function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =0; end % There are a total of 7 entries in each of the rate and state variable arrays. % There are a total of 10 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (minute)'); LEGEND_STATES(:,1) = strpad('Ca_cyt in component Ca_cyt (micromolar)'); LEGEND_STATES(:,2) = strpad('J_ERch in component J_ERch (micromolar)'); LEGEND_STATES(:,3) = strpad('J_ERpump in component J_ERpump (micromolar)'); LEGEND_STATES(:,4) = strpad('J_ERleak in component J_ERleak (micromolar)'); LEGEND_STATES(:,5) = strpad('J_in in component J_in (micromolar)'); LEGEND_STATES(:,6) = strpad('J_out in component J_out (micromolar)'); LEGEND_STATES(:,7) = strpad('Ca_ER in component Ca_ER (micromolar)'); LEGEND_CONSTANTS(:,1) = strpad('beta in component J_ERch (dimensionless)'); LEGEND_CONSTANTS(:,2) = strpad('k_0ch in component J_ERch (micromolar_per_minute)'); LEGEND_CONSTANTS(:,3) = strpad('K_chcyt in component J_ERch (micromolar)'); LEGEND_CONSTANTS(:,4) = strpad('K_chER in component J_ERch (micromolar)'); LEGEND_CONSTANTS(:,5) = strpad('K_ERpump in component J_ERpump (micromolar)'); LEGEND_CONSTANTS(:,6) = strpad('K_pump in component J_ERpump (micromolar)'); LEGEND_CONSTANTS(:,7) = strpad('K_ERleak in component J_ERleak (per_minute)'); LEGEND_CONSTANTS(:,8) = strpad('K_0in in component J_in (micromolar_per_minute)'); LEGEND_CONSTANTS(:,9) = strpad('K_out in component J_out (per_minute)'); LEGEND_RATES(:,1) = strpad('d/dt Ca_cyt in component Ca_cyt (micromolar)'); LEGEND_RATES(:,7) = strpad('d/dt Ca_ER in component Ca_ER (micromolar)'); LEGEND_RATES(:,2) = strpad('d/dt J_ERch in component J_ERch (micromolar)'); LEGEND_RATES(:,3) = strpad('d/dt J_ERpump in component J_ERpump (micromolar)'); LEGEND_RATES(:,4) = strpad('d/dt J_ERleak in component J_ERleak (micromolar)'); LEGEND_RATES(:,5) = strpad('d/dt J_in in component J_in (micromolar)'); LEGEND_RATES(:,6) = strpad('d/dt J_out in component J_out (micromolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0.01; STATES(:,2) = 0.1; STATES(:,3) = 0.1; STATES(:,4) = 0.1; STATES(:,5) = 0.1; STATES(:,6) = 0.1; STATES(:,7) = 20; CONSTANTS(:,1) = 1.7; CONSTANTS(:,2) = 325; CONSTANTS(:,3) = 0.45; CONSTANTS(:,4) = 1; CONSTANTS(:,5) = 25; CONSTANTS(:,6) = 0.5; CONSTANTS(:,7) = 1; CONSTANTS(:,8) = 1.7; CONSTANTS(:,9) = 10; CONSTANTS(:,9) = CONSTANTS(:,8).*1.00000; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,5) = CONSTANTS(:,9); RATES(:,1) = (((STATES(:,2) - STATES(:,3))+STATES(:,4)+STATES(:,5)) - STATES(:,6)).*1.00000; RATES(:,7) = ((STATES(:,3) - STATES(:,4)) - STATES(:,2)).*1.00000; RATES(:,2) = CONSTANTS(:,1).*CONSTANTS(:,2).*( (power(STATES(:,1), 4.00000)./(power(CONSTANTS(:,3), 4.00000)+power(STATES(:,1), 4.00000))).*(power(STATES(:,7), 2.00000)./(power(CONSTANTS(:,4), 2.00000)+power(STATES(:,7), 2.00000)))).*1.00000; RATES(:,3) = CONSTANTS(:,5).*(power(STATES(:,1), 2.00000)./(power(CONSTANTS(:,6), 2.00000)+power(STATES(:,1), 2.00000))); RATES(:,4) = (( CONSTANTS(:,7).*STATES(:,7))./1.00000).*1.00000; RATES(:,6) = (( CONSTANTS(:,9).*STATES(:,1))./1.00000).*1.00000; RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end