Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =3; end % There are a total of 2 entries in each of the rate and state variable arrays. % There are a total of 9 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('t in component main (second)'); LEGEND_STATES(:,1) = strpad('q_1 in component main (mole)'); LEGEND_STATES(:,2) = strpad('q_2 in component main (mole)'); LEGEND_CONSTANTS(:,1) = strpad('q in component main (mole)'); LEGEND_CONSTANTS(:,2) = strpad('E_tot in component main (mole)'); LEGEND_ALGEBRAIC(:,1) = strpad('v in component main (mol_per_s)'); LEGEND_CONSTANTS(:,3) = strpad('kappa_3 in component main (mol_per_s)'); LEGEND_CONSTANTS(:,4) = strpad('kappa_4 in component main (mol_per_s)'); LEGEND_CONSTANTS(:,5) = strpad('K_s in component main (per_mol)'); LEGEND_CONSTANTS(:,6) = strpad('K_m in component main (per_mol)'); LEGEND_CONSTANTS(:,8) = strpad('k_m in component main (mole)'); LEGEND_CONSTANTS(:,9) = strpad('v_max in component main (mol_per_s)'); LEGEND_ALGEBRAIC(:,2) = strpad('v_MM in component main (mol_per_s)'); LEGEND_CONSTANTS(:,7) = strpad('q20 in component main (mole)'); LEGEND_ALGEBRAIC(:,3) = strpad('v_0 in component main (mol_per_s)'); LEGEND_RATES(:,1) = strpad('d/dt q_1 in component main (mole)'); LEGEND_RATES(:,2) = strpad('d/dt q_2 in component main (mole)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 10; STATES(:,2) = 0; CONSTANTS(:,1) = 0; CONSTANTS(:,2) = 10; CONSTANTS(:,3) = 1; CONSTANTS(:,4) = 0.1; CONSTANTS(:,5) = 0.1; CONSTANTS(:,6) = 1; CONSTANTS(:,7) = 0; CONSTANTS(:,8) = 2.00000./( CONSTANTS(:,5).*(1.00000+CONSTANTS(:,3)./CONSTANTS(:,4))); CONSTANTS(:,9) = ( CONSTANTS(:,2).*CONSTANTS(:,3).*CONSTANTS(:,6))./(1.00000+CONSTANTS(:,3)./CONSTANTS(:,4)); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = ( CONSTANTS(:,2).*CONSTANTS(:,3).*CONSTANTS(:,4).*CONSTANTS(:,6).*CONSTANTS(:,5).*(STATES(:,1) - STATES(:,2)))./( 2.00000.*CONSTANTS(:,4)+ (CONSTANTS(:,3)+CONSTANTS(:,4)).*CONSTANTS(:,5).*(STATES(:,1)+STATES(:,2))+ 2.00000.*CONSTANTS(:,3).*CONSTANTS(:,5).*CONSTANTS(:,5).*STATES(:,1).*STATES(:,2)); RATES(:,1) = - ALGEBRAIC(:,1); RATES(:,2) = ALGEBRAIC(:,1) - 0.100000.*STATES(:,2); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = ( CONSTANTS(:,2).*CONSTANTS(:,3).*CONSTANTS(:,4).*CONSTANTS(:,6).*CONSTANTS(:,5).*(STATES(:,1) - STATES(:,2)))./( 2.00000.*CONSTANTS(:,4)+ (CONSTANTS(:,3)+CONSTANTS(:,4)).*CONSTANTS(:,5).*(STATES(:,1)+STATES(:,2))+ 2.00000.*CONSTANTS(:,3).*CONSTANTS(:,5).*CONSTANTS(:,5).*STATES(:,1).*STATES(:,2)); ALGEBRAIC(:,2) = ( CONSTANTS(:,9).*STATES(:,1))./(CONSTANTS(:,8)+STATES(:,1)); ALGEBRAIC(:,3) = ( CONSTANTS(:,2).*CONSTANTS(:,3).*CONSTANTS(:,4).*CONSTANTS(:,6).*CONSTANTS(:,5).*(STATES(:,1) - CONSTANTS(:,7)))./( 2.00000.*CONSTANTS(:,4)+ (CONSTANTS(:,3)+CONSTANTS(:,4)).*CONSTANTS(:,5).*(STATES(:,1)+CONSTANTS(:,7))+ 2.00000.*CONSTANTS(:,3).*CONSTANTS(:,5).*CONSTANTS(:,5).*STATES(:,1).*CONSTANTS(:,7)); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end