Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays:
sizeAlgebraic = 3
sizeStates = 1
sizeConstants = 14
from math import *
from numpy import *

def createLegends():
    legend_states = [""] * sizeStates
    legend_rates = [""] * sizeStates
    legend_algebraic = [""] * sizeAlgebraic
    legend_voi = ""
    legend_constants = [""] * sizeConstants
    legend_voi = "time in component environment (minute)"
    legend_states[0] = "Pha in component Pha (dimensionless)"
    legend_algebraic[1] = "V_1 in component V_1 (dimensionless)"
    legend_algebraic[0] = "Z in component Z (dimensionless)"
    legend_algebraic[2] = "K_1 in component K_1 (dimensionless)"
    legend_constants[0] = "V_M2 in component Pha (per_minute)"
    legend_constants[1] = "alpha in component Pha (dimensionless)"
    legend_constants[2] = "Glc in component Pha (micromolar)"
    legend_constants[3] = "K_2 in component Pha (dimensionless)"
    legend_constants[4] = "K_a1 in component Pha (micromolar)"
    legend_constants[5] = "K_a2 in component Pha (micromolar)"
    legend_constants[6] = "V_M1 in component V_1 (per_minute)"
    legend_constants[7] = "gamma in component V_1 (dimensionless)"
    legend_constants[8] = "K_a5 in component V_1 (micromolar)"
    legend_constants[9] = "K_11 in component K_1 (dimensionless)"
    legend_constants[10] = "K_a6 in component K_1 (micromolar)"
    legend_constants[11] = "A in component Z (micromolar)"
    legend_constants[12] = "B in component Z (micromolar)"
    legend_constants[13] = "v in component Z (per_minute)"
    legend_rates[0] = "d/dt Pha in component Pha (dimensionless)"
    return (legend_states, legend_algebraic, legend_voi, legend_constants)

def initConsts():
    constants = [0.0] * sizeConstants; states = [0.0] * sizeStates;
    states[0] = 0.098
    constants[0] = 0.6
    constants[1] = 9
    constants[2] = 10000
    constants[3] = 0.2
    constants[4] = 10000
    constants[5] = 10000
    constants[6] = 1.5
    constants[7] = 9
    constants[8] = 0.5
    constants[9] = 0.1
    constants[10] = 0.5
    constants[11] = 0.3
    constants[12] = 0.25
    constants[13] = 1
    return (states, constants)

def computeRates(voi, states, constants):
    rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic
    algebraic[0] = constants[11]+constants[12]*sin(2.00000* pi*constants[13]*voi)
    algebraic[1] = constants[6]*(1.00000+constants[7]*((power(algebraic[0], 4.00000))/(power(constants[8], 4.00000))+power(algebraic[0], 4.00000)))
    algebraic[2] = constants[9]/(1.00000+(power(algebraic[0], 4.00000))/(power(constants[10], 4.00000)))
    rates[0] = algebraic[1]*algebraic[0]*((1.00000-states[0])/((algebraic[2]*algebraic[0]+1.00000)-states[0]))-(constants[0]*(1.00000+(constants[1]*constants[2])/(constants[4]+constants[2]))*states[0])/(constants[3]/(1.00000+constants[2]/constants[5])+states[0])
    return(rates)

def computeAlgebraic(constants, states, voi):
    algebraic = array([[0.0] * len(voi)] * sizeAlgebraic)
    states = array(states)
    voi = array(voi)
    algebraic[0] = constants[11]+constants[12]*sin(2.00000* pi*constants[13]*voi)
    algebraic[1] = constants[6]*(1.00000+constants[7]*((power(algebraic[0], 4.00000))/(power(constants[8], 4.00000))+power(algebraic[0], 4.00000)))
    algebraic[2] = constants[9]/(1.00000+(power(algebraic[0], 4.00000))/(power(constants[10], 4.00000)))
    return algebraic

def solve_model():
    """Solve model with ODE solver"""
    from scipy.integrate import ode
    # Initialise constants and state variables
    (init_states, constants) = initConsts()

    # Set timespan to solve over
    voi = linspace(0, 10, 500)

    # Construct ODE object to solve
    r = ode(computeRates)
    r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1)
    r.set_initial_value(init_states, voi[0])
    r.set_f_params(constants)

    # Solve model
    states = array([[0.0] * len(voi)] * sizeStates)
    states[:,0] = init_states
    for (i,t) in enumerate(voi[1:]):
        if r.successful():
            r.integrate(t)
            states[:,i+1] = r.y
        else:
            break

    # Compute algebraic variables
    algebraic = computeAlgebraic(constants, states, voi)
    return (voi, states, algebraic)

def plot_model(voi, states, algebraic):
    """Plot variables against variable of integration"""
    import pylab
    (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends()
    pylab.figure(1)
    pylab.plot(voi,vstack((states,algebraic)).T)
    pylab.xlabel(legend_voi)
    pylab.legend(legend_states + legend_algebraic, loc='best')
    pylab.show()

if __name__ == "__main__":
    (voi, states, algebraic) = solve_model()
    plot_model(voi, states, algebraic)