Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 13 sizeStates = 8 sizeConstants = 17 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_constants[0] = "vol in component environment (pL)" legend_states[0] = "q_A in component environment (fmol)" legend_states[1] = "q_M in component environment (fmol)" legend_states[2] = "q_Mp in component environment (fmol)" legend_states[3] = "q_AM in component environment (fmol)" legend_states[4] = "q_AMp in component environment (fmol)" legend_states[5] = "q_Pi in component environment (fmol)" legend_states[6] = "q_Ca_i in component environment (fmol)" legend_states[7] = "q_cGMP in component environment (fmol)" legend_algebraic[9] = "v_R_12 in component HaiMurphy (fmol_per_sec)" legend_algebraic[10] = "v_R_34 in component HaiMurphy (fmol_per_sec)" legend_algebraic[11] = "v_R_56 in component HaiMurphy (fmol_per_sec)" legend_algebraic[12] = "v_R_78 in component HaiMurphy (fmol_per_sec)" legend_constants[1] = "n_Cai_SM in component environment (dimensionless)" legend_algebraic[1] = "stress in component environment (dimensionless)" legend_constants[2] = "kappa_R_12 in component HaiMurphy_parameters (fmol_per_sec)" legend_constants[3] = "kappa_R_34 in component HaiMurphy_parameters (fmol_per_sec)" legend_constants[4] = "kappa_R_56 in component HaiMurphy_parameters (fmol_per_sec)" legend_constants[5] = "kappa_R_78 in component HaiMurphy_parameters (fmol_per_sec)" legend_constants[6] = "K_A in component HaiMurphy_parameters (per_fmol)" legend_constants[7] = "K_M in component HaiMurphy_parameters (per_fmol)" legend_constants[8] = "K_Mp in component HaiMurphy_parameters (per_fmol)" legend_constants[9] = "K_AM in component HaiMurphy_parameters (per_fmol)" legend_constants[10] = "K_AMp in component HaiMurphy_parameters (per_fmol)" legend_constants[11] = "K_Pi in component HaiMurphy_parameters (per_fmol)" legend_constants[12] = "K_Ca_i in component HaiMurphy_parameters (per_fmol)" legend_constants[13] = "K_cGMP in component HaiMurphy_parameters (per_fmol)" legend_constants[14] = "R in component constants (J_per_K_per_mol)" legend_constants[15] = "T in component constants (kelvin)" legend_algebraic[0] = "mu_A in component HaiMurphy (J_per_mol)" legend_algebraic[2] = "mu_M in component HaiMurphy (J_per_mol)" legend_algebraic[3] = "mu_Mp in component HaiMurphy (J_per_mol)" legend_algebraic[4] = "mu_AM in component HaiMurphy (J_per_mol)" legend_algebraic[5] = "mu_AMp in component HaiMurphy (J_per_mol)" legend_algebraic[6] = "mu_Pi in component HaiMurphy (J_per_mol)" legend_algebraic[7] = "mu_Ca_i in component HaiMurphy (J_per_mol)" legend_algebraic[8] = "mu_cGMP in component HaiMurphy (J_per_mol)" legend_constants[16] = "F in component constants (C_per_mol)" legend_rates[0] = "d/dt q_A in component environment (fmol)" legend_rates[1] = "d/dt q_M in component environment (fmol)" legend_rates[2] = "d/dt q_Mp in component environment (fmol)" legend_rates[3] = "d/dt q_AM in component environment (fmol)" legend_rates[4] = "d/dt q_AMp in component environment (fmol)" legend_rates[5] = "d/dt q_Pi in component environment (fmol)" legend_rates[6] = "d/dt q_Ca_i in component environment (fmol)" legend_rates[7] = "d/dt q_cGMP in component environment (fmol)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 1 states[0] = 1e-6 states[1] = 1e-6 states[2] = 0 states[3] = 0 states[4] = 0 states[5] = 15 states[6] = 1e-3 states[7] = 1e-6 constants[1] = 1.66 constants[2] = 0.117606 constants[3] = 6.98167 constants[4] = 2.11691 constants[5] = 0.0270688 constants[6] = 0.532601 constants[7] = 4.08193 constants[8] = 0.0351692 constants[9] = 0.448094 constants[10] = 0.0038607 constants[11] = 250.692 constants[12] = 0.145785 constants[13] = 0.0971738 constants[14] = 8.31 constants[15] = 310 constants[16] = 96485 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[2] = constants[14]*constants[15]*log(constants[7]*states[1]) algebraic[3] = constants[14]*constants[15]*log(constants[8]*states[2]) algebraic[6] = constants[14]*constants[15]*log(constants[11]*states[5]) algebraic[7] = constants[14]*constants[15]*log(constants[12]*states[6]) algebraic[8] = constants[14]*constants[15]*log(constants[13]*states[7]) algebraic[9] = constants[2]*(exp((algebraic[2]+algebraic[6]+constants[1]*algebraic[7])/(constants[14]*constants[15]))-exp((algebraic[3]+algebraic[8])/(constants[14]*constants[15]))) algebraic[0] = constants[14]*constants[15]*log(constants[6]*states[0]) algebraic[5] = constants[14]*constants[15]*log(constants[10]*states[4]) algebraic[10] = constants[3]*(exp((algebraic[0]+algebraic[3])/(constants[14]*constants[15]))-exp(algebraic[5]/(constants[14]*constants[15]))) rates[2] = algebraic[9]-algebraic[10] algebraic[4] = constants[14]*constants[15]*log(constants[9]*states[3]) algebraic[11] = constants[4]*(exp((algebraic[5]+constants[1]*algebraic[7])/(constants[14]*constants[15]))-exp((algebraic[4]+algebraic[6]+algebraic[8])/(constants[14]*constants[15]))) rates[4] = algebraic[10]-algebraic[11] rates[5] = -algebraic[9]+algebraic[11] rates[6] = constants[1]*(-algebraic[9]-algebraic[11]) rates[7] = algebraic[9]+algebraic[11] algebraic[12] = constants[5]*(exp(algebraic[4]/(constants[14]*constants[15]))-exp((algebraic[0]+algebraic[2])/(constants[14]*constants[15]))) rates[0] = -algebraic[10]+algebraic[12] rates[1] = -algebraic[9]+algebraic[12] rates[3] = algebraic[11]-algebraic[12] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[2] = constants[14]*constants[15]*log(constants[7]*states[1]) algebraic[3] = constants[14]*constants[15]*log(constants[8]*states[2]) algebraic[6] = constants[14]*constants[15]*log(constants[11]*states[5]) algebraic[7] = constants[14]*constants[15]*log(constants[12]*states[6]) algebraic[8] = constants[14]*constants[15]*log(constants[13]*states[7]) algebraic[9] = constants[2]*(exp((algebraic[2]+algebraic[6]+constants[1]*algebraic[7])/(constants[14]*constants[15]))-exp((algebraic[3]+algebraic[8])/(constants[14]*constants[15]))) algebraic[0] = constants[14]*constants[15]*log(constants[6]*states[0]) algebraic[5] = constants[14]*constants[15]*log(constants[10]*states[4]) algebraic[10] = constants[3]*(exp((algebraic[0]+algebraic[3])/(constants[14]*constants[15]))-exp(algebraic[5]/(constants[14]*constants[15]))) algebraic[4] = constants[14]*constants[15]*log(constants[9]*states[3]) algebraic[11] = constants[4]*(exp((algebraic[5]+constants[1]*algebraic[7])/(constants[14]*constants[15]))-exp((algebraic[4]+algebraic[6]+algebraic[8])/(constants[14]*constants[15]))) algebraic[12] = constants[5]*(exp(algebraic[4]/(constants[14]*constants[15]))-exp((algebraic[0]+algebraic[2])/(constants[14]*constants[15]))) algebraic[1] = (states[3]+states[4])/1.00000 return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)