70] is INaL in component INaL (microA_per_microF). * ALGEBRAIC[76] is Ito in component Ito (microA_per_microF). * ALGEBRAIC[112] is ICaL in component ICaL (microA_per_microF). * ALGEBRAIC[113] is ICaNa in component ICaL (microA_per_microF). * ALGEBRAIC[114] is ICaK in component ICaL (microA_per_microF). * ALGEBRAIC[115] is IKr in component IKr (microA_per_microF). * ALGEBRAIC[117] is IKs in component IKs (microA_per_microF). * ALGEBRAIC[121] is IK1 in component IK1 (microA_per_microF). * ALGEBRAIC[153] is INaCa_i in component INaCa (microA_per_microF). * ALGEBRAIC[183] is INaCa_ss in component INaCa (microA_per_microF). * ALGEBRAIC[202] is INaK in component INaK (microA_per_microF). * ALGEBRAIC[205] is INab in component INab (microA_per_microF). * ALGEBRAIC[204] is IKb in component IKb (microA_per_microF). * ALGEBRAIC[209] is IpCa in component IpCa (microA_per_microF). * ALGEBRAIC[207] is ICab in component ICab (microA_per_microF). * ALGEBRAIC[214] is IClCa in component ICl (microA_per_microF). * ALGEBRAIC[216] is IClb in component ICl (microA_per_microF). * ALGEBRAIC[66] is I_katp in component I_katp (microA_per_microF). * ALGEBRAIC[11] is Istim in component membrane (microA_per_microF). * CONSTANTS[14] is i_Stim_Start in component membrane (millisecond). * CONSTANTS[15] is i_Stim_End in component membrane (millisecond). * CONSTANTS[16] is i_Stim_Amplitude in component membrane (microA_per_microF). * CONSTANTS[17] is i_Stim_Period in component membrane (millisecond). * CONSTANTS[18] is i_Stim_PulseDuration in component membrane (millisecond). * CONSTANTS[19] is KmCaMK in component CaMK (millimolar). * CONSTANTS[20] is aCaMK in component CaMK (per_millimolar_per_millisecond). * CONSTANTS[21] is bCaMK in component CaMK (per_millisecond). * CONSTANTS[22] is CaMKo in component CaMK (dimensionless). * CONSTANTS[23] is KmCaM in component CaMK (millimolar). * ALGEBRAIC[43] is CaMKb in component CaMK (millimolar). * ALGEBRAIC[49] is CaMKa in component CaMK (millimolar). * STATES[1] is CaMKt in component CaMK (millimolar). * STATES[2] is cass in component intracellular_ions (millimolar). * CONSTANTS[24] is cmdnmax_b in component intracellular_ions (millimolar). * CONSTANTS[113] is cmdnmax in component intracellular_ions (millimolar). * CONSTANTS[25] is kmcmdn in component intracellular_ions (millimolar). * CONSTANTS[26] is trpnmax in component intracellular_ions (millimolar). * CONSTANTS[27] is kmtrpn in component intracellular_ions (millimolar). * CONSTANTS[28] is BSRmax in component intracellular_ions (millimolar). * CONSTANTS[29] is KmBSR in component intracellular_ions (millimolar). * CONSTANTS[30] is BSLmax in component intracellular_ions (millimolar). * CONSTANTS[31] is KmBSL in component intracellular_ions (millimolar). * CONSTANTS[32] is csqnmax in component intracellular_ions (millimolar). * CONSTANTS[33] is kmcsqn in component intracellular_ions (millimolar). * STATES[3] is nai in component intracellular_ions (millimolar). * STATES[4] is nass in component intracellular_ions (millimolar). * STATES[5] is ki in component intracellular_ions (millimolar). * STATES[6] is kss in component intracellular_ions (millimolar). * STATES[7] is cansr in component intracellular_ions (millimolar). * STATES[8] is cajsr in component intracellular_ions (millimolar). * STATES[9] is cai in component intracellular_ions (millimolar). * CONSTANTS[34] is cli in component intracellular_ions (millimolar). * ALGEBRAIC[91] is ICaL_ss in component ICaL (microA_per_microF). * ALGEBRAIC[92] is ICaNa_ss in component ICaL (microA_per_microF). * ALGEBRAIC[95] is ICaK_ss in component ICaL (microA_per_microF). * ALGEBRAIC[109] is ICaL_i in component ICaL (microA_per_microF). * ALGEBRAIC[110] is ICaNa_i in component ICaL (microA_per_microF). * ALGEBRAIC[111] is ICaK_i in component ICaL (microA_per_microF). * ALGEBRAIC[208] is JdiffNa in component diff (millimolar_per_millisecond). * ALGEBRAIC[211] is Jdiff in component diff (millimolar_per_millisecond). * ALGEBRAIC[221] is Jup in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[206] is JdiffK in component diff (millimolar_per_millisecond). * ALGEBRAIC[215] is Jrel in component ryr (millimolar_per_millisecond). * ALGEBRAIC[222] is Jtr in component trans_flux (millimolar_per_millisecond). * ALGEBRAIC[53] is Bcai in component intracellular_ions (dimensionless). * ALGEBRAIC[59] is Bcajsr in component intracellular_ions (dimensionless). * ALGEBRAIC[56] is Bcass in component intracellular_ions (dimensionless). * CONSTANTS[35] is PKNa in component reversal_potentials (dimensionless). * ALGEBRAIC[63] is ENa in component reversal_potentials (millivolt). * ALGEBRAIC[64] is EK in component reversal_potentials (millivolt). * ALGEBRAIC[65] is EKs in component reversal_potentials (millivolt). * CONSTANTS[114] is ECl in component reversal_potentials (millivolt). * CONSTANTS[36] is gkatp in component I_katp (milliS_per_microF). * CONSTANTS[37] is fkatp in component I_katp (dimensionless). * CONSTANTS[38] is K_o_n in component I_katp (millimolar). * CONSTANTS[39] is A_atp in component I_katp (millimolar). * CONSTANTS[40] is K_atp in component I_katp (millimolar). * CONSTANTS[115] is akik in component I_katp (dimensionless). * CONSTANTS[116] is bkik in component I_katp (dimensionless). * ALGEBRAIC[0] is mss in component INa (dimensionless). * ALGEBRAIC[13] is tm in component INa (millisecond). * STATES[10] is m in component INa (dimensionless). * ALGEBRAIC[1] is hss in component INa (dimensionless). * ALGEBRAIC[14] is ah in component INa (dimensionless). * ALGEBRAIC[29] is bh in component INa (dimensionless). * ALGEBRAIC[37] is th in component INa (millisecond). * STATES[11] is h in component INa (dimensionless). * ALGEBRAIC[38] is jss in component INa (dimensionless). * ALGEBRAIC[15] is aj in component INa (dimensionless). * ALGEBRAIC[30] is bj in component INa (dimensionless). * ALGEBRAIC[44] is tj in component INa (millisecond). * STATES[12] is j in component INa (dimensionless). * ALGEBRAIC[45] is hssp in component INa (dimensionless). * STATES[13] is hp in component INa (dimensionless). * ALGEBRAIC[50] is tjp in component INa (millisecond). * STATES[14] is jp in component INa (dimensionless). * ALGEBRAIC[67] is fINap in component INa (dimensionless). * CONSTANTS[41] is GNa in component INa (milliS_per_microF). * ALGEBRAIC[2] is mLss in component INaL (dimensionless). * ALGEBRAIC[16] is tmL in component INaL (millisecond). * STATES[15] is mL in component INaL (dimensionless). * CONSTANTS[42] is thL in component INaL (millisecond). * ALGEBRAIC[3] is hLss in component INaL (dimensionless). * STATES[16] is hL in component INaL (dimensionless). * ALGEBRAIC[4] is hLssp in component INaL (dimensionless). * CONSTANTS[117] is thLp in component INaL (millisecond). * STATES[17] is hLp in component INaL (dimensionless). * CONSTANTS[43] is GNaL_b in component INaL (milliS_per_microF). * CONSTANTS[118] is GNaL in component INaL (milliS_per_microF). * ALGEBRAIC[69] is fINaLp in component INaL (dimensionless). * CONSTANTS[44] is Gto_b in component Ito (milliS_per_microF). * ALGEBRAIC[5] is ass in component Ito (dimensionless). * ALGEBRAIC[17] is ta in component Ito (millisecond). * STATES[18] is a in component Ito (dimensionless). * CONSTANTS[45] is EKshift in component Ito (millivolt). * ALGEBRAIC[6] is iss in component Ito (dimensionless). * ALGEBRAIC[18] is delta_epi in component Ito (dimensionless). * ALGEBRAIC[31] is tiF_b in component Ito (millisecond). * ALGEBRAIC[39] is tiS_b in component Ito (millisecond). * ALGEBRAIC[46] is tiF in component Ito (millisecond). * ALGEBRAIC[51] is tiS in component Ito (millisecond). * ALGEBRAIC[71] is AiF in component Ito (dimensionless). * ALGEBRAIC[72] is AiS in component Ito (dimensionless). * STATES[19] is iF in component Ito (dimensionless). * STATES[20] is iS in component Ito (dimensionless). * ALGEBRAIC[73] is i in component Ito (dimensionless). * ALGEBRAIC[32] is assp in component Ito (dimensionless). * STATES[21] is ap in component Ito (dimensionless). * ALGEBRAIC[54] is dti_develop in component Ito (dimensionless). * ALGEBRAIC[57] is dti_recover in component Ito (dimensionless). * ALGEBRAIC[60] is tiFp in component Ito (millisecond). * ALGEBRAIC[61] is tiSp in component Ito (millisecond). * STATES[22] is iFp in component Ito (dimensionless). * STATES[23] is iSp in component Ito (dimensionless). * ALGEBRAIC[74] is ip in component Ito (dimensionless). * CONSTANTS[119] is Gto in component Ito (milliS_per_microF). * ALGEBRAIC[75] is fItop in component Ito (dimensionless). * CONSTANTS[46] is Kmn in component ICaL (millimolar). * CONSTANTS[47] is k2n in component ICaL (per_millisecond). * CONSTANTS[48] is PCa_b in component ICaL (dimensionless). * ALGEBRAIC[7] is dss in component ICaL (dimensionless). * STATES[24] is d in component ICaL (dimensionless). * ALGEBRAIC[8] is fss in component ICaL (dimensionless). * CONSTANTS[49] is Aff in component ICaL (dimensionless). * CONSTANTS[120] is Afs in component ICaL (dimensionless). * STATES[25] is ff in component ICaL (dimensionless). * STATES[26] is fs in component ICaL (dimensionless). * ALGEBRAIC[77] is f in component ICaL (dimensionless). * ALGEBRAIC[19] is fcass in component ICaL (dimensionless). * ALGEBRAIC[9] is jcass in component ICaL (dimensionless). * ALGEBRAIC[78] is Afcaf in component ICaL (dimensionless). * ALGEBRAIC[79] is Afcas in component ICaL (dimensionless). * STATES[27] is fcaf in component ICaL (dimensionless). * STATES[28] is fcas in component ICaL (dimensionless). * ALGEBRAIC[80] is fca in component ICaL (dimensionless). * STATES[29] is jca in component ICaL (dimensionless). * STATES[30] is ffp in component ICaL (dimensionless). * ALGEBRAIC[81] is fp in component ICaL (dimensionless). * STATES[31] is fcafp in component ICaL (dimensionless). * ALGEBRAIC[82] is fcap in component ICaL (dimensionless). * ALGEBRAIC[10] is km2n in component ICaL (per_millisecond). * ALGEBRAIC[20] is anca_ss in component ICaL (dimensionless). * STATES[32] is nca_ss in component ICaL (dimensionless). * ALGEBRAIC[21] is anca_i in component ICaL (dimensionless). * STATES[33] is nca_i in component ICaL (dimensionless). * ALGEBRAIC[87] is PhiCaL_ss in component ICaL (dimensionless). * ALGEBRAIC[88] is PhiCaNa_ss in component ICaL (dimensionless). * ALGEBRAIC[89] is PhiCaK_ss in component ICaL (dimensionless). * ALGEBRAIC[106] is PhiCaL_i in component ICaL (dimensionless). * ALGEBRAIC[107] is PhiCaNa_i in component ICaL (dimensionless). * ALGEBRAIC[108] is PhiCaK_i in component ICaL (dimensionless). * CONSTANTS[121] is PCa in component ICaL (dimensionless). * CONSTANTS[131] is PCap in component ICaL (dimensionless). * CONSTANTS[132] is PCaNa in component ICaL (dimensionless). * CONSTANTS[133] is PCaK in component ICaL (dimensionless). * CONSTANTS[137] is PCaNap in component ICaL (dimensionless). * CONSTANTS[138] is PCaKp in component ICaL (dimensionless). * ALGEBRAIC[90] is fICaLp in component ICaL (dimensionless). * ALGEBRAIC[22] is td in component ICaL (millisecond). * ALGEBRAIC[23] is tff in component ICaL (millisecond). * ALGEBRAIC[24] is tfs in component ICaL (millisecond). * ALGEBRAIC[33] is tfcaf in component ICaL (millisecond). * ALGEBRAIC[34] is tfcas in component ICaL (millisecond). * CONSTANTS[50] is tjca in component ICaL (millisecond). * ALGEBRAIC[35] is tffp in component ICaL (millisecond). * ALGEBRAIC[40] is tfcafp in component ICaL (millisecond). * CONSTANTS[51] is vShift in component ICaL (millivolt). * CONSTANTS[52] is offset in component ICaL (millisecond). * CONSTANTS[122] is Io in component ICaL (dimensionless). * ALGEBRAIC[83] is Iss in component ICaL (dimensionless). * ALGEBRAIC[98] is Ii in component ICaL (dimensionless). * CONSTANTS[53] is dielConstant in component ICaL (per_kelvin). * CONSTANTS[134] is constA in component ICaL (dimensionless). * CONSTANTS[139] is gamma_cao in component ICaL (dimensionless). * ALGEBRAIC[84] is gamma_cass in component ICaL (dimensionless). * ALGEBRAIC[101] is gamma_cai in component ICaL (dimensionless). * CONSTANTS[140] is gamma_nao in component ICaL (dimensionless). * ALGEBRAIC[85] is gamma_nass in component ICaL (dimensionless). * ALGEBRAIC[104] is gamma_nai in component ICaL (dimensionless). * CONSTANTS[141] is gamma_ko in component ICaL (dimensionless). * ALGEBRAIC[86] is gamma_kss in component ICaL (dimensionless). * ALGEBRAIC[105] is gamma_ki in component ICaL (dimensionless). * CONSTANTS[54] is ICaL_fractionSS in component ICaL (dimensionless). * CONSTANTS[55] is GKr_b in component IKr (milliS_per_microF). * STATES[34] is C1 in component IKr (dimensionless). * STATES[35] is C2 in component IKr (dimensionless). * STATES[36] is C3 in component IKr (dimensionless). * STATES[37] is I in component IKr (dimensionless). * STATES[38] is O in component IKr (dimensionless). * ALGEBRAIC[41] is alpha in component IKr (per_millisecond). * ALGEBRAIC[47] is beta in component IKr (per_millisecond). * CONSTANTS[56] is alpha_1 in component IKr (per_millisecond). * CONSTANTS[57] is beta_1 in component IKr (per_millisecond). * ALGEBRAIC[42] is alpha_2 in component IKr (per_millisecond). * ALGEBRAIC[48] is beta_2 in component IKr (per_millisecond). * ALGEBRAIC[52] is alpha_i in component IKr (per_millisecond). * ALGEBRAIC[55] is beta_i in component IKr (per_millisecond). * ALGEBRAIC[58] is alpha_C2ToI in component IKr (per_millisecond). * ALGEBRAIC[62] is beta_ItoC2 in component IKr (per_millisecond). * CONSTANTS[123] is GKr in component IKr (milliS_per_microF). * CONSTANTS[58] is GKs_b in component IKs (milliS_per_microF). * CONSTANTS[124] is GKs in component IKs (milliS_per_microF). * ALGEBRAIC[12] is xs1ss in component IKs (dimensionless). * ALGEBRAIC[26] is xs2ss in component IKs (dimensionless). * ALGEBRAIC[27] is txs1 in component IKs (millisecond). * STATES[39] is xs1 in component IKs (dimensionless). * STATES[40] is xs2 in component IKs (dimensionless). * ALGEBRAIC[116] is KsCa in component IKs (dimensionless). * ALGEBRAIC[36] is txs2 in component IKs (millisecond). * CONSTANTS[125] is GK1 in component IK1 (milliS_per_microF). * CONSTANTS[59] is GK1_b in component IK1 (milliS_per_microF). * ALGEBRAIC[118] is aK1 in component IK1 (dimensionless). * ALGEBRAIC[119] is bK1 in component IK1 (dimensionless). * ALGEBRAIC[120] is K1ss in component IK1 (dimensionless). * CONSTANTS[60] is INaCa_fractionSS in component INaCa (dimensionless). * CONSTANTS[61] is kna1 in component INaCa (per_millisecond). * CONSTANTS[62] is kna2 in component INaCa (per_millisecond). * CONSTANTS[63] is kna3 in component INaCa (per_millisecond). * CONSTANTS[64] is kasymm in component INaCa (dimensionless). * CONSTANTS[65] is wna in component INaCa (dimensionless). * CONSTANTS[66] is wca in component INaCa (dimensionless). * CONSTANTS[67] is wnaca in component INaCa (dimensionless). * CONSTANTS[68] is kcaon in component INaCa (per_millisecond). * CONSTANTS[69] is kcaoff in component INaCa (per_millisecond). * CONSTANTS[70] is qna in component INaCa (dimensionless). * CONSTANTS[71] is qca in component INaCa (dimensionless). * ALGEBRAIC[123] is hna in component INaCa (dimensionless). * ALGEBRAIC[122] is hca in component INaCa (dimensionless). * CONSTANTS[72] is KmCaAct in component INaCa (millimolar). * CONSTANTS[73] is Gncx_b in component INaCa (milliS_per_microF). * CONSTANTS[152] is Gncx in component INaCa (milliS_per_microF). * ALGEBRAIC[124] is h1_i in component INaCa (dimensionless). * ALGEBRAIC[125] is h2_i in component INaCa (dimensionless). * ALGEBRAIC[126] is h3_i in component INaCa (dimensionless). * ALGEBRAIC[127] is h4_i in component INaCa (dimensionless). * ALGEBRAIC[128] is h5_i in component INaCa (dimensionless). * ALGEBRAIC[129] is h6_i in component INaCa (dimensionless). * ALGEBRAIC[130] is h7_i in component INaCa (dimensionless). * ALGEBRAIC[131] is h8_i in component INaCa (dimensionless). * ALGEBRAIC[132] is h9_i in component INaCa (dimensionless). * CONSTANTS[146] is h10_i in component INaCa (dimensionless). * CONSTANTS[147] is h11_i in component INaCa (dimensionless). * CONSTANTS[148] is h12_i in component INaCa (dimensionless). * CONSTANTS[149] is k1_i in component INaCa (dimensionless). * CONSTANTS[150] is k2_i in component INaCa (dimensionless). * ALGEBRAIC[133] is k3p_i in component INaCa (dimensionless). * ALGEBRAIC[134] is k3pp_i in component INaCa (dimensionless). * ALGEBRAIC[135] is k3_i in component INaCa (dimensionless). * ALGEBRAIC[138] is k4_i in component INaCa (dimensionless). * ALGEBRAIC[136] is k4p_i in component INaCa (dimensionless). * ALGEBRAIC[137] is k4pp_i in component INaCa (dimensionless). * CONSTANTS[151] is k5_i in component INaCa (dimensionless). * ALGEBRAIC[139] is k6_i in component INaCa (dimensionless). * ALGEBRAIC[140] is k7_i in component INaCa (dimensionless). * ALGEBRAIC[141] is k8_i in component INaCa (dimensionless). * ALGEBRAIC[142] is x1_i in component INaCa (dimensionless). * ALGEBRAIC[143] is x2_i in component INaCa (dimensionless). * ALGEBRAIC[144] is x3_i in component INaCa (dimensionless). * ALGEBRAIC[145] is x4_i in component INaCa (dimensionless). * ALGEBRAIC[146] is E1_i in component INaCa (dimensionless). * ALGEBRAIC[147] is E2_i in component INaCa (dimensionless). * ALGEBRAIC[148] is E3_i in component INaCa (dimensionless). * ALGEBRAIC[149] is E4_i in component INaCa (dimensionless). * ALGEBRAIC[150] is allo_i in component INaCa (dimensionless). * ALGEBRAIC[151] is JncxNa_i in component INaCa (millimolar_per_millisecond). * ALGEBRAIC[152] is JncxCa_i in component INaCa (millimolar_per_millisecond). * ALGEBRAIC[154] is h1_ss in component INaCa (dimensionless). * ALGEBRAIC[155] is h2_ss in component INaCa (dimensionless). * ALGEBRAIC[156] is h3_ss in component INaCa (dimensionless). * ALGEBRAIC[157] is h4_ss in component INaCa (dimensionless). * ALGEBRAIC[158] is h5_ss in component INaCa (dimensionless). * ALGEBRAIC[159] is h6_ss in component INaCa (dimensionless). * ALGEBRAIC[160] is h7_ss in component INaCa (dimensionless). * ALGEBRAIC[161] is h8_ss in component INaCa (dimensionless). * ALGEBRAIC[162] is h9_ss in component INaCa (dimensionless). * CONSTANTS[153] is h10_ss in component INaCa (dimensionless). * CONSTANTS[154] is h11_ss in component INaCa (dimensionless). * CONSTANTS[155] is h12_ss in component INaCa (dimensionless). * CONSTANTS[156] is k1_ss in component INaCa (dimensionless). * CONSTANTS[157] is k2_ss in component INaCa (dimensionless). * ALGEBRAIC[163] is k3p_ss in component INaCa (dimensionless). * ALGEBRAIC[164] is k3pp_ss in component INaCa (dimensionless). * ALGEBRAIC[165] is k3_ss in component INaCa (dimensionless). * ALGEBRAIC[168] is k4_ss in component INaCa (dimensionless). * ALGEBRAIC[166] is k4p_ss in component INaCa (dimensionless). * ALGEBRAIC[167] is k4pp_ss in component INaCa (dimensionless). * CONSTANTS[158] is k5_ss in component INaCa (dimensionless). * ALGEBRAIC[169] is k6_ss in component INaCa (dimensionless). * ALGEBRAIC[170] is k7_ss in component INaCa (dimensionless). * ALGEBRAIC[171] is k8_ss in component INaCa (dimensionless). * ALGEBRAIC[172] is x1_ss in component INaCa (dimensionless). * ALGEBRAIC[173] is x2_ss in component INaCa (dimensionless). * ALGEBRAIC[174] is x3_ss in component INaCa (dimensionless). * ALGEBRAIC[175] is x4_ss in component INaCa (dimensionless). * ALGEBRAIC[176] is E1_ss in component INaCa (dimensionless). * ALGEBRAIC[177] is E2_ss in component INaCa (dimensionless). * ALGEBRAIC[178] is E3_ss in component INaCa (dimensionless). * ALGEBRAIC[179] is E4_ss in component INaCa (dimensionless). * ALGEBRAIC[180] is allo_ss in component INaCa (dimensionless). * ALGEBRAIC[181] is JncxNa_ss in component INaCa (millimolar_per_millisecond). * ALGEBRAIC[182] is JncxCa_ss in component INaCa (millimolar_per_millisecond). * CONSTANTS[74] is k1p in component INaK (per_millisecond). * CONSTANTS[75] is k1m in component INaK (per_millisecond). * CONSTANTS[76] is k2p in component INaK (per_millisecond). * CONSTANTS[77] is k2m in component INaK (per_millisecond). * CONSTANTS[78] is k3p in component INaK (per_millisecond). * CONSTANTS[79] is k3m in component INaK (per_millisecond). * CONSTANTS[80] is k4p in component INaK (per_millisecond). * CONSTANTS[81] is k4m in component INaK (per_millisecond). * CONSTANTS[82] is Knai0 in component INaK (millimolar). * CONSTANTS[83] is Knao0 in component INaK (millimolar). * CONSTANTS[84] is delta in component INaK (millivolt). * CONSTANTS[85] is Kki in component INaK (per_millisecond). * CONSTANTS[86] is Kko in component INaK (per_millisecond). * CONSTANTS[87] is MgADP in component INaK (millimolar). * CONSTANTS[88] is MgATP in component INaK (millimolar). * CONSTANTS[89] is Kmgatp in component INaK (millimolar). * CONSTANTS[90] is H in component INaK (millimolar). * CONSTANTS[91] is eP in component INaK (dimensionless). * CONSTANTS[92] is Khp in component INaK (millimolar). * CONSTANTS[93] is Knap in component INaK (millimolar). * CONSTANTS[94] is Kxkur in component INaK (millimolar). * CONSTANTS[95] is Pnak_b in component INaK (milliS_per_microF). * CONSTANTS[162] is Pnak in component INaK (milliS_per_microF). * ALGEBRAIC[184] is Knai in component INaK (millimolar). * ALGEBRAIC[185] is Knao in component INaK (millimolar). * ALGEBRAIC[186] is P in component INaK (dimensionless). * ALGEBRAIC[187] is a1 in component INaK (dimensionless). * CONSTANTS[159] is b1 in component INaK (dimensionless). * CONSTANTS[160] is a2 in component INaK (dimensionless). * ALGEBRAIC[188] is b2 in component INaK (dimensionless). * ALGEBRAIC[189] is a3 in component INaK (dimensionless). * ALGEBRAIC[190] is b3 in component INaK (dimensionless). * CONSTANTS[161] is a4 in component INaK (dimensionless). * ALGEBRAIC[191] is b4 in component INaK (dimensionless). * ALGEBRAIC[192] is x1 in component INaK (dimensionless). * ALGEBRAIC[193] is x2 in component INaK (dimensionless). * ALGEBRAIC[194] is x3 in component INaK (dimensionless). * ALGEBRAIC[195] is x4 in component INaK (dimensionless). * ALGEBRAIC[196] is E1 in component INaK (dimensionless). * ALGEBRAIC[197] is E2 in component INaK (dimensionless). * ALGEBRAIC[198] is E3 in component INaK (dimensionless). * ALGEBRAIC[199] is E4 in component INaK (dimensionless). * ALGEBRAIC[200] is JnakNa in component INaK (millimolar_per_millisecond). * ALGEBRAIC[201] is JnakK in component INaK (millimolar_per_millisecond). * ALGEBRAIC[203] is xkb in component IKb (dimensionless). * CONSTANTS[96] is GKb_b in component IKb (milliS_per_microF). * CONSTANTS[126] is GKb in component IKb (milliS_per_microF). * CONSTANTS[97] is PNab in component INab (milliS_per_microF). * CONSTANTS[98] is PCab in component ICab (milliS_per_microF). * CONSTANTS[99] is GpCa in component IpCa (milliS_per_microF). * CONSTANTS[100] is KmCap in component IpCa (millimolar). * CONSTANTS[101] is GClCa in component ICl (milliS_per_microF). * CONSTANTS[102] is GClb in component ICl (milliS_per_microF). * CONSTANTS[103] is KdClCa in component ICl (millimolar). * CONSTANTS[104] is Fjunc in component ICl (dimensionless). * ALGEBRAIC[210] is IClCa_junc in component ICl (microA_per_microF). * ALGEBRAIC[212] is IClCa_sl in component ICl (microA_per_microF). * CONSTANTS[105] is tauNa in component diff (millisecond). * CONSTANTS[106] is tauK in component diff (millisecond). * CONSTANTS[107] is tauCa in component diff (millisecond). * CONSTANTS[108] is bt in component ryr (millisecond). * CONSTANTS[127] is a_rel in component ryr (millimolar_per_millisecond). * ALGEBRAIC[93] is Jrel_inf_b in component ryr (millimolar_per_millisecond). * ALGEBRAIC[96] is Jrel_inf in component ryr (millimolar_per_millisecond). * ALGEBRAIC[99] is tau_rel_b in component ryr (millisecond). * ALGEBRAIC[102] is tau_rel in component ryr (millisecond). * STATES[41] is Jrel_np in component ryr (millimolar_per_millisecond). * CONSTANTS[128] is btp in component ryr (millisecond). * CONSTANTS[135] is a_relp in component ryr (millimolar_per_millisecond). * ALGEBRAIC[94] is Jrel_infp_b in component ryr (millimolar_per_millisecond). * ALGEBRAIC[97] is Jrel_infp in component ryr (millimolar_per_millisecond). * ALGEBRAIC[100] is tau_relp_b in component ryr (millisecond). * ALGEBRAIC[103] is tau_relp in component ryr (millisecond). * STATES[42] is Jrel_p in component ryr (millimolar_per_millisecond). * CONSTANTS[109] is cajsr_half in component ryr (millimolar). * ALGEBRAIC[213] is fJrelp in component ryr (dimensionless). * CONSTANTS[110] is Jrel_b in component ryr (dimensionless). * CONSTANTS[129] is upScale in component SERCA (dimensionless). * ALGEBRAIC[217] is Jupnp in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[218] is Jupp in component SERCA (millimolar_per_millisecond). * ALGEBRAIC[219] is fJupp in component SERCA (dimensionless). * ALGEBRAIC[220] is Jleak in component SERCA (millimolar_per_millisecond). * CONSTANTS[111] is Jup_b in component SERCA (dimensionless). * RATES[0] is d/dt v in component membrane (millivolt). * RATES[1] is d/dt CaMKt in component CaMK (millimolar). * RATES[3] is d/dt nai in component intracellular_ions (millimolar). * RATES[4] is d/dt nass in component intracellular_ions (millimolar). * RATES[5] is d/dt ki in component intracellular_ions (millimolar). * RATES[6] is d/dt kss in component intracellular_ions (millimolar). * RATES[9] is d/dt cai in component intracellular_ions (millimolar). * RATES[2] is d/dt cass in component intracellular_ions (millimolar). * RATES[7] is d/dt cansr in component intracellular_ions (millimolar). * RATES[8] is d/dt cajsr in component intracellular_ions (millimolar). * RATES[10] is d/dt m in component INa (dimensionless). * RATES[11] is d/dt h in component INa (dimensionless). * RATES[12] is d/dt j in component INa (dimensionless). * RATES[13] is d/dt hp in component INa (dimensionless). * RATES[14] is d/dt jp in component INa (dimensionless). * RATES[15] is d/dt mL in component INaL (dimensionless). * RATES[16] is d/dt hL in component INaL (dimensionless). * RATES[17] is d/dt hLp in component INaL (dimensionless). * RATES[18] is d/dt a in component Ito (dimensionless). * RATES[19] is d/dt iF in component Ito (dimensionless). * RATES[20] is d/dt iS in component Ito (dimensionless). * RATES[21] is d/dt ap in component Ito (dimensionless). * RATES[22] is d/dt iFp in component Ito (dimensionless). * RATES[23] is d/dt iSp in component Ito (dimensionless). * RATES[24] is d/dt d in component ICaL (dimensionless). * RATES[25] is d/dt ff in component ICaL (dimensionless). * RATES[26] is d/dt fs in component ICaL (dimensionless). * RATES[27] is d/dt fcaf in component ICaL (dimensionless). * RATES[28] is d/dt fcas in component ICaL (dimensionless). * RATES[29] is d/dt jca in component ICaL (dimensionless). * RATES[30] is d/dt ffp in component ICaL (dimensionless). * RATES[31] is d/dt fcafp in component ICaL (dimensionless). * RATES[32] is d/dt nca_ss in component ICaL (dimensionless). * RATES[33] is d/dt nca_i in component ICaL (dimensionless). * RATES[36] is d/dt C3 in component IKr (dimensionless). * RATES[35] is d/dt C2 in component IKr (dimensionless). * RATES[34] is d/dt C1 in component IKr (dimensionless). * RATES[38] is d/dt O in component IKr (dimensionless). * RATES[37] is d/dt I in component IKr (dimensionless). * RATES[39] is d/dt xs1 in component IKs (dimensionless). * RATES[40] is d/dt xs2 in component IKs (dimensionless). * RATES[41] is d/dt Jrel_np in component ryr (millimolar_per_millisecond). * RATES[42] is d/dt Jrel_p in component ryr (millimolar_per_millisecond). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 2; CONSTANTS[1] = 140.0; CONSTANTS[2] = 1.8; CONSTANTS[3] = 5.0; CONSTANTS[4] = 150.0; CONSTANTS[5] = 8314; CONSTANTS[6] = 310; CONSTANTS[7] = 96485; CONSTANTS[8] = 1; CONSTANTS[9] = 2; CONSTANTS[10] = 1; CONSTANTS[11] = -1; CONSTANTS[12] = 0.01; CONSTANTS[13] = 0.0011; STATES[0] = -89.1704; CONSTANTS[14] = 0; CONSTANTS[15] = 100000000000000000; CONSTANTS[16] = -53; CONSTANTS[17] = 1000; CONSTANTS[18] = 1.0; CONSTANTS[19] = 0.15; CONSTANTS[20] = 0.05; CONSTANTS[21] = 0.00068; CONSTANTS[22] = 0.05; CONSTANTS[23] = 0.0015; STATES[1] = 0.0192; STATES[2] = 6.5781e-05; CONSTANTS[24] = 0.05; CONSTANTS[25] = 0.00238; CONSTANTS[26] = 0.07; CONSTANTS[27] = 0.0005; CONSTANTS[28] = 0.047; CONSTANTS[29] = 0.00087; CONSTANTS[30] = 1.124; CONSTANTS[31] = 0.0087; CONSTANTS[32] = 10; CONSTANTS[33] = 0.8; STATES[3] = 15.0038; STATES[4] = 15.0043; STATES[5] = 143.0403; STATES[6] = 143.0402; STATES[7] = 1.9557; STATES[8] = 1.9593; STATES[9] = 8.166e-05; CONSTANTS[34] = 24.0; CONSTANTS[35] = 0.01833; CONSTANTS[36] = 4.3195; CONSTANTS[37] = 0.0; CONSTANTS[38] = 5; CONSTANTS[39] = 2; CONSTANTS[40] = 0.25; STATES[10] = 0.00073818; STATES[11] = 0.8365; STATES[12] = 0.8363; STATES[13] = 0.6838; STATES[14] = 0.8358; CONSTANTS[41] = 11.7802; STATES[15] = 0.00015079; CONSTANTS[42] = 200; STATES[16] = 0.5327; STATES[17] = 0.2834; CONSTANTS[43] = 0.0279; CONSTANTS[44] = 0.16; STATES[18] = 0.00092527; CONSTANTS[45] = 0; STATES[19] = 0.9996; STATES[20] = 0.5671; STATES[21] = 0.00047143; STATES[22] = 0.9996; STATES[23] = 0.6261; CONSTANTS[46] = 0.002; CONSTANTS[47] = 500; CONSTANTS[48] = 8.3757e-05; STATES[24] = 0; CONSTANTS[49] = 0.6; STATES[25] = 1.0; STATES[26] = 0.92; STATES[27] = 1.0; STATES[28] = 0.9998; STATES[29] = 1.0; STATES[30] = 1.0; STATES[31] = 1.0; STATES[32] = 0.00051399; STATES[33] = 0.0012; CONSTANTS[50] = 75; CONSTANTS[51] = 0; CONSTANTS[52] = 0; CONSTANTS[53] = 74; CONSTANTS[54] = 0.8; CONSTANTS[55] = 0.0321; STATES[34] = 0.00069560; STATES[35] = 0.00082672; STATES[36] = 0.9979; STATES[37] = 1.8784e-05; STATES[38] = 0.00054206; CONSTANTS[56] = 0.154375; CONSTANTS[57] = 0.1911; CONSTANTS[58] = 0.0011; STATES[39] = 0.2653; STATES[40] = 0.00016921; CONSTANTS[59] = 0.6992; CONSTANTS[60] = 0.35; CONSTANTS[61] = 15; CONSTANTS[62] = 5; CONSTANTS[63] = 88.12; CONSTANTS[64] = 12.5; CONSTANTS[65] = 6e4; CONSTANTS[66] = 6e4; CONSTANTS[67] = 5e3; CONSTANTS[68] = 1.5e6; CONSTANTS[69] = 5e3; CONSTANTS[70] = 0.5224; CONSTANTS[71] = 0.167; CONSTANTS[72] = 150e-6; CONSTANTS[73] = 0.0034; CONSTANTS[74] = 949.5; CONSTANTS[75] = 182.4; CONSTANTS[76] = 687.2; CONSTANTS[77] = 39.4; CONSTANTS[78] = 1899; CONSTANTS[79] = 79300; CONSTANTS[80] = 639; CONSTANTS[81] = 40; CONSTANTS[82] = 9.073; CONSTANTS[83] = 27.78; CONSTANTS[84] = -0.155; CONSTANTS[85] = 0.5; CONSTANTS[86] = 0.3582; CONSTANTS[87] = 0.05; CONSTANTS[88] = 9.8; CONSTANTS[89] = 1.698e-7; CONSTANTS[90] = 1e-7; CONSTANTS[91] = 4.2; CONSTANTS[92] = 1.698e-7; CONSTANTS[93] = 224; CONSTANTS[94] = 292; CONSTANTS[95] = 15.4509; CONSTANTS[96] = 0.0189; CONSTANTS[97] = 1.9239e-09; CONSTANTS[98] = 5.9194e-08; CONSTANTS[99] = 5e-04; CONSTANTS[100] = 0.0005; CONSTANTS[101] = 0.2843; CONSTANTS[102] = 1.98e-3; CONSTANTS[103] = 0.1; CONSTANTS[104] = 1; CONSTANTS[105] = 2.0; CONSTANTS[106] = 2.0; CONSTANTS[107] = 0.2; CONSTANTS[108] = 4.75; STATES[41] = 0; STATES[42] = 0; CONSTANTS[109] = 1.7; CONSTANTS[110] = 1.5378; CONSTANTS[111] = 1.0; CONSTANTS[112] = 1000.00*3.14000*CONSTANTS[13]*CONSTANTS[13]*CONSTANTS[12]; CONSTANTS[113] = (CONSTANTS[0]==1.00000 ? CONSTANTS[24]*1.30000 : CONSTANTS[24]); CONSTANTS[114] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[11]*CONSTANTS[7]))*log(CONSTANTS[4]/CONSTANTS[34]); CONSTANTS[115] = pow(CONSTANTS[3]/CONSTANTS[38], 0.240000); CONSTANTS[116] = 1.00000/(1.00000+pow(CONSTANTS[39]/CONSTANTS[40], 2.00000)); CONSTANTS[117] = 3.00000*CONSTANTS[42]; CONSTANTS[118] = (CONSTANTS[0]==1.00000 ? CONSTANTS[43]*0.600000 : CONSTANTS[43]); CONSTANTS[119] = (CONSTANTS[0]==1.00000 ? CONSTANTS[44]*2.00000 : CONSTANTS[0]==2.00000 ? CONSTANTS[44]*2.00000 : CONSTANTS[44]); CONSTANTS[120] = 1.00000 - CONSTANTS[49]; CONSTANTS[121] = (CONSTANTS[0]==1.00000 ? CONSTANTS[48]*1.20000 : CONSTANTS[0]==2.00000 ? CONSTANTS[48]*2.00000 : CONSTANTS[48]); CONSTANTS[122] = ( 0.500000*(CONSTANTS[1]+CONSTANTS[3]+CONSTANTS[4]+ 4.00000*CONSTANTS[2]))/1000.00; CONSTANTS[123] = (CONSTANTS[0]==1.00000 ? CONSTANTS[55]*1.30000 : CONSTANTS[0]==2.00000 ? CONSTANTS[55]*0.800000 : CONSTANTS[55]); CONSTANTS[124] = (CONSTANTS[0]==1.00000 ? CONSTANTS[58]*1.40000 : CONSTANTS[58]); CONSTANTS[125] = (CONSTANTS[0]==1.00000 ? CONSTANTS[59]*1.20000 : CONSTANTS[0]==2.00000 ? CONSTANTS[59]*1.30000 : CONSTANTS[59]); CONSTANTS[126] = (CONSTANTS[0]==1.00000 ? CONSTANTS[96]*0.600000 : CONSTANTS[96]); CONSTANTS[127] = ( 0.500000*CONSTANTS[108])/1.00000; CONSTANTS[128] = 1.25000*CONSTANTS[108]; CONSTANTS[129] = (CONSTANTS[0]==1.00000 ? 1.30000 : 1.00000); CONSTANTS[130] = 2.00000*3.14000*CONSTANTS[13]*CONSTANTS[13]+ 2.00000*3.14000*CONSTANTS[13]*CONSTANTS[12]; CONSTANTS[131] = 1.10000*CONSTANTS[121]; CONSTANTS[132] = 0.00125000*CONSTANTS[121]; CONSTANTS[133] = 0.000357400*CONSTANTS[121]; CONSTANTS[134] = 1.82000e+06*pow( CONSTANTS[53]*CONSTANTS[6], - 1.50000); CONSTANTS[135] = ( 0.500000*CONSTANTS[128])/1.00000; CONSTANTS[136] = 2.00000*CONSTANTS[130]; CONSTANTS[137] = 0.00125000*CONSTANTS[131]; CONSTANTS[138] = 0.000357400*CONSTANTS[131]; CONSTANTS[139] = exp( - CONSTANTS[134]*4.00000*( pow(CONSTANTS[122], 1.0 / 2)/(1.00000+ pow(CONSTANTS[122], 1.0 / 2)) - 0.300000*CONSTANTS[122])); CONSTANTS[140] = exp( - CONSTANTS[134]*1.00000*( pow(CONSTANTS[122], 1.0 / 2)/(1.00000+ pow(CONSTANTS[122], 1.0 / 2)) - 0.300000*CONSTANTS[122])); CONSTANTS[141] = exp( - CONSTANTS[134]*1.00000*( pow(CONSTANTS[122], 1.0 / 2)/(1.00000+ pow(CONSTANTS[122], 1.0 / 2)) - 0.300000*CONSTANTS[122])); CONSTANTS[142] = 0.680000*CONSTANTS[112]; CONSTANTS[143] = 0.0552000*CONSTANTS[112]; CONSTANTS[144] = 0.00480000*CONSTANTS[112]; CONSTANTS[145] = 0.0200000*CONSTANTS[112]; CONSTANTS[146] = CONSTANTS[64]+1.00000+ (CONSTANTS[1]/CONSTANTS[61])*(1.00000+CONSTANTS[1]/CONSTANTS[62]); CONSTANTS[147] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[146]*CONSTANTS[61]*CONSTANTS[62]); CONSTANTS[148] = 1.00000/CONSTANTS[146]; CONSTANTS[149] = CONSTANTS[148]*CONSTANTS[2]*CONSTANTS[68]; CONSTANTS[150] = CONSTANTS[69]; CONSTANTS[151] = CONSTANTS[69]; CONSTANTS[152] = (CONSTANTS[0]==1.00000 ? CONSTANTS[73]*1.10000 : CONSTANTS[0]==2.00000 ? CONSTANTS[73]*1.40000 : CONSTANTS[73]); CONSTANTS[153] = CONSTANTS[64]+1.00000+ (CONSTANTS[1]/CONSTANTS[61])*(1.00000+CONSTANTS[1]/CONSTANTS[62]); CONSTANTS[154] = ( CONSTANTS[1]*CONSTANTS[1])/( CONSTANTS[153]*CONSTANTS[61]*CONSTANTS[62]); CONSTANTS[155] = 1.00000/CONSTANTS[153]; CONSTANTS[156] = CONSTANTS[155]*CONSTANTS[2]*CONSTANTS[68]; CONSTANTS[157] = CONSTANTS[69]; CONSTANTS[158] = CONSTANTS[69]; CONSTANTS[159] = CONSTANTS[75]*CONSTANTS[87]; CONSTANTS[160] = CONSTANTS[76]; CONSTANTS[161] = (( CONSTANTS[80]*CONSTANTS[88])/CONSTANTS[89])/(1.00000+CONSTANTS[88]/CONSTANTS[89]); CONSTANTS[162] = (CONSTANTS[0]==1.00000 ? CONSTANTS[95]*0.900000 : CONSTANTS[0]==2.00000 ? CONSTANTS[95]*0.700000 : CONSTANTS[95]); } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); RATES[16] = (ALGEBRAIC[3] - STATES[16])/CONSTANTS[42]; ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); RATES[17] = (ALGEBRAIC[4] - STATES[17])/CONSTANTS[117]; ALGEBRAIC[9] = 1.00000/(1.00000+exp((STATES[0]+18.0800)/2.79160)); RATES[29] = (ALGEBRAIC[9] - STATES[29])/CONSTANTS[50]; ALGEBRAIC[0] = 1.00000/pow(1.00000+exp(- (STATES[0]+56.8600)/9.03000), 2.00000); ALGEBRAIC[13] = 0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000)); RATES[10] = (ALGEBRAIC[0] - STATES[10])/ALGEBRAIC[13]; ALGEBRAIC[2] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[16] = 0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000)); RATES[15] = (ALGEBRAIC[2] - STATES[15])/ALGEBRAIC[16]; ALGEBRAIC[5] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 14.3400)/14.8200)); ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+CONSTANTS[45]+100.000)/29.3814))); RATES[18] = (ALGEBRAIC[5] - STATES[18])/ALGEBRAIC[17]; ALGEBRAIC[7] = (STATES[0]>=31.4978 ? 1.00000 : 1.07630*exp( - 1.00700*exp( - 0.0829000*STATES[0]))); ALGEBRAIC[22] = CONSTANTS[52]+0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+CONSTANTS[51]+6.00000))+exp( 0.0900000*(STATES[0]+CONSTANTS[51]+14.0000))); RATES[24] = (ALGEBRAIC[7] - STATES[24])/ALGEBRAIC[22]; ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600)); ALGEBRAIC[23] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000)); RATES[25] = (ALGEBRAIC[8] - STATES[25])/ALGEBRAIC[23]; ALGEBRAIC[24] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000)); RATES[26] = (ALGEBRAIC[8] - STATES[26])/ALGEBRAIC[24]; ALGEBRAIC[10] = STATES[29]*1.00000; ALGEBRAIC[20] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[2], 4.00000)); RATES[32] = ALGEBRAIC[20]*CONSTANTS[47] - STATES[32]*ALGEBRAIC[10]; ALGEBRAIC[21] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[9], 4.00000)); RATES[33] = ALGEBRAIC[21]*CONSTANTS[47] - STATES[33]*ALGEBRAIC[10]; ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[27] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); RATES[39] = (ALGEBRAIC[12] - STATES[39])/ALGEBRAIC[27]; ALGEBRAIC[32] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 24.3400)/14.8200)); RATES[21] = (ALGEBRAIC[32] - STATES[21])/ALGEBRAIC[17]; ALGEBRAIC[19] = ALGEBRAIC[8]; ALGEBRAIC[33] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000)); RATES[27] = (ALGEBRAIC[19] - STATES[27])/ALGEBRAIC[33]; ALGEBRAIC[34] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000)); RATES[28] = (ALGEBRAIC[19] - STATES[28])/ALGEBRAIC[34]; ALGEBRAIC[35] = 2.50000*ALGEBRAIC[23]; RATES[30] = (ALGEBRAIC[8] - STATES[30])/ALGEBRAIC[35]; ALGEBRAIC[26] = ALGEBRAIC[12]; ALGEBRAIC[36] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); RATES[40] = (ALGEBRAIC[26] - STATES[40])/ALGEBRAIC[36]; ALGEBRAIC[43] = ( CONSTANTS[22]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[23]/STATES[2]); RATES[1] = CONSTANTS[20]*ALGEBRAIC[43]*(ALGEBRAIC[43]+STATES[1]) - CONSTANTS[21]*STATES[1]; ALGEBRAIC[1] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000); ALGEBRAIC[14] = (STATES[0]>=- 40.0000 ? 0.00000 : 0.0570000*exp(- (STATES[0]+80.0000)/6.80000)); ALGEBRAIC[29] = (STATES[0]>=- 40.0000 ? 0.770000/( 0.130000*(1.00000+exp(- (STATES[0]+10.6600)/11.1000))) : 2.70000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.348500*STATES[0])); ALGEBRAIC[37] = 1.00000/(ALGEBRAIC[14]+ALGEBRAIC[29]); RATES[11] = (ALGEBRAIC[1] - STATES[11])/ALGEBRAIC[37]; ALGEBRAIC[40] = 2.50000*ALGEBRAIC[33]; RATES[31] = (ALGEBRAIC[19] - STATES[31])/ALGEBRAIC[40]; ALGEBRAIC[38] = ALGEBRAIC[1]; ALGEBRAIC[15] = (STATES[0]>=- 40.0000 ? 0.00000 : ( ( - 25428.0*exp( 0.244400*STATES[0]) - 6.94800e-06*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300)))); ALGEBRAIC[30] = (STATES[0]>=- 40.0000 ? ( 0.600000*exp( 0.0570000*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))) : ( 0.0242400*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400)))); ALGEBRAIC[44] = 1.00000/(ALGEBRAIC[15]+ALGEBRAIC[30]); RATES[12] = (ALGEBRAIC[38] - STATES[12])/ALGEBRAIC[44]; ALGEBRAIC[45] = 1.00000/pow(1.00000+exp((STATES[0]+77.5500)/7.43000), 2.00000); RATES[13] = (ALGEBRAIC[45] - STATES[13])/ALGEBRAIC[37]; ALGEBRAIC[6] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[45]+43.9400)/5.71100)); ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/5.00000)) : 1.00000); ALGEBRAIC[31] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+CONSTANTS[45]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+CONSTANTS[45]+50.0000)/16.5900)); ALGEBRAIC[46] = ALGEBRAIC[31]*ALGEBRAIC[18]; RATES[19] = (ALGEBRAIC[6] - STATES[19])/ALGEBRAIC[46]; ALGEBRAIC[28] = ( STATES[0]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]); ALGEBRAIC[41] = 0.116100*exp( 0.299000*ALGEBRAIC[28]); ALGEBRAIC[47] = 0.244200*exp( - 1.60400*ALGEBRAIC[28]); RATES[36] = ALGEBRAIC[47]*STATES[35] - ALGEBRAIC[41]*STATES[36]; RATES[35] = ( ALGEBRAIC[41]*STATES[36]+ CONSTANTS[57]*STATES[34]) - (ALGEBRAIC[47]+CONSTANTS[56])*STATES[35]; ALGEBRAIC[50] = 1.46000*ALGEBRAIC[44]; RATES[14] = (ALGEBRAIC[38] - STATES[14])/ALGEBRAIC[50]; ALGEBRAIC[39] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+CONSTANTS[45]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+CONSTANTS[45]+114.100)/8.07900)); ALGEBRAIC[51] = ALGEBRAIC[39]*ALGEBRAIC[18]; RATES[20] = (ALGEBRAIC[6] - STATES[20])/ALGEBRAIC[51]; ALGEBRAIC[42] = 0.0578000*exp( 0.971000*ALGEBRAIC[28]); ALGEBRAIC[48] = 0.000349000*exp( - 1.06200*ALGEBRAIC[28]); ALGEBRAIC[52] = 0.253300*exp( 0.595300*ALGEBRAIC[28]); ALGEBRAIC[55] = 0.0652500*exp( - 0.820900*ALGEBRAIC[28]); RATES[38] = ( ALGEBRAIC[42]*STATES[34]+ ALGEBRAIC[55]*STATES[37]) - (ALGEBRAIC[48]+ALGEBRAIC[52])*STATES[38]; ALGEBRAIC[54] = 1.35400+0.000100000/(exp(((STATES[0]+CONSTANTS[45]) - 167.400)/15.8900)+exp(- ((STATES[0]+CONSTANTS[45]) - 12.2300)/0.215400)); ALGEBRAIC[57] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/20.0000)); ALGEBRAIC[60] = ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[46]; RATES[22] = (ALGEBRAIC[6] - STATES[22])/ALGEBRAIC[60]; ALGEBRAIC[61] = ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[51]; RATES[23] = (ALGEBRAIC[6] - STATES[23])/ALGEBRAIC[61]; ALGEBRAIC[58] = 5.20000e-05*exp( 1.52500*ALGEBRAIC[28]); ALGEBRAIC[62] = ( ALGEBRAIC[48]*ALGEBRAIC[55]*ALGEBRAIC[58])/( ALGEBRAIC[42]*ALGEBRAIC[52]); RATES[34] = ( CONSTANTS[56]*STATES[35]+ ALGEBRAIC[48]*STATES[38]+ ALGEBRAIC[62]*STATES[37]) - (CONSTANTS[57]+ALGEBRAIC[42]+ALGEBRAIC[58])*STATES[34]; RATES[37] = ( ALGEBRAIC[58]*STATES[34]+ ALGEBRAIC[52]*STATES[38]) - (ALGEBRAIC[62]+ALGEBRAIC[55])*STATES[37]; ALGEBRAIC[77] = CONSTANTS[49]*STATES[25]+ CONSTANTS[120]*STATES[26]; ALGEBRAIC[78] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[79] = 1.00000 - ALGEBRAIC[78]; ALGEBRAIC[80] = ALGEBRAIC[78]*STATES[27]+ ALGEBRAIC[79]*STATES[28]; ALGEBRAIC[81] = CONSTANTS[49]*STATES[30]+ CONSTANTS[120]*STATES[26]; ALGEBRAIC[82] = ALGEBRAIC[78]*STATES[31]+ ALGEBRAIC[79]*STATES[28]; ALGEBRAIC[25] = ( STATES[0]*CONSTANTS[7]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]); ALGEBRAIC[83] = ( 0.500000*(STATES[4]+STATES[6]+CONSTANTS[34]+ 4.00000*STATES[2]))/1000.00; ALGEBRAIC[84] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) - 0.300000*ALGEBRAIC[83])); ALGEBRAIC[87] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[84]*STATES[2]*exp( 2.00000*ALGEBRAIC[28]) - CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[49] = ALGEBRAIC[43]+STATES[1]; ALGEBRAIC[90] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[91] = CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32])); ALGEBRAIC[93] = (( - CONSTANTS[127]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000)); ALGEBRAIC[96] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[93]*1.70000 : ALGEBRAIC[93]); ALGEBRAIC[99] = CONSTANTS[108]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[102] = (ALGEBRAIC[99]<0.00100000 ? 0.00100000 : ALGEBRAIC[99]); RATES[41] = (ALGEBRAIC[96] - STATES[41])/ALGEBRAIC[102]; ALGEBRAIC[94] = (( - CONSTANTS[135]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000)); ALGEBRAIC[97] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[94]*1.70000 : ALGEBRAIC[94]); ALGEBRAIC[100] = CONSTANTS[128]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[103] = (ALGEBRAIC[100]<0.00100000 ? 0.00100000 : ALGEBRAIC[100]); RATES[42] = (ALGEBRAIC[97] - STATES[42])/ALGEBRAIC[103]; ALGEBRAIC[64] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log(CONSTANTS[3]/STATES[5]); ALGEBRAIC[71] = 1.00000/(1.00000+exp(((STATES[0]+CONSTANTS[45]) - 213.600)/151.200)); ALGEBRAIC[72] = 1.00000 - ALGEBRAIC[71]; ALGEBRAIC[73] = ALGEBRAIC[71]*STATES[19]+ ALGEBRAIC[72]*STATES[20]; ALGEBRAIC[74] = ALGEBRAIC[71]*STATES[22]+ ALGEBRAIC[72]*STATES[23]; ALGEBRAIC[75] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[76] = CONSTANTS[119]*(STATES[0] - ALGEBRAIC[64])*( (1.00000 - ALGEBRAIC[75])*STATES[18]*ALGEBRAIC[73]+ ALGEBRAIC[75]*STATES[21]*ALGEBRAIC[74]); ALGEBRAIC[115] = CONSTANTS[123]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*STATES[38]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[65] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log((CONSTANTS[3]+ CONSTANTS[35]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[35]*STATES[3])); ALGEBRAIC[116] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000)); ALGEBRAIC[117] = CONSTANTS[124]*ALGEBRAIC[116]*STATES[39]*STATES[40]*(STATES[0] - ALGEBRAIC[65]); ALGEBRAIC[118] = 4.09400/(1.00000+exp( 0.121700*((STATES[0] - ALGEBRAIC[64]) - 49.9340))); ALGEBRAIC[119] = ( 15.7200*exp( 0.0674000*((STATES[0] - ALGEBRAIC[64]) - 3.25700))+exp( 0.0618000*((STATES[0] - ALGEBRAIC[64]) - 594.310)))/(1.00000+exp( - 0.162900*((STATES[0] - ALGEBRAIC[64])+14.2070))); ALGEBRAIC[120] = ALGEBRAIC[118]/(ALGEBRAIC[118]+ALGEBRAIC[119]); ALGEBRAIC[121] = CONSTANTS[125]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*ALGEBRAIC[120]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[185] = CONSTANTS[83]*exp(( (1.00000 - CONSTANTS[84])*ALGEBRAIC[28])/3.00000); ALGEBRAIC[189] = ( CONSTANTS[78]*pow(CONSTANTS[3]/CONSTANTS[86], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000); ALGEBRAIC[186] = CONSTANTS[91]/(1.00000+CONSTANTS[90]/CONSTANTS[92]+STATES[3]/CONSTANTS[93]+STATES[5]/CONSTANTS[94]); ALGEBRAIC[190] = ( CONSTANTS[79]*ALGEBRAIC[186]*CONSTANTS[90])/(1.00000+CONSTANTS[88]/CONSTANTS[89]); ALGEBRAIC[184] = CONSTANTS[82]*exp(( CONSTANTS[84]*ALGEBRAIC[28])/3.00000); ALGEBRAIC[187] = ( CONSTANTS[74]*pow(STATES[3]/ALGEBRAIC[184], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000); ALGEBRAIC[188] = ( CONSTANTS[77]*pow(CONSTANTS[1]/ALGEBRAIC[185], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000); ALGEBRAIC[191] = ( CONSTANTS[81]*pow(STATES[5]/CONSTANTS[85], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000); ALGEBRAIC[192] = CONSTANTS[161]*ALGEBRAIC[187]*CONSTANTS[160]+ ALGEBRAIC[188]*ALGEBRAIC[191]*ALGEBRAIC[190]+ CONSTANTS[160]*ALGEBRAIC[191]*ALGEBRAIC[190]+ ALGEBRAIC[190]*ALGEBRAIC[187]*CONSTANTS[160]; ALGEBRAIC[193] = ALGEBRAIC[188]*CONSTANTS[159]*ALGEBRAIC[191]+ ALGEBRAIC[187]*CONSTANTS[160]*ALGEBRAIC[189]+ ALGEBRAIC[189]*CONSTANTS[159]*ALGEBRAIC[191]+ CONSTANTS[160]*ALGEBRAIC[189]*ALGEBRAIC[191]; ALGEBRAIC[194] = CONSTANTS[160]*ALGEBRAIC[189]*CONSTANTS[161]+ ALGEBRAIC[190]*ALGEBRAIC[188]*CONSTANTS[159]+ ALGEBRAIC[188]*CONSTANTS[159]*CONSTANTS[161]+ ALGEBRAIC[189]*CONSTANTS[161]*CONSTANTS[159]; ALGEBRAIC[195] = ALGEBRAIC[191]*ALGEBRAIC[190]*ALGEBRAIC[188]+ ALGEBRAIC[189]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[188]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[190]*ALGEBRAIC[188]*ALGEBRAIC[187]; ALGEBRAIC[196] = ALGEBRAIC[192]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[197] = ALGEBRAIC[193]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[200] = 3.00000*( ALGEBRAIC[196]*ALGEBRAIC[189] - ALGEBRAIC[197]*ALGEBRAIC[190]); ALGEBRAIC[198] = ALGEBRAIC[194]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[199] = ALGEBRAIC[195]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[201] = 2.00000*( ALGEBRAIC[199]*CONSTANTS[159] - ALGEBRAIC[198]*ALGEBRAIC[187]); ALGEBRAIC[202] = CONSTANTS[162]*( CONSTANTS[8]*ALGEBRAIC[200]+ CONSTANTS[10]*ALGEBRAIC[201]); ALGEBRAIC[203] = 1.00000/(1.00000+exp(- (STATES[0] - 10.8968)/23.9871)); ALGEBRAIC[204] = CONSTANTS[126]*ALGEBRAIC[203]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[66] = CONSTANTS[37]*CONSTANTS[36]*CONSTANTS[115]*CONSTANTS[116]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[11] = (VOI>=CONSTANTS[14]&&VOI<=CONSTANTS[15]&&(VOI - CONSTANTS[14]) - floor((VOI - CONSTANTS[14])/CONSTANTS[17])*CONSTANTS[17]<=CONSTANTS[18] ? CONSTANTS[16] : 0.00000); ALGEBRAIC[98] = ( 0.500000*(STATES[3]+STATES[5]+CONSTANTS[34]+ 4.00000*STATES[9]))/1000.00; ALGEBRAIC[105] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) - 0.300000*ALGEBRAIC[98])); ALGEBRAIC[108] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[105]*STATES[5]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[111] = (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33])); ALGEBRAIC[206] = (STATES[6] - STATES[5])/CONSTANTS[106]; RATES[5] = ( - (((ALGEBRAIC[76]+ALGEBRAIC[115]+ALGEBRAIC[117]+ALGEBRAIC[121]+ALGEBRAIC[204]+ALGEBRAIC[66]+ALGEBRAIC[11]) - 2.00000*ALGEBRAIC[202])+ALGEBRAIC[111])*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[142])+( ALGEBRAIC[206]*CONSTANTS[145])/CONSTANTS[142]; ALGEBRAIC[86] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) - 0.300000*ALGEBRAIC[83])); ALGEBRAIC[89] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[86]*STATES[6]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[95] = CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32])); RATES[6] = ( - ALGEBRAIC[95]*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[145]) - ALGEBRAIC[206]; ALGEBRAIC[63] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[8]*CONSTANTS[7]))*log(CONSTANTS[1]/STATES[3]); ALGEBRAIC[67] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[68] = CONSTANTS[41]*(STATES[0] - ALGEBRAIC[63])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[67])*STATES[11]*STATES[12]+ ALGEBRAIC[67]*STATES[13]*STATES[14]); ALGEBRAIC[69] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[70] = CONSTANTS[118]*(STATES[0] - ALGEBRAIC[63])*STATES[15]*( (1.00000 - ALGEBRAIC[69])*STATES[16]+ ALGEBRAIC[69]*STATES[17]); ALGEBRAIC[150] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[9], 2.00000)); ALGEBRAIC[123] = exp( CONSTANTS[70]*ALGEBRAIC[28]); ALGEBRAIC[130] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]); ALGEBRAIC[131] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[130]); ALGEBRAIC[134] = ALGEBRAIC[131]*CONSTANTS[67]; ALGEBRAIC[124] = 1.00000+ (STATES[3]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]); ALGEBRAIC[125] = ( STATES[3]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[124]); ALGEBRAIC[137] = ALGEBRAIC[125]*CONSTANTS[67]; ALGEBRAIC[127] = 1.00000+ (STATES[3]/CONSTANTS[61])*(1.00000+STATES[3]/CONSTANTS[62]); ALGEBRAIC[128] = ( STATES[3]*STATES[3])/( ALGEBRAIC[127]*CONSTANTS[61]*CONSTANTS[62]); ALGEBRAIC[140] = ALGEBRAIC[128]*ALGEBRAIC[125]*CONSTANTS[65]; ALGEBRAIC[141] = ALGEBRAIC[131]*CONSTANTS[147]*CONSTANTS[65]; ALGEBRAIC[132] = 1.00000/ALGEBRAIC[130]; ALGEBRAIC[133] = ALGEBRAIC[132]*CONSTANTS[66]; ALGEBRAIC[135] = ALGEBRAIC[133]+ALGEBRAIC[134]; ALGEBRAIC[122] = exp( CONSTANTS[71]*ALGEBRAIC[28]); ALGEBRAIC[126] = 1.00000/ALGEBRAIC[124]; ALGEBRAIC[136] = ( ALGEBRAIC[126]*CONSTANTS[66])/ALGEBRAIC[122]; ALGEBRAIC[138] = ALGEBRAIC[136]+ALGEBRAIC[137]; ALGEBRAIC[129] = 1.00000/ALGEBRAIC[127]; ALGEBRAIC[139] = ALGEBRAIC[129]*STATES[9]*CONSTANTS[68]; ALGEBRAIC[142] = CONSTANTS[150]*ALGEBRAIC[138]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ CONSTANTS[151]*ALGEBRAIC[140]*(CONSTANTS[150]+ALGEBRAIC[135]); ALGEBRAIC[143] = CONSTANTS[149]*ALGEBRAIC[140]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[138]*ALGEBRAIC[139]*(CONSTANTS[149]+ALGEBRAIC[141]); ALGEBRAIC[144] = CONSTANTS[149]*ALGEBRAIC[135]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ ALGEBRAIC[141]*ALGEBRAIC[139]*(CONSTANTS[150]+ALGEBRAIC[135]); ALGEBRAIC[145] = CONSTANTS[150]*ALGEBRAIC[141]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[135]*CONSTANTS[151]*(CONSTANTS[149]+ALGEBRAIC[141]); ALGEBRAIC[146] = ALGEBRAIC[142]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[147] = ALGEBRAIC[143]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[148] = ALGEBRAIC[144]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[149] = ALGEBRAIC[145]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[151] = ( 3.00000*( ALGEBRAIC[149]*ALGEBRAIC[140] - ALGEBRAIC[146]*ALGEBRAIC[141])+ ALGEBRAIC[148]*ALGEBRAIC[137]) - ALGEBRAIC[147]*ALGEBRAIC[134]; ALGEBRAIC[152] = ALGEBRAIC[147]*CONSTANTS[150] - ALGEBRAIC[146]*CONSTANTS[149]; ALGEBRAIC[153] = (1.00000 - CONSTANTS[60])*CONSTANTS[152]*ALGEBRAIC[150]*( CONSTANTS[8]*ALGEBRAIC[151]+ CONSTANTS[9]*ALGEBRAIC[152]); ALGEBRAIC[205] = ( CONSTANTS[97]*ALGEBRAIC[25]*( STATES[3]*exp(ALGEBRAIC[28]) - CONSTANTS[1]))/(exp(ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[104] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) - 0.300000*ALGEBRAIC[98])); ALGEBRAIC[107] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[104]*STATES[3]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[110] = (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33])); ALGEBRAIC[208] = (STATES[4] - STATES[3])/CONSTANTS[105]; RATES[3] = ( - (ALGEBRAIC[68]+ALGEBRAIC[70]+ 3.00000*ALGEBRAIC[153]+ALGEBRAIC[110]+ 3.00000*ALGEBRAIC[202]+ALGEBRAIC[205])*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[142])+( ALGEBRAIC[208]*CONSTANTS[145])/CONSTANTS[142]; ALGEBRAIC[180] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[2], 2.00000)); ALGEBRAIC[160] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]); ALGEBRAIC[161] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[160]); ALGEBRAIC[164] = ALGEBRAIC[161]*CONSTANTS[67]; ALGEBRAIC[154] = 1.00000+ (STATES[4]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]); ALGEBRAIC[155] = ( STATES[4]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[154]); ALGEBRAIC[167] = ALGEBRAIC[155]*CONSTANTS[67]; ALGEBRAIC[157] = 1.00000+ (STATES[4]/CONSTANTS[61])*(1.00000+STATES[4]/CONSTANTS[62]); ALGEBRAIC[158] = ( STATES[4]*STATES[4])/( ALGEBRAIC[157]*CONSTANTS[61]*CONSTANTS[62]); ALGEBRAIC[170] = ALGEBRAIC[158]*ALGEBRAIC[155]*CONSTANTS[65]; ALGEBRAIC[171] = ALGEBRAIC[161]*CONSTANTS[154]*CONSTANTS[65]; ALGEBRAIC[162] = 1.00000/ALGEBRAIC[160]; ALGEBRAIC[163] = ALGEBRAIC[162]*CONSTANTS[66]; ALGEBRAIC[165] = ALGEBRAIC[163]+ALGEBRAIC[164]; ALGEBRAIC[156] = 1.00000/ALGEBRAIC[154]; ALGEBRAIC[166] = ( ALGEBRAIC[156]*CONSTANTS[66])/ALGEBRAIC[122]; ALGEBRAIC[168] = ALGEBRAIC[166]+ALGEBRAIC[167]; ALGEBRAIC[159] = 1.00000/ALGEBRAIC[157]; ALGEBRAIC[169] = ALGEBRAIC[159]*STATES[2]*CONSTANTS[68]; ALGEBRAIC[172] = CONSTANTS[157]*ALGEBRAIC[168]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ CONSTANTS[158]*ALGEBRAIC[170]*(CONSTANTS[157]+ALGEBRAIC[165]); ALGEBRAIC[173] = CONSTANTS[156]*ALGEBRAIC[170]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[168]*ALGEBRAIC[169]*(CONSTANTS[156]+ALGEBRAIC[171]); ALGEBRAIC[174] = CONSTANTS[156]*ALGEBRAIC[165]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ ALGEBRAIC[171]*ALGEBRAIC[169]*(CONSTANTS[157]+ALGEBRAIC[165]); ALGEBRAIC[175] = CONSTANTS[157]*ALGEBRAIC[171]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[165]*CONSTANTS[158]*(CONSTANTS[156]+ALGEBRAIC[171]); ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[177] = ALGEBRAIC[173]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[178] = ALGEBRAIC[174]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[179] = ALGEBRAIC[175]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[181] = ( 3.00000*( ALGEBRAIC[179]*ALGEBRAIC[170] - ALGEBRAIC[176]*ALGEBRAIC[171])+ ALGEBRAIC[178]*ALGEBRAIC[167]) - ALGEBRAIC[177]*ALGEBRAIC[164]; ALGEBRAIC[182] = ALGEBRAIC[177]*CONSTANTS[157] - ALGEBRAIC[176]*CONSTANTS[156]; ALGEBRAIC[183] = CONSTANTS[60]*CONSTANTS[152]*ALGEBRAIC[180]*( CONSTANTS[8]*ALGEBRAIC[181]+ CONSTANTS[9]*ALGEBRAIC[182]); ALGEBRAIC[85] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) - 0.300000*ALGEBRAIC[83])); ALGEBRAIC[88] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[85]*STATES[4]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[92] = CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32])); RATES[4] = ( - (ALGEBRAIC[92]+ 3.00000*ALGEBRAIC[183])*CONSTANTS[136])/( CONSTANTS[7]*CONSTANTS[145]) - ALGEBRAIC[208]; ALGEBRAIC[211] = (STATES[2] - STATES[9])/CONSTANTS[107]; ALGEBRAIC[213] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[215] = CONSTANTS[110]*( (1.00000 - ALGEBRAIC[213])*STATES[41]+ ALGEBRAIC[213]*STATES[42]); ALGEBRAIC[56] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[2], 2.00000)+( CONSTANTS[30]*CONSTANTS[31])/pow(CONSTANTS[31]+STATES[2], 2.00000)); RATES[2] = ALGEBRAIC[56]*((( - (ALGEBRAIC[91] - 2.00000*ALGEBRAIC[183])*CONSTANTS[136])/( 2.00000*CONSTANTS[7]*CONSTANTS[145])+( ALGEBRAIC[215]*CONSTANTS[144])/CONSTANTS[145]) - ALGEBRAIC[211]); ALGEBRAIC[101] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) - 0.300000*ALGEBRAIC[98])); ALGEBRAIC[106] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) - CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[109] = (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33])); ALGEBRAIC[112] = ALGEBRAIC[91]+ALGEBRAIC[109]; ALGEBRAIC[113] = ALGEBRAIC[92]+ALGEBRAIC[110]; ALGEBRAIC[114] = ALGEBRAIC[95]+ALGEBRAIC[111]; ALGEBRAIC[209] = ( CONSTANTS[99]*STATES[9])/(CONSTANTS[100]+STATES[9]); ALGEBRAIC[207] = ( CONSTANTS[98]*4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) - CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[210] = (( CONSTANTS[104]*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[2]))*(STATES[0] - CONSTANTS[114]); ALGEBRAIC[212] = (( (1.00000 - CONSTANTS[104])*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[9]))*(STATES[0] - CONSTANTS[114]); ALGEBRAIC[214] = ALGEBRAIC[210]+ALGEBRAIC[212]; ALGEBRAIC[216] = CONSTANTS[102]*(STATES[0] - CONSTANTS[114]); RATES[0] = - (ALGEBRAIC[68]+ALGEBRAIC[70]+ALGEBRAIC[76]+ALGEBRAIC[112]+ALGEBRAIC[113]+ALGEBRAIC[114]+ALGEBRAIC[115]+ALGEBRAIC[117]+ALGEBRAIC[121]+ALGEBRAIC[153]+ALGEBRAIC[183]+ALGEBRAIC[202]+ALGEBRAIC[205]+ALGEBRAIC[204]+ALGEBRAIC[209]+ALGEBRAIC[207]+ALGEBRAIC[214]+ALGEBRAIC[216]+ALGEBRAIC[66]+ALGEBRAIC[11]); ALGEBRAIC[217] = ( CONSTANTS[129]*0.00542500*STATES[9])/(STATES[9]+0.000920000); ALGEBRAIC[218] = ( CONSTANTS[129]*2.75000*0.00542500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000); ALGEBRAIC[219] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[220] = ( 0.00488250*STATES[7])/15.0000; ALGEBRAIC[221] = CONSTANTS[111]*(( (1.00000 - ALGEBRAIC[219])*ALGEBRAIC[217]+ ALGEBRAIC[219]*ALGEBRAIC[218]) - ALGEBRAIC[220]); ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[113]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[9], 2.00000)+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[9], 2.00000)); RATES[9] = ALGEBRAIC[53]*((( - ((ALGEBRAIC[109]+ALGEBRAIC[209]+ALGEBRAIC[207]) - 2.00000*ALGEBRAIC[153])*CONSTANTS[136])/( 2.00000*CONSTANTS[7]*CONSTANTS[142]) - ( ALGEBRAIC[221]*CONSTANTS[143])/CONSTANTS[142])+( ALGEBRAIC[211]*CONSTANTS[145])/CONSTANTS[142]); ALGEBRAIC[222] = (STATES[7] - STATES[8])/60.0000; RATES[7] = ALGEBRAIC[221] - ( ALGEBRAIC[222]*CONSTANTS[144])/CONSTANTS[143]; ALGEBRAIC[59] = 1.00000/(1.00000+( CONSTANTS[32]*CONSTANTS[33])/pow(CONSTANTS[33]+STATES[8], 2.00000)); RATES[8] = ALGEBRAIC[59]*(ALGEBRAIC[222] - ALGEBRAIC[215]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[3] = 1.00000/(1.00000+exp((STATES[0]+87.6100)/7.48800)); ALGEBRAIC[4] = 1.00000/(1.00000+exp((STATES[0]+93.8100)/7.48800)); ALGEBRAIC[9] = 1.00000/(1.00000+exp((STATES[0]+18.0800)/2.79160)); ALGEBRAIC[0] = 1.00000/pow(1.00000+exp(- (STATES[0]+56.8600)/9.03000), 2.00000); ALGEBRAIC[13] = 0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000)); ALGEBRAIC[2] = 1.00000/(1.00000+exp(- (STATES[0]+42.8500)/5.26400)); ALGEBRAIC[16] = 0.129200*exp(- pow((STATES[0]+45.7900)/15.5400, 2.00000))+ 0.0648700*exp(- pow((STATES[0] - 4.82300)/51.1200, 2.00000)); ALGEBRAIC[5] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 14.3400)/14.8200)); ALGEBRAIC[17] = 1.05150/(1.00000/( 1.20890*(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 18.4099)/29.3814)))+3.50000/(1.00000+exp((STATES[0]+CONSTANTS[45]+100.000)/29.3814))); ALGEBRAIC[7] = (STATES[0]>=31.4978 ? 1.00000 : 1.07630*exp( - 1.00700*exp( - 0.0829000*STATES[0]))); ALGEBRAIC[22] = CONSTANTS[52]+0.600000+1.00000/(exp( - 0.0500000*(STATES[0]+CONSTANTS[51]+6.00000))+exp( 0.0900000*(STATES[0]+CONSTANTS[51]+14.0000))); ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0]+19.5800)/3.69600)); ALGEBRAIC[23] = 7.00000+1.00000/( 0.00450000*exp(- (STATES[0]+20.0000)/10.0000)+ 0.00450000*exp((STATES[0]+20.0000)/10.0000)); ALGEBRAIC[24] = 1000.00+1.00000/( 3.50000e-05*exp(- (STATES[0]+5.00000)/4.00000)+ 3.50000e-05*exp((STATES[0]+5.00000)/6.00000)); ALGEBRAIC[10] = STATES[29]*1.00000; ALGEBRAIC[20] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[2], 4.00000)); ALGEBRAIC[21] = 1.00000/(CONSTANTS[47]/ALGEBRAIC[10]+pow(1.00000+CONSTANTS[46]/STATES[9], 4.00000)); ALGEBRAIC[12] = 1.00000/(1.00000+exp(- (STATES[0]+11.6000)/8.93200)); ALGEBRAIC[27] = 817.300+1.00000/( 0.000232600*exp((STATES[0]+48.2800)/17.8000)+ 0.00129200*exp(- (STATES[0]+210.000)/230.000)); ALGEBRAIC[32] = 1.00000/(1.00000+exp(- ((STATES[0]+CONSTANTS[45]) - 24.3400)/14.8200)); ALGEBRAIC[19] = ALGEBRAIC[8]; ALGEBRAIC[33] = 7.00000+1.00000/( 0.0400000*exp(- (STATES[0] - 4.00000)/7.00000)+ 0.0400000*exp((STATES[0] - 4.00000)/7.00000)); ALGEBRAIC[34] = 100.000+1.00000/( 0.000120000*exp(- STATES[0]/3.00000)+ 0.000120000*exp(STATES[0]/7.00000)); ALGEBRAIC[35] = 2.50000*ALGEBRAIC[23]; ALGEBRAIC[26] = ALGEBRAIC[12]; ALGEBRAIC[36] = 1.00000/( 0.0100000*exp((STATES[0] - 50.0000)/20.0000)+ 0.0193000*exp(- (STATES[0]+66.5400)/31.0000)); ALGEBRAIC[43] = ( CONSTANTS[22]*(1.00000 - STATES[1]))/(1.00000+CONSTANTS[23]/STATES[2]); ALGEBRAIC[1] = 1.00000/pow(1.00000+exp((STATES[0]+71.5500)/7.43000), 2.00000); ALGEBRAIC[14] = (STATES[0]>=- 40.0000 ? 0.00000 : 0.0570000*exp(- (STATES[0]+80.0000)/6.80000)); ALGEBRAIC[29] = (STATES[0]>=- 40.0000 ? 0.770000/( 0.130000*(1.00000+exp(- (STATES[0]+10.6600)/11.1000))) : 2.70000*exp( 0.0790000*STATES[0])+ 310000.*exp( 0.348500*STATES[0])); ALGEBRAIC[37] = 1.00000/(ALGEBRAIC[14]+ALGEBRAIC[29]); ALGEBRAIC[40] = 2.50000*ALGEBRAIC[33]; ALGEBRAIC[38] = ALGEBRAIC[1]; ALGEBRAIC[15] = (STATES[0]>=- 40.0000 ? 0.00000 : ( ( - 25428.0*exp( 0.244400*STATES[0]) - 6.94800e-06*exp( - 0.0439100*STATES[0]))*(STATES[0]+37.7800))/(1.00000+exp( 0.311000*(STATES[0]+79.2300)))); ALGEBRAIC[30] = (STATES[0]>=- 40.0000 ? ( 0.600000*exp( 0.0570000*STATES[0]))/(1.00000+exp( - 0.100000*(STATES[0]+32.0000))) : ( 0.0242400*exp( - 0.0105200*STATES[0]))/(1.00000+exp( - 0.137800*(STATES[0]+40.1400)))); ALGEBRAIC[44] = 1.00000/(ALGEBRAIC[15]+ALGEBRAIC[30]); ALGEBRAIC[45] = 1.00000/pow(1.00000+exp((STATES[0]+77.5500)/7.43000), 2.00000); ALGEBRAIC[6] = 1.00000/(1.00000+exp((STATES[0]+CONSTANTS[45]+43.9400)/5.71100)); ALGEBRAIC[18] = (CONSTANTS[0]==1.00000 ? 1.00000 - 0.950000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/5.00000)) : 1.00000); ALGEBRAIC[31] = 4.56200+1.00000/( 0.393300*exp(- (STATES[0]+CONSTANTS[45]+100.000)/100.000)+ 0.0800400*exp((STATES[0]+CONSTANTS[45]+50.0000)/16.5900)); ALGEBRAIC[46] = ALGEBRAIC[31]*ALGEBRAIC[18]; ALGEBRAIC[28] = ( STATES[0]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]); ALGEBRAIC[41] = 0.116100*exp( 0.299000*ALGEBRAIC[28]); ALGEBRAIC[47] = 0.244200*exp( - 1.60400*ALGEBRAIC[28]); ALGEBRAIC[50] = 1.46000*ALGEBRAIC[44]; ALGEBRAIC[39] = 23.6200+1.00000/( 0.00141600*exp(- (STATES[0]+CONSTANTS[45]+96.5200)/59.0500)+ 1.78000e-08*exp((STATES[0]+CONSTANTS[45]+114.100)/8.07900)); ALGEBRAIC[51] = ALGEBRAIC[39]*ALGEBRAIC[18]; ALGEBRAIC[42] = 0.0578000*exp( 0.971000*ALGEBRAIC[28]); ALGEBRAIC[48] = 0.000349000*exp( - 1.06200*ALGEBRAIC[28]); ALGEBRAIC[52] = 0.253300*exp( 0.595300*ALGEBRAIC[28]); ALGEBRAIC[55] = 0.0652500*exp( - 0.820900*ALGEBRAIC[28]); ALGEBRAIC[54] = 1.35400+0.000100000/(exp(((STATES[0]+CONSTANTS[45]) - 167.400)/15.8900)+exp(- ((STATES[0]+CONSTANTS[45]) - 12.2300)/0.215400)); ALGEBRAIC[57] = 1.00000 - 0.500000/(1.00000+exp((STATES[0]+CONSTANTS[45]+70.0000)/20.0000)); ALGEBRAIC[60] = ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[46]; ALGEBRAIC[61] = ALGEBRAIC[54]*ALGEBRAIC[57]*ALGEBRAIC[51]; ALGEBRAIC[58] = 5.20000e-05*exp( 1.52500*ALGEBRAIC[28]); ALGEBRAIC[62] = ( ALGEBRAIC[48]*ALGEBRAIC[55]*ALGEBRAIC[58])/( ALGEBRAIC[42]*ALGEBRAIC[52]); ALGEBRAIC[77] = CONSTANTS[49]*STATES[25]+ CONSTANTS[120]*STATES[26]; ALGEBRAIC[78] = 0.300000+0.600000/(1.00000+exp((STATES[0] - 10.0000)/10.0000)); ALGEBRAIC[79] = 1.00000 - ALGEBRAIC[78]; ALGEBRAIC[80] = ALGEBRAIC[78]*STATES[27]+ ALGEBRAIC[79]*STATES[28]; ALGEBRAIC[81] = CONSTANTS[49]*STATES[30]+ CONSTANTS[120]*STATES[26]; ALGEBRAIC[82] = ALGEBRAIC[78]*STATES[31]+ ALGEBRAIC[79]*STATES[28]; ALGEBRAIC[25] = ( STATES[0]*CONSTANTS[7]*CONSTANTS[7])/( CONSTANTS[5]*CONSTANTS[6]); ALGEBRAIC[83] = ( 0.500000*(STATES[4]+STATES[6]+CONSTANTS[34]+ 4.00000*STATES[2]))/1000.00; ALGEBRAIC[84] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) - 0.300000*ALGEBRAIC[83])); ALGEBRAIC[87] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[84]*STATES[2]*exp( 2.00000*ALGEBRAIC[28]) - CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[49] = ALGEBRAIC[43]+STATES[1]; ALGEBRAIC[90] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[91] = CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[87]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32])); ALGEBRAIC[93] = (( - CONSTANTS[127]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000)); ALGEBRAIC[96] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[93]*1.70000 : ALGEBRAIC[93]); ALGEBRAIC[99] = CONSTANTS[108]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[102] = (ALGEBRAIC[99]<0.00100000 ? 0.00100000 : ALGEBRAIC[99]); ALGEBRAIC[94] = (( - CONSTANTS[135]*ALGEBRAIC[91])/1.00000)/(1.00000+pow(CONSTANTS[109]/STATES[8], 8.00000)); ALGEBRAIC[97] = (CONSTANTS[0]==2.00000 ? ALGEBRAIC[94]*1.70000 : ALGEBRAIC[94]); ALGEBRAIC[100] = CONSTANTS[128]/(1.00000+0.0123000/STATES[8]); ALGEBRAIC[103] = (ALGEBRAIC[100]<0.00100000 ? 0.00100000 : ALGEBRAIC[100]); ALGEBRAIC[64] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log(CONSTANTS[3]/STATES[5]); ALGEBRAIC[71] = 1.00000/(1.00000+exp(((STATES[0]+CONSTANTS[45]) - 213.600)/151.200)); ALGEBRAIC[72] = 1.00000 - ALGEBRAIC[71]; ALGEBRAIC[73] = ALGEBRAIC[71]*STATES[19]+ ALGEBRAIC[72]*STATES[20]; ALGEBRAIC[74] = ALGEBRAIC[71]*STATES[22]+ ALGEBRAIC[72]*STATES[23]; ALGEBRAIC[75] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[76] = CONSTANTS[119]*(STATES[0] - ALGEBRAIC[64])*( (1.00000 - ALGEBRAIC[75])*STATES[18]*ALGEBRAIC[73]+ ALGEBRAIC[75]*STATES[21]*ALGEBRAIC[74]); ALGEBRAIC[115] = CONSTANTS[123]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*STATES[38]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[65] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[10]*CONSTANTS[7]))*log((CONSTANTS[3]+ CONSTANTS[35]*CONSTANTS[1])/(STATES[5]+ CONSTANTS[35]*STATES[3])); ALGEBRAIC[116] = 1.00000+0.600000/(1.00000+pow(3.80000e-05/STATES[9], 1.40000)); ALGEBRAIC[117] = CONSTANTS[124]*ALGEBRAIC[116]*STATES[39]*STATES[40]*(STATES[0] - ALGEBRAIC[65]); ALGEBRAIC[118] = 4.09400/(1.00000+exp( 0.121700*((STATES[0] - ALGEBRAIC[64]) - 49.9340))); ALGEBRAIC[119] = ( 15.7200*exp( 0.0674000*((STATES[0] - ALGEBRAIC[64]) - 3.25700))+exp( 0.0618000*((STATES[0] - ALGEBRAIC[64]) - 594.310)))/(1.00000+exp( - 0.162900*((STATES[0] - ALGEBRAIC[64])+14.2070))); ALGEBRAIC[120] = ALGEBRAIC[118]/(ALGEBRAIC[118]+ALGEBRAIC[119]); ALGEBRAIC[121] = CONSTANTS[125]* pow((CONSTANTS[3]/5.00000), 1.0 / 2)*ALGEBRAIC[120]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[185] = CONSTANTS[83]*exp(( (1.00000 - CONSTANTS[84])*ALGEBRAIC[28])/3.00000); ALGEBRAIC[189] = ( CONSTANTS[78]*pow(CONSTANTS[3]/CONSTANTS[86], 2.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000); ALGEBRAIC[186] = CONSTANTS[91]/(1.00000+CONSTANTS[90]/CONSTANTS[92]+STATES[3]/CONSTANTS[93]+STATES[5]/CONSTANTS[94]); ALGEBRAIC[190] = ( CONSTANTS[79]*ALGEBRAIC[186]*CONSTANTS[90])/(1.00000+CONSTANTS[88]/CONSTANTS[89]); ALGEBRAIC[184] = CONSTANTS[82]*exp(( CONSTANTS[84]*ALGEBRAIC[28])/3.00000); ALGEBRAIC[187] = ( CONSTANTS[74]*pow(STATES[3]/ALGEBRAIC[184], 3.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000); ALGEBRAIC[188] = ( CONSTANTS[77]*pow(CONSTANTS[1]/ALGEBRAIC[185], 3.00000))/((pow(1.00000+CONSTANTS[1]/ALGEBRAIC[185], 3.00000)+pow(1.00000+CONSTANTS[3]/CONSTANTS[86], 2.00000)) - 1.00000); ALGEBRAIC[191] = ( CONSTANTS[81]*pow(STATES[5]/CONSTANTS[85], 2.00000))/((pow(1.00000+STATES[3]/ALGEBRAIC[184], 3.00000)+pow(1.00000+STATES[5]/CONSTANTS[85], 2.00000)) - 1.00000); ALGEBRAIC[192] = CONSTANTS[161]*ALGEBRAIC[187]*CONSTANTS[160]+ ALGEBRAIC[188]*ALGEBRAIC[191]*ALGEBRAIC[190]+ CONSTANTS[160]*ALGEBRAIC[191]*ALGEBRAIC[190]+ ALGEBRAIC[190]*ALGEBRAIC[187]*CONSTANTS[160]; ALGEBRAIC[193] = ALGEBRAIC[188]*CONSTANTS[159]*ALGEBRAIC[191]+ ALGEBRAIC[187]*CONSTANTS[160]*ALGEBRAIC[189]+ ALGEBRAIC[189]*CONSTANTS[159]*ALGEBRAIC[191]+ CONSTANTS[160]*ALGEBRAIC[189]*ALGEBRAIC[191]; ALGEBRAIC[194] = CONSTANTS[160]*ALGEBRAIC[189]*CONSTANTS[161]+ ALGEBRAIC[190]*ALGEBRAIC[188]*CONSTANTS[159]+ ALGEBRAIC[188]*CONSTANTS[159]*CONSTANTS[161]+ ALGEBRAIC[189]*CONSTANTS[161]*CONSTANTS[159]; ALGEBRAIC[195] = ALGEBRAIC[191]*ALGEBRAIC[190]*ALGEBRAIC[188]+ ALGEBRAIC[189]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[188]*CONSTANTS[161]*ALGEBRAIC[187]+ ALGEBRAIC[190]*ALGEBRAIC[188]*ALGEBRAIC[187]; ALGEBRAIC[196] = ALGEBRAIC[192]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[197] = ALGEBRAIC[193]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[200] = 3.00000*( ALGEBRAIC[196]*ALGEBRAIC[189] - ALGEBRAIC[197]*ALGEBRAIC[190]); ALGEBRAIC[198] = ALGEBRAIC[194]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[199] = ALGEBRAIC[195]/(ALGEBRAIC[192]+ALGEBRAIC[193]+ALGEBRAIC[194]+ALGEBRAIC[195]); ALGEBRAIC[201] = 2.00000*( ALGEBRAIC[199]*CONSTANTS[159] - ALGEBRAIC[198]*ALGEBRAIC[187]); ALGEBRAIC[202] = CONSTANTS[162]*( CONSTANTS[8]*ALGEBRAIC[200]+ CONSTANTS[10]*ALGEBRAIC[201]); ALGEBRAIC[203] = 1.00000/(1.00000+exp(- (STATES[0] - 10.8968)/23.9871)); ALGEBRAIC[204] = CONSTANTS[126]*ALGEBRAIC[203]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[66] = CONSTANTS[37]*CONSTANTS[36]*CONSTANTS[115]*CONSTANTS[116]*(STATES[0] - ALGEBRAIC[64]); ALGEBRAIC[11] = (VOI>=CONSTANTS[14]&&VOI<=CONSTANTS[15]&&(VOI - CONSTANTS[14]) - floor((VOI - CONSTANTS[14])/CONSTANTS[17])*CONSTANTS[17]<=CONSTANTS[18] ? CONSTANTS[16] : 0.00000); ALGEBRAIC[98] = ( 0.500000*(STATES[3]+STATES[5]+CONSTANTS[34]+ 4.00000*STATES[9]))/1000.00; ALGEBRAIC[105] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) - 0.300000*ALGEBRAIC[98])); ALGEBRAIC[108] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[105]*STATES[5]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[111] = (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[108]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33])); ALGEBRAIC[206] = (STATES[6] - STATES[5])/CONSTANTS[106]; ALGEBRAIC[86] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) - 0.300000*ALGEBRAIC[83])); ALGEBRAIC[89] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[86]*STATES[6]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[141]*CONSTANTS[3]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[95] = CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[133]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[138]*ALGEBRAIC[89]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32])); ALGEBRAIC[63] = (( CONSTANTS[5]*CONSTANTS[6])/( CONSTANTS[8]*CONSTANTS[7]))*log(CONSTANTS[1]/STATES[3]); ALGEBRAIC[67] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[68] = CONSTANTS[41]*(STATES[0] - ALGEBRAIC[63])*pow(STATES[10], 3.00000)*( (1.00000 - ALGEBRAIC[67])*STATES[11]*STATES[12]+ ALGEBRAIC[67]*STATES[13]*STATES[14]); ALGEBRAIC[69] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[70] = CONSTANTS[118]*(STATES[0] - ALGEBRAIC[63])*STATES[15]*( (1.00000 - ALGEBRAIC[69])*STATES[16]+ ALGEBRAIC[69]*STATES[17]); ALGEBRAIC[150] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[9], 2.00000)); ALGEBRAIC[123] = exp( CONSTANTS[70]*ALGEBRAIC[28]); ALGEBRAIC[130] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]); ALGEBRAIC[131] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[130]); ALGEBRAIC[134] = ALGEBRAIC[131]*CONSTANTS[67]; ALGEBRAIC[124] = 1.00000+ (STATES[3]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]); ALGEBRAIC[125] = ( STATES[3]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[124]); ALGEBRAIC[137] = ALGEBRAIC[125]*CONSTANTS[67]; ALGEBRAIC[127] = 1.00000+ (STATES[3]/CONSTANTS[61])*(1.00000+STATES[3]/CONSTANTS[62]); ALGEBRAIC[128] = ( STATES[3]*STATES[3])/( ALGEBRAIC[127]*CONSTANTS[61]*CONSTANTS[62]); ALGEBRAIC[140] = ALGEBRAIC[128]*ALGEBRAIC[125]*CONSTANTS[65]; ALGEBRAIC[141] = ALGEBRAIC[131]*CONSTANTS[147]*CONSTANTS[65]; ALGEBRAIC[132] = 1.00000/ALGEBRAIC[130]; ALGEBRAIC[133] = ALGEBRAIC[132]*CONSTANTS[66]; ALGEBRAIC[135] = ALGEBRAIC[133]+ALGEBRAIC[134]; ALGEBRAIC[122] = exp( CONSTANTS[71]*ALGEBRAIC[28]); ALGEBRAIC[126] = 1.00000/ALGEBRAIC[124]; ALGEBRAIC[136] = ( ALGEBRAIC[126]*CONSTANTS[66])/ALGEBRAIC[122]; ALGEBRAIC[138] = ALGEBRAIC[136]+ALGEBRAIC[137]; ALGEBRAIC[129] = 1.00000/ALGEBRAIC[127]; ALGEBRAIC[139] = ALGEBRAIC[129]*STATES[9]*CONSTANTS[68]; ALGEBRAIC[142] = CONSTANTS[150]*ALGEBRAIC[138]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ CONSTANTS[151]*ALGEBRAIC[140]*(CONSTANTS[150]+ALGEBRAIC[135]); ALGEBRAIC[143] = CONSTANTS[149]*ALGEBRAIC[140]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[138]*ALGEBRAIC[139]*(CONSTANTS[149]+ALGEBRAIC[141]); ALGEBRAIC[144] = CONSTANTS[149]*ALGEBRAIC[135]*(ALGEBRAIC[140]+ALGEBRAIC[139])+ ALGEBRAIC[141]*ALGEBRAIC[139]*(CONSTANTS[150]+ALGEBRAIC[135]); ALGEBRAIC[145] = CONSTANTS[150]*ALGEBRAIC[141]*(ALGEBRAIC[138]+CONSTANTS[151])+ ALGEBRAIC[135]*CONSTANTS[151]*(CONSTANTS[149]+ALGEBRAIC[141]); ALGEBRAIC[146] = ALGEBRAIC[142]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[147] = ALGEBRAIC[143]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[148] = ALGEBRAIC[144]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[149] = ALGEBRAIC[145]/(ALGEBRAIC[142]+ALGEBRAIC[143]+ALGEBRAIC[144]+ALGEBRAIC[145]); ALGEBRAIC[151] = ( 3.00000*( ALGEBRAIC[149]*ALGEBRAIC[140] - ALGEBRAIC[146]*ALGEBRAIC[141])+ ALGEBRAIC[148]*ALGEBRAIC[137]) - ALGEBRAIC[147]*ALGEBRAIC[134]; ALGEBRAIC[152] = ALGEBRAIC[147]*CONSTANTS[150] - ALGEBRAIC[146]*CONSTANTS[149]; ALGEBRAIC[153] = (1.00000 - CONSTANTS[60])*CONSTANTS[152]*ALGEBRAIC[150]*( CONSTANTS[8]*ALGEBRAIC[151]+ CONSTANTS[9]*ALGEBRAIC[152]); ALGEBRAIC[205] = ( CONSTANTS[97]*ALGEBRAIC[25]*( STATES[3]*exp(ALGEBRAIC[28]) - CONSTANTS[1]))/(exp(ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[104] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) - 0.300000*ALGEBRAIC[98])); ALGEBRAIC[107] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[104]*STATES[3]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[110] = (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[107]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33])); ALGEBRAIC[208] = (STATES[4] - STATES[3])/CONSTANTS[105]; ALGEBRAIC[180] = 1.00000/(1.00000+pow(CONSTANTS[72]/STATES[2], 2.00000)); ALGEBRAIC[160] = 1.00000+ (CONSTANTS[1]/CONSTANTS[63])*(1.00000+1.00000/ALGEBRAIC[123]); ALGEBRAIC[161] = CONSTANTS[1]/( CONSTANTS[63]*ALGEBRAIC[123]*ALGEBRAIC[160]); ALGEBRAIC[164] = ALGEBRAIC[161]*CONSTANTS[67]; ALGEBRAIC[154] = 1.00000+ (STATES[4]/CONSTANTS[63])*(1.00000+ALGEBRAIC[123]); ALGEBRAIC[155] = ( STATES[4]*ALGEBRAIC[123])/( CONSTANTS[63]*ALGEBRAIC[154]); ALGEBRAIC[167] = ALGEBRAIC[155]*CONSTANTS[67]; ALGEBRAIC[157] = 1.00000+ (STATES[4]/CONSTANTS[61])*(1.00000+STATES[4]/CONSTANTS[62]); ALGEBRAIC[158] = ( STATES[4]*STATES[4])/( ALGEBRAIC[157]*CONSTANTS[61]*CONSTANTS[62]); ALGEBRAIC[170] = ALGEBRAIC[158]*ALGEBRAIC[155]*CONSTANTS[65]; ALGEBRAIC[171] = ALGEBRAIC[161]*CONSTANTS[154]*CONSTANTS[65]; ALGEBRAIC[162] = 1.00000/ALGEBRAIC[160]; ALGEBRAIC[163] = ALGEBRAIC[162]*CONSTANTS[66]; ALGEBRAIC[165] = ALGEBRAIC[163]+ALGEBRAIC[164]; ALGEBRAIC[156] = 1.00000/ALGEBRAIC[154]; ALGEBRAIC[166] = ( ALGEBRAIC[156]*CONSTANTS[66])/ALGEBRAIC[122]; ALGEBRAIC[168] = ALGEBRAIC[166]+ALGEBRAIC[167]; ALGEBRAIC[159] = 1.00000/ALGEBRAIC[157]; ALGEBRAIC[169] = ALGEBRAIC[159]*STATES[2]*CONSTANTS[68]; ALGEBRAIC[172] = CONSTANTS[157]*ALGEBRAIC[168]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ CONSTANTS[158]*ALGEBRAIC[170]*(CONSTANTS[157]+ALGEBRAIC[165]); ALGEBRAIC[173] = CONSTANTS[156]*ALGEBRAIC[170]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[168]*ALGEBRAIC[169]*(CONSTANTS[156]+ALGEBRAIC[171]); ALGEBRAIC[174] = CONSTANTS[156]*ALGEBRAIC[165]*(ALGEBRAIC[170]+ALGEBRAIC[169])+ ALGEBRAIC[171]*ALGEBRAIC[169]*(CONSTANTS[157]+ALGEBRAIC[165]); ALGEBRAIC[175] = CONSTANTS[157]*ALGEBRAIC[171]*(ALGEBRAIC[168]+CONSTANTS[158])+ ALGEBRAIC[165]*CONSTANTS[158]*(CONSTANTS[156]+ALGEBRAIC[171]); ALGEBRAIC[176] = ALGEBRAIC[172]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[177] = ALGEBRAIC[173]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[178] = ALGEBRAIC[174]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[179] = ALGEBRAIC[175]/(ALGEBRAIC[172]+ALGEBRAIC[173]+ALGEBRAIC[174]+ALGEBRAIC[175]); ALGEBRAIC[181] = ( 3.00000*( ALGEBRAIC[179]*ALGEBRAIC[170] - ALGEBRAIC[176]*ALGEBRAIC[171])+ ALGEBRAIC[178]*ALGEBRAIC[167]) - ALGEBRAIC[177]*ALGEBRAIC[164]; ALGEBRAIC[182] = ALGEBRAIC[177]*CONSTANTS[157] - ALGEBRAIC[176]*CONSTANTS[156]; ALGEBRAIC[183] = CONSTANTS[60]*CONSTANTS[152]*ALGEBRAIC[180]*( CONSTANTS[8]*ALGEBRAIC[181]+ CONSTANTS[9]*ALGEBRAIC[182]); ALGEBRAIC[85] = exp( - CONSTANTS[134]*1.00000*( pow(ALGEBRAIC[83], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[83], 1.0 / 2)) - 0.300000*ALGEBRAIC[83])); ALGEBRAIC[88] = ( 1.00000*ALGEBRAIC[25]*( ALGEBRAIC[85]*STATES[4]*exp( 1.00000*ALGEBRAIC[28]) - CONSTANTS[140]*CONSTANTS[1]))/(exp( 1.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[92] = CONSTANTS[54]*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[132]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[80]*STATES[32])+ ALGEBRAIC[90]*CONSTANTS[137]*ALGEBRAIC[88]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[32])+ STATES[29]*ALGEBRAIC[82]*STATES[32])); ALGEBRAIC[211] = (STATES[2] - STATES[9])/CONSTANTS[107]; ALGEBRAIC[213] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[215] = CONSTANTS[110]*( (1.00000 - ALGEBRAIC[213])*STATES[41]+ ALGEBRAIC[213]*STATES[42]); ALGEBRAIC[56] = 1.00000/(1.00000+( CONSTANTS[28]*CONSTANTS[29])/pow(CONSTANTS[29]+STATES[2], 2.00000)+( CONSTANTS[30]*CONSTANTS[31])/pow(CONSTANTS[31]+STATES[2], 2.00000)); ALGEBRAIC[101] = exp( - CONSTANTS[134]*4.00000*( pow(ALGEBRAIC[98], 1.0 / 2)/(1.00000+ pow(ALGEBRAIC[98], 1.0 / 2)) - 0.300000*ALGEBRAIC[98])); ALGEBRAIC[106] = ( 4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) - CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[109] = (1.00000 - CONSTANTS[54])*( (1.00000 - ALGEBRAIC[90])*CONSTANTS[121]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[77]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[80]*STATES[33])+ ALGEBRAIC[90]*CONSTANTS[131]*ALGEBRAIC[106]*STATES[24]*( ALGEBRAIC[81]*(1.00000 - STATES[33])+ STATES[29]*ALGEBRAIC[82]*STATES[33])); ALGEBRAIC[112] = ALGEBRAIC[91]+ALGEBRAIC[109]; ALGEBRAIC[113] = ALGEBRAIC[92]+ALGEBRAIC[110]; ALGEBRAIC[114] = ALGEBRAIC[95]+ALGEBRAIC[111]; ALGEBRAIC[209] = ( CONSTANTS[99]*STATES[9])/(CONSTANTS[100]+STATES[9]); ALGEBRAIC[207] = ( CONSTANTS[98]*4.00000*ALGEBRAIC[25]*( ALGEBRAIC[101]*STATES[9]*exp( 2.00000*ALGEBRAIC[28]) - CONSTANTS[139]*CONSTANTS[2]))/(exp( 2.00000*ALGEBRAIC[28]) - 1.00000); ALGEBRAIC[210] = (( CONSTANTS[104]*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[2]))*(STATES[0] - CONSTANTS[114]); ALGEBRAIC[212] = (( (1.00000 - CONSTANTS[104])*CONSTANTS[101])/(1.00000+CONSTANTS[103]/STATES[9]))*(STATES[0] - CONSTANTS[114]); ALGEBRAIC[214] = ALGEBRAIC[210]+ALGEBRAIC[212]; ALGEBRAIC[216] = CONSTANTS[102]*(STATES[0] - CONSTANTS[114]); ALGEBRAIC[217] = ( CONSTANTS[129]*0.00542500*STATES[9])/(STATES[9]+0.000920000); ALGEBRAIC[218] = ( CONSTANTS[129]*2.75000*0.00542500*STATES[9])/((STATES[9]+0.000920000) - 0.000170000); ALGEBRAIC[219] = 1.00000/(1.00000+CONSTANTS[19]/ALGEBRAIC[49]); ALGEBRAIC[220] = ( 0.00488250*STATES[7])/15.0000; ALGEBRAIC[221] = CONSTANTS[111]*(( (1.00000 - ALGEBRAIC[219])*ALGEBRAIC[217]+ ALGEBRAIC[219]*ALGEBRAIC[218]) - ALGEBRAIC[220]); ALGEBRAIC[53] = 1.00000/(1.00000+( CONSTANTS[113]*CONSTANTS[25])/pow(CONSTANTS[25]+STATES[9], 2.00000)+( CONSTANTS[26]*CONSTANTS[27])/pow(CONSTANTS[27]+STATES[9], 2.00000)); ALGEBRAIC[222] = (STATES[7] - STATES[8])/60.0000; ALGEBRAIC[59] = 1.00000/(1.00000+( CONSTANTS[32]*CONSTANTS[33])/pow(CONSTANTS[33]+STATES[8], 2.00000)); }