function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =2; end % There are a total of 7 entries in each of the rate and state variable arrays. % There are a total of 8 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('Ca_t in component equations (uM_per_kg)'); LEGEND_STATES(:,2) = strpad('TnCa_t in component equations (uM_per_kg)'); LEGEND_STATES(:,3) = strpad('CB_on_t in component equations (uM_per_kg)'); LEGEND_STATES(:,4) = strpad('Ca_released in component equations (uM_per_kg)'); LEGEND_STATES(:,5) = strpad('Ca_sequestered in component equations (uM_per_kg)'); LEGEND_STATES(:,6) = strpad('cumCB_on_t in component equations (uM_per_kg)'); LEGEND_STATES(:,7) = strpad('cumCB_off_t in component equations (uM_per_kg)'); LEGEND_ALGEBRAIC(:,1) = strpad('Ca_release_rate in component equations (uM_per_kg_per_second)'); LEGEND_ALGEBRAIC(:,2) = strpad('dTnCa_t_dt in component equations (uM_per_kg_per_second)'); LEGEND_CONSTANTS(:,1) = strpad('Ca_tot_released in component equations (uM_per_kg)'); LEGEND_CONSTANTS(:,2) = strpad('total_Tn in component equations (uM_per_kg)'); LEGEND_CONSTANTS(:,3) = strpad('total_CB in component equations (uM_per_kg)'); LEGEND_CONSTANTS(:,4) = strpad('k_1 in component equations (kg_per_uM_per_second)'); LEGEND_CONSTANTS(:,5) = strpad('k_2 in component equations (per_second)'); LEGEND_CONSTANTS(:,6) = strpad('k_3 in component equations (per_second)'); LEGEND_CONSTANTS(:,7) = strpad('f in component equations (kg_per_uM_per_second)'); LEGEND_CONSTANTS(:,8) = strpad('g in component equations (per_second)'); LEGEND_RATES(:,1) = strpad('d/dt Ca_t in component equations (uM_per_kg)'); LEGEND_RATES(:,2) = strpad('d/dt TnCa_t in component equations (uM_per_kg)'); LEGEND_RATES(:,3) = strpad('d/dt CB_on_t in component equations (uM_per_kg)'); LEGEND_RATES(:,4) = strpad('d/dt Ca_released in component equations (uM_per_kg)'); LEGEND_RATES(:,5) = strpad('d/dt Ca_sequestered in component equations (uM_per_kg)'); LEGEND_RATES(:,6) = strpad('d/dt cumCB_on_t in component equations (uM_per_kg)'); LEGEND_RATES(:,7) = strpad('d/dt cumCB_off_t in component equations (uM_per_kg)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 0; STATES(:,2) = 0; STATES(:,3) = 0; STATES(:,4) = 0; STATES(:,5) = 0; STATES(:,6) = 0; STATES(:,7) = 0; CONSTANTS(:,1) = 35; CONSTANTS(:,2) = 70; CONSTANTS(:,3) = 150; CONSTANTS(:,4) = 5e6; CONSTANTS(:,5) = 10; CONSTANTS(:,6) = 1000; CONSTANTS(:,7) = 0.4e6; CONSTANTS(:,8) = 10; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,2) = CONSTANTS(:,4).*STATES(:,1).*(CONSTANTS(:,2) - STATES(:,2)) - CONSTANTS(:,5).*STATES(:,2); RATES(:,3) = CONSTANTS(:,7).*STATES(:,2).*(CONSTANTS(:,3) - STATES(:,3)) - CONSTANTS(:,8).*STATES(:,3); RATES(:,5) = CONSTANTS(:,6).*STATES(:,1); RATES(:,6) = CONSTANTS(:,7).*STATES(:,2).*(CONSTANTS(:,3) - STATES(:,3)); RATES(:,7) = CONSTANTS(:,8).*STATES(:,3); ALGEBRAIC(:,1) = piecewise({VOI>0.100000, 0.00000 }, 20.0000.*CONSTANTS(:,1).*(1.00000 - 10.0000.*VOI)); RATES(:,4) = ALGEBRAIC(:,1); ALGEBRAIC(:,2) = CONSTANTS(:,4).*STATES(:,1).*(CONSTANTS(:,2) - STATES(:,2)) - CONSTANTS(:,5).*STATES(:,2); RATES(:,1) = (ALGEBRAIC(:,1) - CONSTANTS(:,6).*STATES(:,1)) - ALGEBRAIC(:,2); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = piecewise({VOI>0.100000, 0.00000 }, 20.0000.*CONSTANTS(:,1).*(1.00000 - 10.0000.*VOI)); ALGEBRAIC(:,2) = CONSTANTS(:,4).*STATES(:,1).*(CONSTANTS(:,2) - STATES(:,2)) - CONSTANTS(:,5).*STATES(:,2); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end