Generated Code

The following is c code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 82 entries in the algebraic variable array.
   There are a total of 29 entries in each of the rate and state variable arrays.
   There are a total of 63 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is C in component membrane (microF).
 * CONSTANTS[53] is RTONF in component membrane (millivolt).
 * ALGEBRAIC[66] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[71] is i_CaL in component L_type_calcium_current (nanoA).
 * ALGEBRAIC[67] is i_to in component transient_outward_potassium_current (nanoA).
 * ALGEBRAIC[42] is i_Kr in component rapid_delayed_rectifier_potassium_current (nanoA).
 * ALGEBRAIC[34] is i_f in component hyperpolarising_activated_current (nanoA).
 * ALGEBRAIC[68] is i_st in component sustained_outward_potassium_current (nanoA).
 * ALGEBRAIC[50] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[65] is i_NaCa in component sodium_calcium_exchange_current (nanoA).
 * ALGEBRAIC[52] is i_p in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[51] is i_b in component background_current (nanoA).
 * ALGEBRAIC[70] is i_ACh in component acetylcholine_sensitive_current (nanoA).
 * ALGEBRAIC[17] is i_Stim in component membrane (nanoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).
 * CONSTANTS[9] is g_f in component hyperpolarising_activated_current (microS).
 * CONSTANTS[10] is ACh in component acetylcholine_sensitive_current (millimolar).
 * STATES[1] is y in component hyperpolarising_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[0] is y_inf in component hyperpolarising_activated_current_y_gate (dimensionless).
 * ALGEBRAIC[19] is tau_y in component hyperpolarising_activated_current_y_gate (second).
 * CONSTANTS[11] is g_Kr in component rapid_delayed_rectifier_potassium_current (microS).
 * CONSTANTS[55] is E_K in component rapid_delayed_rectifier_potassium_current (millivolt).
 * CONSTANTS[12] is Ki in component intracellular_potassium_concentration (millimolar).
 * CONSTANTS[13] is Kc in component extracellular_potassium_concentration (millimolar).
 * STATES[2] is paf in component rapid_delayed_rectifier_potassium_current_paf_gate (dimensionless).
 * STATES[3] is pas in component rapid_delayed_rectifier_potassium_current_pas_gate (dimensionless).
 * STATES[4] is pik in component rapid_delayed_rectifier_potassium_current_pik_gate (dimensionless).
 * ALGEBRAIC[1] is paf_infinity in component rapid_delayed_rectifier_potassium_current_paf_gate (dimensionless).
 * ALGEBRAIC[20] is tau_paf in component rapid_delayed_rectifier_potassium_current_paf_gate (second).
 * ALGEBRAIC[2] is pas_infinity in component rapid_delayed_rectifier_potassium_current_pas_gate (dimensionless).
 * ALGEBRAIC[21] is tau_pas in component rapid_delayed_rectifier_potassium_current_pas_gate (second).
 * ALGEBRAIC[3] is pik_infinity in component rapid_delayed_rectifier_potassium_current_pik_gate (dimensionless).
 * ALGEBRAIC[22] is alpha_pik in component rapid_delayed_rectifier_potassium_current_pik_gate (per_second).
 * ALGEBRAIC[35] is beta_pik in component rapid_delayed_rectifier_potassium_current_pik_gate (per_second).
 * ALGEBRAIC[43] is tau_pik in component rapid_delayed_rectifier_potassium_current_pik_gate (second).
 * CONSTANTS[14] is g_K1 in component time_independent_potassium_current (microS).
 * ALGEBRAIC[49] is g_K1_prime in component time_independent_potassium_current (microS).
 * CONSTANTS[15] is g_b in component background_current (microS).
 * CONSTANTS[16] is E_b in component background_current (millivolt).
 * CONSTANTS[17] is I_p in component sodium_potassium_pump (nanoA).
 * CONSTANTS[18] is Nai in component intracellular_sodium_concentration (millimolar).
 * CONSTANTS[19] is kNaCa in component sodium_calcium_exchange_current (nanoA).
 * ALGEBRAIC[61] is x1 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[62] is x2 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[63] is x3 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[64] is x4 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[58] is k41 in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[54] is k34 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[55] is k23 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[56] is k21 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[54] is k32 in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[58] is k43 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[60] is k12 in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[59] is k14 in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[20] is Qci in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[21] is Qn in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[22] is Qco in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[23] is Kci in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[24] is K1ni in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[25] is K2ni in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[26] is K3ni in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[27] is Kcni in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[28] is K3no in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[29] is K1no in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[30] is K2no in component sodium_calcium_exchange_current (millimolar).
 * CONSTANTS[31] is Kco in component sodium_calcium_exchange_current (millimolar).
 * ALGEBRAIC[53] is do in component sodium_calcium_exchange_current (dimensionless).
 * ALGEBRAIC[57] is di in component sodium_calcium_exchange_current (dimensionless).
 * CONSTANTS[32] is Cao in component extracellular_calcium_concentration (millimolar).
 * CONSTANTS[33] is Nao in component extracellular_sodium_concentration (millimolar).
 * STATES[5] is Casub in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[34] is g_Na in component fast_sodium_current (microlitre_per_second).
 * CONSTANTS[56] is E_Na in component fast_sodium_current (millivolt).
 * STATES[6] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[7] is h1 in component fast_sodium_current_h1_gate (dimensionless).
 * STATES[8] is h2 in component fast_sodium_current_h2_gate (dimensionless).
 * ALGEBRAIC[23] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[36] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[35] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[4] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[5] is alpha_h1 in component fast_sodium_current_h1_gate (per_second).
 * ALGEBRAIC[24] is beta_h1 in component fast_sodium_current_h1_gate (per_second).
 * ALGEBRAIC[37] is h1_inf in component fast_sodium_current_h1_gate (dimensionless).
 * ALGEBRAIC[44] is tau_h1 in component fast_sodium_current_h1_gate (second).
 * ALGEBRAIC[6] is alpha_h2 in component fast_sodium_current_h2_gate (per_second).
 * ALGEBRAIC[25] is beta_h2 in component fast_sodium_current_h2_gate (per_second).
 * ALGEBRAIC[38] is h2_inf in component fast_sodium_current_h2_gate (dimensionless).
 * ALGEBRAIC[45] is tau_h2 in component fast_sodium_current_h2_gate (second).
 * CONSTANTS[36] is g_CaL in component L_type_calcium_current (microS).
 * CONSTANTS[37] is E_CaL in component L_type_calcium_current (millivolt).
 * STATES[9] is d in component L_type_calcium_current_d_gate (dimensionless).
 * STATES[10] is f in component L_type_calcium_current_f_gate (dimensionless).
 * STATES[11] is f2 in component L_type_calcium_current_f2_gate (dimensionless).
 * ALGEBRAIC[7] is alpha_d in component L_type_calcium_current_d_gate (per_second).
 * ALGEBRAIC[26] is beta_d in component L_type_calcium_current_d_gate (per_second).
 * ALGEBRAIC[39] is d_inf in component L_type_calcium_current_d_gate (dimensionless).
 * ALGEBRAIC[46] is tau_d in component L_type_calcium_current_d_gate (second).
 * CONSTANTS[38] is act_shift in component L_type_calcium_current_d_gate (millivolt).
 * CONSTANTS[39] is slope_factor_act in component L_type_calcium_current_d_gate (millivolt).
 * ALGEBRAIC[8] is f_inf in component L_type_calcium_current_f_gate (dimensionless).
 * ALGEBRAIC[27] is tau_f in component L_type_calcium_current_f_gate (second).
 * CONSTANTS[40] is inact_shift in component L_type_calcium_current_f_gate (millivolt).
 * ALGEBRAIC[9] is f2_inf in component L_type_calcium_current_f2_gate (dimensionless).
 * ALGEBRAIC[28] is tau_f2 in component L_type_calcium_current_f2_gate (second).
 * CONSTANTS[41] is inact_shift in component L_type_calcium_current_f2_gate (millivolt).
 * CONSTANTS[57] is E_K in component transient_outward_potassium_current (millivolt).
 * CONSTANTS[42] is g_to in component transient_outward_potassium_current (microS).
 * STATES[12] is r in component transient_outward_potassium_current_r_gate (dimensionless).
 * STATES[13] is q_fast in component transient_outward_potassium_current_qfast_gate (dimensionless).
 * STATES[14] is q_slow in component transient_outward_potassium_current_qslow_gate (dimensionless).
 * ALGEBRAIC[29] is tau_r in component transient_outward_potassium_current_r_gate (second).
 * ALGEBRAIC[10] is r_infinity in component transient_outward_potassium_current_r_gate (dimensionless).
 * ALGEBRAIC[30] is tau_qfast in component transient_outward_potassium_current_qfast_gate (second).
 * ALGEBRAIC[11] is qfast_infinity in component transient_outward_potassium_current_qfast_gate (dimensionless).
 * ALGEBRAIC[31] is tau_qslow in component transient_outward_potassium_current_qslow_gate (second).
 * ALGEBRAIC[12] is qslow_infinity in component transient_outward_potassium_current_qslow_gate (dimensionless).
 * CONSTANTS[43] is E_st in component sustained_outward_potassium_current (millivolt).
 * CONSTANTS[44] is g_st in component sustained_outward_potassium_current (microS).
 * STATES[15] is qa in component sustained_outward_potassium_current_qa_gate (dimensionless).
 * STATES[16] is qi in component sustained_outward_potassium_current_qi_gate (dimensionless).
 * ALGEBRAIC[47] is tau_qa in component sustained_outward_potassium_current_qa_gate (second).
 * ALGEBRAIC[13] is qa_infinity in component sustained_outward_potassium_current_qa_gate (dimensionless).
 * ALGEBRAIC[32] is alpha_qa in component sustained_outward_potassium_current_qa_gate (per_second).
 * ALGEBRAIC[40] is beta_qa in component sustained_outward_potassium_current_qa_gate (per_second).
 * ALGEBRAIC[48] is tau_qi in component sustained_outward_potassium_current_qi_gate (second).
 * ALGEBRAIC[14] is alpha_qi in component sustained_outward_potassium_current_qi_gate (per_second).
 * ALGEBRAIC[33] is beta_qi in component sustained_outward_potassium_current_qi_gate (per_second).
 * ALGEBRAIC[41] is qi_infinity in component sustained_outward_potassium_current_qi_gate (dimensionless).
 * ALGEBRAIC[69] is g_ACh in component acetylcholine_sensitive_current (microS).
 * CONSTANTS[45] is g_ACh_max in component acetylcholine_sensitive_current (microS).
 * CONSTANTS[46] is K_ACh in component acetylcholine_sensitive_current (millimolar).
 * STATES[17] is achf in component acetylcholine_sensitive_current_achf_gate (dimensionless).
 * STATES[18] is achs in component acetylcholine_sensitive_current_achs_gate (dimensionless).
 * CONSTANTS[47] is alpha_achf in component acetylcholine_sensitive_current_achf_gate (per_second).
 * ALGEBRAIC[15] is beta_achf in component acetylcholine_sensitive_current_achf_gate (per_second).
 * CONSTANTS[48] is alpha_achs in component acetylcholine_sensitive_current_achs_gate (per_second).
 * ALGEBRAIC[16] is beta_achs in component acetylcholine_sensitive_current_achs_gate (per_second).
 * STATES[19] is Cai in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[59] is V_up in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[60] is V_rel in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[61] is V_sub in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[62] is Vi in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[49] is V_cell in component intracellular_calcium_concentration (micrometre3).
 * ALGEBRAIC[73] is i_up in component intracellular_calcium_concentration (millimolar_per_second).
 * ALGEBRAIC[74] is i_tr in component intracellular_calcium_concentration (millimolar_per_second).
 * ALGEBRAIC[76] is i_rel in component intracellular_calcium_concentration (millimolar_per_second).
 * ALGEBRAIC[72] is i_diff in component intracellular_calcium_concentration (millimolar_per_second).
 * STATES[20] is Ca_up in component intracellular_calcium_concentration (millimolar).
 * STATES[21] is Ca_rel in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[50] is P_rel in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[51] is K_up in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[52] is tau_tr in component intracellular_calcium_concentration (second).
 * STATES[22] is f_TC in component intracellular_calcium_concentration (dimensionless).
 * STATES[23] is f_TMC in component intracellular_calcium_concentration (dimensionless).
 * STATES[24] is f_TMM in component intracellular_calcium_concentration (dimensionless).
 * STATES[25] is f_CMi in component intracellular_calcium_concentration (dimensionless).
 * STATES[26] is f_CMs in component intracellular_calcium_concentration (dimensionless).
 * STATES[27] is f_CQ in component intracellular_calcium_concentration (dimensionless).
 * STATES[28] is f_CSL in component intracellular_calcium_concentration (dimensionless).
 * ALGEBRAIC[75] is diff_f_TC in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[77] is diff_f_TMC in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[18] is diff_f_TMM in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[78] is diff_f_CMi in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[79] is diff_f_CMs in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[80] is diff_f_CQ in component intracellular_calcium_concentration (per_second).
 * ALGEBRAIC[81] is diff_f_CSL in component intracellular_calcium_concentration (per_second).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[1] is d/dt y in component hyperpolarising_activated_current_y_gate (dimensionless).
 * RATES[2] is d/dt paf in component rapid_delayed_rectifier_potassium_current_paf_gate (dimensionless).
 * RATES[3] is d/dt pas in component rapid_delayed_rectifier_potassium_current_pas_gate (dimensionless).
 * RATES[4] is d/dt pik in component rapid_delayed_rectifier_potassium_current_pik_gate (dimensionless).
 * RATES[6] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[7] is d/dt h1 in component fast_sodium_current_h1_gate (dimensionless).
 * RATES[8] is d/dt h2 in component fast_sodium_current_h2_gate (dimensionless).
 * RATES[9] is d/dt d in component L_type_calcium_current_d_gate (dimensionless).
 * RATES[10] is d/dt f in component L_type_calcium_current_f_gate (dimensionless).
 * RATES[11] is d/dt f2 in component L_type_calcium_current_f2_gate (dimensionless).
 * RATES[12] is d/dt r in component transient_outward_potassium_current_r_gate (dimensionless).
 * RATES[13] is d/dt q_fast in component transient_outward_potassium_current_qfast_gate (dimensionless).
 * RATES[14] is d/dt q_slow in component transient_outward_potassium_current_qslow_gate (dimensionless).
 * RATES[15] is d/dt qa in component sustained_outward_potassium_current_qa_gate (dimensionless).
 * RATES[16] is d/dt qi in component sustained_outward_potassium_current_qi_gate (dimensionless).
 * RATES[17] is d/dt achf in component acetylcholine_sensitive_current_achf_gate (dimensionless).
 * RATES[18] is d/dt achs in component acetylcholine_sensitive_current_achs_gate (dimensionless).
 * RATES[20] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar).
 * RATES[21] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar).
 * RATES[19] is d/dt Cai in component intracellular_calcium_concentration (millimolar).
 * RATES[5] is d/dt Casub in component intracellular_calcium_concentration (millimolar).
 * RATES[22] is d/dt f_TC in component intracellular_calcium_concentration (dimensionless).
 * RATES[23] is d/dt f_TMC in component intracellular_calcium_concentration (dimensionless).
 * RATES[24] is d/dt f_TMM in component intracellular_calcium_concentration (dimensionless).
 * RATES[25] is d/dt f_CMi in component intracellular_calcium_concentration (dimensionless).
 * RATES[26] is d/dt f_CMs in component intracellular_calcium_concentration (dimensionless).
 * RATES[27] is d/dt f_CQ in component intracellular_calcium_concentration (dimensionless).
 * RATES[28] is d/dt f_CSL in component intracellular_calcium_concentration (dimensionless).
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -69.760276376489;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 2.9e-5;
CONSTANTS[4] = 0.1;
CONSTANTS[5] = 99999;
CONSTANTS[6] = 1;
CONSTANTS[7] = 0.001;
CONSTANTS[8] = -2;
CONSTANTS[9] = 0;
CONSTANTS[10] = 0;
STATES[1] = 0.19584111039096;
CONSTANTS[11] = 0.002;
CONSTANTS[12] = 140;
CONSTANTS[13] = 5.4;
STATES[2] = 0.00141762995766447;
STATES[3] = 0.00539771950846456;
STATES[4] = 0.98638204514681;
CONSTANTS[14] = 0.015;
CONSTANTS[15] = 0.002;
CONSTANTS[16] = -40;
CONSTANTS[17] = 0.1968;
CONSTANTS[18] = 8;
CONSTANTS[19] = 5.916;
CONSTANTS[20] = 0.1369;
CONSTANTS[21] = 0.4315;
CONSTANTS[22] = 0;
CONSTANTS[23] = 0.0207;
CONSTANTS[24] = 395.3;
CONSTANTS[25] = 2.289;
CONSTANTS[26] = 26.44;
CONSTANTS[27] = 26.44;
CONSTANTS[28] = 4.663;
CONSTANTS[29] = 1628;
CONSTANTS[30] = 561.4;
CONSTANTS[31] = 3.663;
CONSTANTS[32] = 2;
CONSTANTS[33] = 140;
STATES[5] = 3.27335718697622e-5;
CONSTANTS[34] = 5e-7;
STATES[6] = 0.0132200747771872;
STATES[7] = 0.706622937059237;
STATES[8] = 0.701626826712569;
CONSTANTS[35] = 1e-5;
CONSTANTS[36] = 0.021;
CONSTANTS[37] = 62.1;
STATES[9] = 4.23500474189711e-5;
STATES[10] = 0.998435073735753;
STATES[11] = 0.998424216938754;
CONSTANTS[38] = 0;
CONSTANTS[39] = -6.61;
CONSTANTS[40] = -5;
CONSTANTS[41] = -5;
CONSTANTS[42] = 0.014;
STATES[12] = 0.00894826428663828;
STATES[13] = 0.994837524153424;
STATES[14] = 0.427382372349565;
CONSTANTS[43] = -37.4;
CONSTANTS[44] = 0;
STATES[15] = 0.0910882041816457;
STATES[16] = 0.890389014175329;
CONSTANTS[45] = 0.0198;
CONSTANTS[46] = 0.00035;
STATES[17] = 0.74242774587522;
STATES[18] = 0.746918323597392;
CONSTANTS[47] = 73.1;
CONSTANTS[48] = 3.7;
STATES[19] = 3.73317163732586e-5;
CONSTANTS[49] = 4.39823e-6;
STATES[20] = 0.818671555213184;
STATES[21] = 0.682159360306652;
CONSTANTS[50] = 1805.6;
CONSTANTS[51] = 0.0006;
CONSTANTS[52] = 0.06;
STATES[22] = 0.00739583869345967;
STATES[23] = 0.133773505989393;
STATES[24] = 0.765246381247448;
STATES[25] = 0.0154714370092264;
STATES[26] = 0.0135767851016544;
STATES[27] = 0.449992033196647;
STATES[28] = 1.21722016147587e-5;
CONSTANTS[53] = ( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2];
CONSTANTS[54] = CONSTANTS[33]/(CONSTANTS[28]+CONSTANTS[33]);
CONSTANTS[55] =  CONSTANTS[53]*log(CONSTANTS[13]/CONSTANTS[12]);
CONSTANTS[56] =  CONSTANTS[53]*log(CONSTANTS[33]/CONSTANTS[18]);
CONSTANTS[57] =  CONSTANTS[53]*log(CONSTANTS[13]/CONSTANTS[12]);
CONSTANTS[58] = CONSTANTS[18]/(CONSTANTS[26]+CONSTANTS[18]);
CONSTANTS[59] =  0.0116000*CONSTANTS[49];
CONSTANTS[60] =  0.00120000*CONSTANTS[49];
CONSTANTS[61] =  0.0100000*CONSTANTS[49];
CONSTANTS[62] =  0.460000*CONSTANTS[49] - CONSTANTS[61];
}
void
computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[15] = 120.000/(1.00000+exp(- (STATES[0]+50.0000)/15.0000));
RATES[17] =  CONSTANTS[47]*(1.00000 - STATES[17]) -  ALGEBRAIC[15]*STATES[17];
ALGEBRAIC[16] = 5.82000/(1.00000+exp(- (STATES[0]+50.0000)/15.0000));
RATES[18] =  CONSTANTS[48]*(1.00000 - STATES[18]) -  ALGEBRAIC[16]*STATES[18];
ALGEBRAIC[18] =  2277.00*2.50000*((1.00000 - STATES[23]) - STATES[24]) -  751.000*STATES[24];
RATES[24] = ALGEBRAIC[18];
ALGEBRAIC[0] = 1.00000/(1.00000+exp(((STATES[0]+83.1900) - ( - 7.20000*pow(CONSTANTS[10], 0.690000))/(pow(1.26000e-05, 0.690000)+pow(CONSTANTS[10], 0.690000)))/13.5600));
ALGEBRAIC[19] = 0.250000+ 2.00000*exp(- pow(STATES[0]+70.0000, 2.00000)/500.000);
RATES[1] = (ALGEBRAIC[0] - STATES[1])/ALGEBRAIC[19];
ALGEBRAIC[1] = 1.00000/(1.00000+exp((STATES[0]+10.2200)/- 8.50000));
ALGEBRAIC[20] = 1.00000/( 17.0000*exp( 0.0398000*STATES[0])+ 0.211000*exp( - 0.0510000*STATES[0]));
RATES[2] = (ALGEBRAIC[1] - STATES[2])/ALGEBRAIC[20];
ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+10.2200)/- 8.50000));
ALGEBRAIC[21] = 0.335810+ 0.906730*exp(- pow(STATES[0]+10.0000, 2.00000)/988.050);
RATES[3] = (ALGEBRAIC[2] - STATES[3])/ALGEBRAIC[21];
ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0] - (- 24.0000+CONSTANTS[40]))/6.31000));
ALGEBRAIC[27] = 0.0100000+ 0.153900*exp(- pow(STATES[0]+40.0000, 2.00000)/185.670);
RATES[10] = (ALGEBRAIC[8] - STATES[10])/ALGEBRAIC[27];
ALGEBRAIC[9] = 1.00000/(1.00000+exp((STATES[0] - (- 24.0000+CONSTANTS[41]))/6.31000));
ALGEBRAIC[28] = 0.0600000+ 0.480760*2.25000*exp(- pow(STATES[0] - - 40.0000, 2.00000)/138.040);
RATES[11] = (ALGEBRAIC[9] - STATES[11])/ALGEBRAIC[28];
ALGEBRAIC[29] = 0.000596000+0.00311800/( 1.03700*exp( 0.0900000*(STATES[0]+30.6100))+ 0.396000*exp( - 0.120000*(STATES[0]+23.8400)));
ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0] - 7.44000)/- 16.4000));
RATES[12] = (ALGEBRAIC[10] - STATES[12])/ALGEBRAIC[29];
ALGEBRAIC[30] = 0.0126600+4.72716/(1.00000+exp((STATES[0]+154.500)/23.9600));
ALGEBRAIC[11] = 1.00000/(1.00000+exp((STATES[0]+33.8000)/6.12000));
RATES[13] = (ALGEBRAIC[11] - STATES[13])/ALGEBRAIC[30];
ALGEBRAIC[31] = 0.100000+ 4.00000*exp(- pow(STATES[0]+65.0000, 2.00000)/500.000);
ALGEBRAIC[12] = 1.00000/(1.00000+exp((STATES[0]+33.8000)/6.12000));
RATES[14] = (ALGEBRAIC[12] - STATES[14])/ALGEBRAIC[31];
ALGEBRAIC[4] = STATES[0]+44.4000;
ALGEBRAIC[23] = (fabs(ALGEBRAIC[4])<CONSTANTS[35] ? ( - 460.000*- 12.6730)/exp(ALGEBRAIC[4]/- 12.6730) : ( - 460.000*ALGEBRAIC[4])/(exp(ALGEBRAIC[4]/- 12.6730) - 1.00000));
ALGEBRAIC[36] =  18400.0*exp(ALGEBRAIC[4]/- 12.6730);
RATES[6] =  ALGEBRAIC[23]*(1.00000 - STATES[6]) -  ALGEBRAIC[36]*STATES[6];
ALGEBRAIC[3] =  (1.00000/(1.00000+exp((STATES[0]+4.90000)/15.1400)))*(1.00000 -  0.300000*exp(- pow(STATES[0], 2.00000)/500.000));
ALGEBRAIC[22] =  92.0100*exp( - 0.0183000*STATES[0]);
ALGEBRAIC[35] =  603.600*exp( 0.00942000*STATES[0]);
ALGEBRAIC[43] = 1.00000/(ALGEBRAIC[22]+ALGEBRAIC[35]);
RATES[4] = (ALGEBRAIC[3] - STATES[4])/ALGEBRAIC[43];
ALGEBRAIC[5] =  44.9000*exp((STATES[0]+66.9000)/- 5.57000);
ALGEBRAIC[24] = 1491.00/(1.00000+ 323.300*exp((STATES[0]+94.6000)/- 12.9000));
ALGEBRAIC[37] = ALGEBRAIC[5]/(ALGEBRAIC[5]+ALGEBRAIC[24]);
ALGEBRAIC[44] = 0.0300000/(1.00000+exp((STATES[0]+40.0000)/6.00000))+0.000350000;
RATES[7] = (ALGEBRAIC[37] - STATES[7])/ALGEBRAIC[44];
ALGEBRAIC[6] =  44.9000*exp((STATES[0]+66.9000)/- 5.57000);
ALGEBRAIC[25] = 1491.00/(1.00000+ 323.300*exp((STATES[0]+94.6000)/- 12.9000));
ALGEBRAIC[38] = ALGEBRAIC[6]/(ALGEBRAIC[6]+ALGEBRAIC[25]);
ALGEBRAIC[45] = 0.120000/(1.00000+exp((STATES[0]+60.0000)/2.00000))+0.00295000;
RATES[8] = (ALGEBRAIC[38] - STATES[8])/ALGEBRAIC[45];
ALGEBRAIC[39] = 1.00000/(1.00000+exp((STATES[0] - (- 3.20000+CONSTANTS[38]))/CONSTANTS[39]));
ALGEBRAIC[7] = ( - 26.1200*(STATES[0]+35.0000))/(exp((STATES[0]+35.0000)/- 2.50000) - 1.00000)+( - 78.1100*STATES[0])/(exp( - 0.208000*STATES[0]) - 1.00000);
ALGEBRAIC[26] = ( 10.5200*(STATES[0] - 5.00000))/(exp( 0.400000*(STATES[0] - 5.00000)) - 1.00000);
ALGEBRAIC[46] = 1.00000/(ALGEBRAIC[7]+ALGEBRAIC[26]);
RATES[9] = (ALGEBRAIC[39] - STATES[9])/ALGEBRAIC[46];
ALGEBRAIC[32] = 1.00000/( 0.150000*exp(- STATES[0]/11.0000)+ 0.200000*exp(- STATES[0]/700.000));
ALGEBRAIC[40] = 1.00000/( 16.0000*exp(STATES[0]/8.00000)+ 15.0000*exp(STATES[0]/50.0000));
ALGEBRAIC[47] = 0.00100000/(ALGEBRAIC[32]+ALGEBRAIC[40]);
ALGEBRAIC[13] = 1.00000/(1.00000+exp((STATES[0] - - 49.1000)/- 8.98000));
RATES[15] = (ALGEBRAIC[13] - STATES[15])/ALGEBRAIC[47];
ALGEBRAIC[14] = 0.150400/( 3100.00*exp(STATES[0]/13.0000)+ 700.000*exp(STATES[0]/70.0000));
ALGEBRAIC[33] = 0.150400/( 95.0000*exp(- STATES[0]/10.0000)+ 50.0000*exp(- STATES[0]/700.000))+0.000229000/(1.00000+exp(- STATES[0]/5.00000));
ALGEBRAIC[48] = 0.00100000/(ALGEBRAIC[14]+ALGEBRAIC[33]);
ALGEBRAIC[41] = ALGEBRAIC[14]/(ALGEBRAIC[14]+ALGEBRAIC[33]);
RATES[16] = (ALGEBRAIC[41] - STATES[16])/ALGEBRAIC[48];
ALGEBRAIC[66] = ( (( CONSTANTS[34]*pow(STATES[6], 3.00000)*( 0.635000*STATES[7]+ 0.365000*STATES[8])*CONSTANTS[33]*STATES[0]*CONSTANTS[2])/CONSTANTS[53])*(exp((STATES[0] - CONSTANTS[56])/CONSTANTS[53]) - 1.00000))/(exp(STATES[0]/CONSTANTS[53]) - 1.00000);
ALGEBRAIC[69] = ( CONSTANTS[45]*STATES[17]*STATES[18]*pow(CONSTANTS[10], 1.50000))/(pow(CONSTANTS[46], 1.50000)+pow(CONSTANTS[10], 1.50000));
ALGEBRAIC[70] = ( (( ALGEBRAIC[69]*CONSTANTS[13])/(10.0000+CONSTANTS[13]))*(STATES[0] - CONSTANTS[55]))/(1.00000+exp(((STATES[0] - CONSTANTS[55]) - 140.000)/( 2.50000*CONSTANTS[53])));
ALGEBRAIC[71] =  CONSTANTS[36]*STATES[9]*( 0.675000*STATES[10]+ 0.325000*STATES[11])*(STATES[0] - CONSTANTS[37])*(1.00000 - (( ALGEBRAIC[70]*CONSTANTS[10])/(9.00000e-05+CONSTANTS[10]))/1.00000);
ALGEBRAIC[67] =  CONSTANTS[42]*STATES[12]*( 0.450000*STATES[13]+ 0.550000*STATES[14])*(STATES[0] - CONSTANTS[57]);
ALGEBRAIC[42] =  CONSTANTS[11]*( 0.900000*STATES[2]+ 0.100000*STATES[3])*STATES[4]*(STATES[0] - CONSTANTS[55]);
ALGEBRAIC[34] =  STATES[1]*CONSTANTS[9]*(STATES[0] - - 30.0000);
ALGEBRAIC[68] =  CONSTANTS[44]*STATES[15]*STATES[16]*(STATES[0] - CONSTANTS[43]);
ALGEBRAIC[49] =  CONSTANTS[14]*(0.500000+0.500000/(1.00000+exp((STATES[0]+30.0000)/5.00000)));
ALGEBRAIC[50] = ( ALGEBRAIC[49]*pow(CONSTANTS[13]/(CONSTANTS[13]+0.590000), 3.00000)*(STATES[0]+81.9000))/(1.00000+exp(( 1.39300*(STATES[0]+81.9000+3.60000))/CONSTANTS[53]));
ALGEBRAIC[58] = exp(( - CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53]));
ALGEBRAIC[53] = 1.00000+ (CONSTANTS[32]/CONSTANTS[31])*(1.00000+exp(( CONSTANTS[22]*STATES[0])/CONSTANTS[53]))+CONSTANTS[33]/CONSTANTS[29]+pow(CONSTANTS[33], 2.00000)/( CONSTANTS[29]*CONSTANTS[30])+pow(CONSTANTS[33], 3.00000)/( CONSTANTS[29]*CONSTANTS[30]*CONSTANTS[28]);
ALGEBRAIC[55] = ( (pow(CONSTANTS[33], 2.00000)/( CONSTANTS[29]*CONSTANTS[30])+pow(CONSTANTS[33], 3.00000)/( CONSTANTS[29]*CONSTANTS[30]*CONSTANTS[28]))*exp(( - CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53])))/ALGEBRAIC[53];
ALGEBRAIC[56] = ( (CONSTANTS[32]/CONSTANTS[31])*exp(( - CONSTANTS[22]*STATES[0])/CONSTANTS[53]))/ALGEBRAIC[53];
ALGEBRAIC[54] = exp(( CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53]));
ALGEBRAIC[61] =  ALGEBRAIC[58]*CONSTANTS[54]*(ALGEBRAIC[55]+ALGEBRAIC[56])+ ALGEBRAIC[56]*ALGEBRAIC[54]*(CONSTANTS[58]+ALGEBRAIC[58]);
ALGEBRAIC[57] = 1.00000+ (STATES[5]/CONSTANTS[23])*(1.00000+exp(( - CONSTANTS[20]*STATES[0])/CONSTANTS[53])+CONSTANTS[18]/CONSTANTS[27])+CONSTANTS[18]/CONSTANTS[24]+pow(CONSTANTS[18], 2.00000)/( CONSTANTS[24]*CONSTANTS[25])+pow(CONSTANTS[18], 3.00000)/( CONSTANTS[24]*CONSTANTS[25]*CONSTANTS[26]);
ALGEBRAIC[60] = ( (STATES[5]/CONSTANTS[23])*exp(( - CONSTANTS[20]*STATES[0])/CONSTANTS[53]))/ALGEBRAIC[57];
ALGEBRAIC[59] = ( (pow(CONSTANTS[18], 2.00000)/( CONSTANTS[24]*CONSTANTS[25])+pow(CONSTANTS[18], 3.00000)/( CONSTANTS[24]*CONSTANTS[25]*CONSTANTS[26]))*exp(( CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53])))/ALGEBRAIC[57];
ALGEBRAIC[62] =  ALGEBRAIC[54]*CONSTANTS[58]*(ALGEBRAIC[59]+ALGEBRAIC[60])+ ALGEBRAIC[58]*ALGEBRAIC[60]*(CONSTANTS[54]+ALGEBRAIC[54]);
ALGEBRAIC[63] =  ALGEBRAIC[59]*CONSTANTS[58]*(ALGEBRAIC[55]+ALGEBRAIC[56])+ ALGEBRAIC[60]*ALGEBRAIC[55]*(CONSTANTS[58]+ALGEBRAIC[58]);
ALGEBRAIC[64] =  ALGEBRAIC[55]*CONSTANTS[54]*(ALGEBRAIC[59]+ALGEBRAIC[60])+ ALGEBRAIC[59]*ALGEBRAIC[56]*(CONSTANTS[54]+ALGEBRAIC[54]);
ALGEBRAIC[65] = ( CONSTANTS[19]*( ALGEBRAIC[62]*ALGEBRAIC[56] -  ALGEBRAIC[61]*ALGEBRAIC[60]))/(ALGEBRAIC[61]+ALGEBRAIC[62]+ALGEBRAIC[63]+ALGEBRAIC[64]);
ALGEBRAIC[52] = ( CONSTANTS[17]*pow(CONSTANTS[18]/(5.64000+CONSTANTS[18]), 3.00000)*pow(CONSTANTS[13]/(0.621000+CONSTANTS[13]), 2.00000)*1.60000)/(1.50000+exp(- (STATES[0]+60.0000)/40.0000));
ALGEBRAIC[51] =  CONSTANTS[15]*(STATES[0] - CONSTANTS[16]);
ALGEBRAIC[17] = (VOI>=CONSTANTS[4]&&VOI<=CONSTANTS[5]&&(VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]<=CONSTANTS[7] ? CONSTANTS[8] : 0.00000);
RATES[0] = - (ALGEBRAIC[66]+ALGEBRAIC[71]+ALGEBRAIC[67]+ALGEBRAIC[42]+ALGEBRAIC[34]+ALGEBRAIC[68]+ALGEBRAIC[50]+ALGEBRAIC[65]+ALGEBRAIC[52]+ALGEBRAIC[51]+ALGEBRAIC[70]+ALGEBRAIC[17])/CONSTANTS[3];
ALGEBRAIC[73] = 5.00000/(1.00000+CONSTANTS[51]/STATES[19]);
ALGEBRAIC[74] = (STATES[20] - STATES[21])/CONSTANTS[52];
RATES[20] = ALGEBRAIC[73] - ( ALGEBRAIC[74]*CONSTANTS[60])/CONSTANTS[59];
ALGEBRAIC[75] =  88800.0*STATES[19]*(1.00000 - STATES[22]) -  446.000*STATES[22];
RATES[22] = ALGEBRAIC[75];
ALGEBRAIC[77] =  227700.*STATES[19]*((1.00000 - STATES[23]) - STATES[24]) -  7.51000*STATES[23];
RATES[23] = ALGEBRAIC[77];
ALGEBRAIC[76] = ( CONSTANTS[50]*(STATES[21] - STATES[5]))/(1.00000+pow(0.00120000/STATES[5], 2.00000));
ALGEBRAIC[80] =  534.000*STATES[21]*(1.00000 - STATES[27]) -  445.000*STATES[27];
RATES[21] = (ALGEBRAIC[74] - ALGEBRAIC[76]) -  10.0000*ALGEBRAIC[80];
ALGEBRAIC[72] = (STATES[5] - STATES[19])/4.00000e-05;
ALGEBRAIC[78] =  227700.*STATES[19]*(1.00000 - STATES[25]) -  542.000*STATES[25];
RATES[19] = ( ALGEBRAIC[72]*CONSTANTS[61] -  ALGEBRAIC[73]*CONSTANTS[59])/CONSTANTS[62] - ( 0.0450000*ALGEBRAIC[78]+ 0.0310000*ALGEBRAIC[75]+ 0.0620000*ALGEBRAIC[77]);
RATES[25] = ALGEBRAIC[78];
ALGEBRAIC[79] =  227700.*STATES[5]*(1.00000 - STATES[26]) -  542.000*STATES[26];
RATES[26] = ALGEBRAIC[79];
RATES[27] = ALGEBRAIC[80];
ALGEBRAIC[81] =  0.00100000*( 115.000*STATES[5]*(1.00000 - STATES[28]) -  1000.00*STATES[28]);
RATES[5] = (((- (ALGEBRAIC[71] -  2.00000*ALGEBRAIC[65])/( 2.00000*CONSTANTS[2])+ ALGEBRAIC[76]*CONSTANTS[60])/CONSTANTS[61] - ALGEBRAIC[72]) -  0.0450000*ALGEBRAIC[79]) -  (0.0310000/1.20000)*ALGEBRAIC[81];
RATES[28] = ALGEBRAIC[81];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[15] = 120.000/(1.00000+exp(- (STATES[0]+50.0000)/15.0000));
ALGEBRAIC[16] = 5.82000/(1.00000+exp(- (STATES[0]+50.0000)/15.0000));
ALGEBRAIC[18] =  2277.00*2.50000*((1.00000 - STATES[23]) - STATES[24]) -  751.000*STATES[24];
ALGEBRAIC[0] = 1.00000/(1.00000+exp(((STATES[0]+83.1900) - ( - 7.20000*pow(CONSTANTS[10], 0.690000))/(pow(1.26000e-05, 0.690000)+pow(CONSTANTS[10], 0.690000)))/13.5600));
ALGEBRAIC[19] = 0.250000+ 2.00000*exp(- pow(STATES[0]+70.0000, 2.00000)/500.000);
ALGEBRAIC[1] = 1.00000/(1.00000+exp((STATES[0]+10.2200)/- 8.50000));
ALGEBRAIC[20] = 1.00000/( 17.0000*exp( 0.0398000*STATES[0])+ 0.211000*exp( - 0.0510000*STATES[0]));
ALGEBRAIC[2] = 1.00000/(1.00000+exp((STATES[0]+10.2200)/- 8.50000));
ALGEBRAIC[21] = 0.335810+ 0.906730*exp(- pow(STATES[0]+10.0000, 2.00000)/988.050);
ALGEBRAIC[8] = 1.00000/(1.00000+exp((STATES[0] - (- 24.0000+CONSTANTS[40]))/6.31000));
ALGEBRAIC[27] = 0.0100000+ 0.153900*exp(- pow(STATES[0]+40.0000, 2.00000)/185.670);
ALGEBRAIC[9] = 1.00000/(1.00000+exp((STATES[0] - (- 24.0000+CONSTANTS[41]))/6.31000));
ALGEBRAIC[28] = 0.0600000+ 0.480760*2.25000*exp(- pow(STATES[0] - - 40.0000, 2.00000)/138.040);
ALGEBRAIC[29] = 0.000596000+0.00311800/( 1.03700*exp( 0.0900000*(STATES[0]+30.6100))+ 0.396000*exp( - 0.120000*(STATES[0]+23.8400)));
ALGEBRAIC[10] = 1.00000/(1.00000+exp((STATES[0] - 7.44000)/- 16.4000));
ALGEBRAIC[30] = 0.0126600+4.72716/(1.00000+exp((STATES[0]+154.500)/23.9600));
ALGEBRAIC[11] = 1.00000/(1.00000+exp((STATES[0]+33.8000)/6.12000));
ALGEBRAIC[31] = 0.100000+ 4.00000*exp(- pow(STATES[0]+65.0000, 2.00000)/500.000);
ALGEBRAIC[12] = 1.00000/(1.00000+exp((STATES[0]+33.8000)/6.12000));
ALGEBRAIC[4] = STATES[0]+44.4000;
ALGEBRAIC[23] = (fabs(ALGEBRAIC[4])<CONSTANTS[35] ? ( - 460.000*- 12.6730)/exp(ALGEBRAIC[4]/- 12.6730) : ( - 460.000*ALGEBRAIC[4])/(exp(ALGEBRAIC[4]/- 12.6730) - 1.00000));
ALGEBRAIC[36] =  18400.0*exp(ALGEBRAIC[4]/- 12.6730);
ALGEBRAIC[3] =  (1.00000/(1.00000+exp((STATES[0]+4.90000)/15.1400)))*(1.00000 -  0.300000*exp(- pow(STATES[0], 2.00000)/500.000));
ALGEBRAIC[22] =  92.0100*exp( - 0.0183000*STATES[0]);
ALGEBRAIC[35] =  603.600*exp( 0.00942000*STATES[0]);
ALGEBRAIC[43] = 1.00000/(ALGEBRAIC[22]+ALGEBRAIC[35]);
ALGEBRAIC[5] =  44.9000*exp((STATES[0]+66.9000)/- 5.57000);
ALGEBRAIC[24] = 1491.00/(1.00000+ 323.300*exp((STATES[0]+94.6000)/- 12.9000));
ALGEBRAIC[37] = ALGEBRAIC[5]/(ALGEBRAIC[5]+ALGEBRAIC[24]);
ALGEBRAIC[44] = 0.0300000/(1.00000+exp((STATES[0]+40.0000)/6.00000))+0.000350000;
ALGEBRAIC[6] =  44.9000*exp((STATES[0]+66.9000)/- 5.57000);
ALGEBRAIC[25] = 1491.00/(1.00000+ 323.300*exp((STATES[0]+94.6000)/- 12.9000));
ALGEBRAIC[38] = ALGEBRAIC[6]/(ALGEBRAIC[6]+ALGEBRAIC[25]);
ALGEBRAIC[45] = 0.120000/(1.00000+exp((STATES[0]+60.0000)/2.00000))+0.00295000;
ALGEBRAIC[39] = 1.00000/(1.00000+exp((STATES[0] - (- 3.20000+CONSTANTS[38]))/CONSTANTS[39]));
ALGEBRAIC[7] = ( - 26.1200*(STATES[0]+35.0000))/(exp((STATES[0]+35.0000)/- 2.50000) - 1.00000)+( - 78.1100*STATES[0])/(exp( - 0.208000*STATES[0]) - 1.00000);
ALGEBRAIC[26] = ( 10.5200*(STATES[0] - 5.00000))/(exp( 0.400000*(STATES[0] - 5.00000)) - 1.00000);
ALGEBRAIC[46] = 1.00000/(ALGEBRAIC[7]+ALGEBRAIC[26]);
ALGEBRAIC[32] = 1.00000/( 0.150000*exp(- STATES[0]/11.0000)+ 0.200000*exp(- STATES[0]/700.000));
ALGEBRAIC[40] = 1.00000/( 16.0000*exp(STATES[0]/8.00000)+ 15.0000*exp(STATES[0]/50.0000));
ALGEBRAIC[47] = 0.00100000/(ALGEBRAIC[32]+ALGEBRAIC[40]);
ALGEBRAIC[13] = 1.00000/(1.00000+exp((STATES[0] - - 49.1000)/- 8.98000));
ALGEBRAIC[14] = 0.150400/( 3100.00*exp(STATES[0]/13.0000)+ 700.000*exp(STATES[0]/70.0000));
ALGEBRAIC[33] = 0.150400/( 95.0000*exp(- STATES[0]/10.0000)+ 50.0000*exp(- STATES[0]/700.000))+0.000229000/(1.00000+exp(- STATES[0]/5.00000));
ALGEBRAIC[48] = 0.00100000/(ALGEBRAIC[14]+ALGEBRAIC[33]);
ALGEBRAIC[41] = ALGEBRAIC[14]/(ALGEBRAIC[14]+ALGEBRAIC[33]);
ALGEBRAIC[66] = ( (( CONSTANTS[34]*pow(STATES[6], 3.00000)*( 0.635000*STATES[7]+ 0.365000*STATES[8])*CONSTANTS[33]*STATES[0]*CONSTANTS[2])/CONSTANTS[53])*(exp((STATES[0] - CONSTANTS[56])/CONSTANTS[53]) - 1.00000))/(exp(STATES[0]/CONSTANTS[53]) - 1.00000);
ALGEBRAIC[69] = ( CONSTANTS[45]*STATES[17]*STATES[18]*pow(CONSTANTS[10], 1.50000))/(pow(CONSTANTS[46], 1.50000)+pow(CONSTANTS[10], 1.50000));
ALGEBRAIC[70] = ( (( ALGEBRAIC[69]*CONSTANTS[13])/(10.0000+CONSTANTS[13]))*(STATES[0] - CONSTANTS[55]))/(1.00000+exp(((STATES[0] - CONSTANTS[55]) - 140.000)/( 2.50000*CONSTANTS[53])));
ALGEBRAIC[71] =  CONSTANTS[36]*STATES[9]*( 0.675000*STATES[10]+ 0.325000*STATES[11])*(STATES[0] - CONSTANTS[37])*(1.00000 - (( ALGEBRAIC[70]*CONSTANTS[10])/(9.00000e-05+CONSTANTS[10]))/1.00000);
ALGEBRAIC[67] =  CONSTANTS[42]*STATES[12]*( 0.450000*STATES[13]+ 0.550000*STATES[14])*(STATES[0] - CONSTANTS[57]);
ALGEBRAIC[42] =  CONSTANTS[11]*( 0.900000*STATES[2]+ 0.100000*STATES[3])*STATES[4]*(STATES[0] - CONSTANTS[55]);
ALGEBRAIC[34] =  STATES[1]*CONSTANTS[9]*(STATES[0] - - 30.0000);
ALGEBRAIC[68] =  CONSTANTS[44]*STATES[15]*STATES[16]*(STATES[0] - CONSTANTS[43]);
ALGEBRAIC[49] =  CONSTANTS[14]*(0.500000+0.500000/(1.00000+exp((STATES[0]+30.0000)/5.00000)));
ALGEBRAIC[50] = ( ALGEBRAIC[49]*pow(CONSTANTS[13]/(CONSTANTS[13]+0.590000), 3.00000)*(STATES[0]+81.9000))/(1.00000+exp(( 1.39300*(STATES[0]+81.9000+3.60000))/CONSTANTS[53]));
ALGEBRAIC[58] = exp(( - CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53]));
ALGEBRAIC[53] = 1.00000+ (CONSTANTS[32]/CONSTANTS[31])*(1.00000+exp(( CONSTANTS[22]*STATES[0])/CONSTANTS[53]))+CONSTANTS[33]/CONSTANTS[29]+pow(CONSTANTS[33], 2.00000)/( CONSTANTS[29]*CONSTANTS[30])+pow(CONSTANTS[33], 3.00000)/( CONSTANTS[29]*CONSTANTS[30]*CONSTANTS[28]);
ALGEBRAIC[55] = ( (pow(CONSTANTS[33], 2.00000)/( CONSTANTS[29]*CONSTANTS[30])+pow(CONSTANTS[33], 3.00000)/( CONSTANTS[29]*CONSTANTS[30]*CONSTANTS[28]))*exp(( - CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53])))/ALGEBRAIC[53];
ALGEBRAIC[56] = ( (CONSTANTS[32]/CONSTANTS[31])*exp(( - CONSTANTS[22]*STATES[0])/CONSTANTS[53]))/ALGEBRAIC[53];
ALGEBRAIC[54] = exp(( CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53]));
ALGEBRAIC[61] =  ALGEBRAIC[58]*CONSTANTS[54]*(ALGEBRAIC[55]+ALGEBRAIC[56])+ ALGEBRAIC[56]*ALGEBRAIC[54]*(CONSTANTS[58]+ALGEBRAIC[58]);
ALGEBRAIC[57] = 1.00000+ (STATES[5]/CONSTANTS[23])*(1.00000+exp(( - CONSTANTS[20]*STATES[0])/CONSTANTS[53])+CONSTANTS[18]/CONSTANTS[27])+CONSTANTS[18]/CONSTANTS[24]+pow(CONSTANTS[18], 2.00000)/( CONSTANTS[24]*CONSTANTS[25])+pow(CONSTANTS[18], 3.00000)/( CONSTANTS[24]*CONSTANTS[25]*CONSTANTS[26]);
ALGEBRAIC[60] = ( (STATES[5]/CONSTANTS[23])*exp(( - CONSTANTS[20]*STATES[0])/CONSTANTS[53]))/ALGEBRAIC[57];
ALGEBRAIC[59] = ( (pow(CONSTANTS[18], 2.00000)/( CONSTANTS[24]*CONSTANTS[25])+pow(CONSTANTS[18], 3.00000)/( CONSTANTS[24]*CONSTANTS[25]*CONSTANTS[26]))*exp(( CONSTANTS[21]*STATES[0])/( 2.00000*CONSTANTS[53])))/ALGEBRAIC[57];
ALGEBRAIC[62] =  ALGEBRAIC[54]*CONSTANTS[58]*(ALGEBRAIC[59]+ALGEBRAIC[60])+ ALGEBRAIC[58]*ALGEBRAIC[60]*(CONSTANTS[54]+ALGEBRAIC[54]);
ALGEBRAIC[63] =  ALGEBRAIC[59]*CONSTANTS[58]*(ALGEBRAIC[55]+ALGEBRAIC[56])+ ALGEBRAIC[60]*ALGEBRAIC[55]*(CONSTANTS[58]+ALGEBRAIC[58]);
ALGEBRAIC[64] =  ALGEBRAIC[55]*CONSTANTS[54]*(ALGEBRAIC[59]+ALGEBRAIC[60])+ ALGEBRAIC[59]*ALGEBRAIC[56]*(CONSTANTS[54]+ALGEBRAIC[54]);
ALGEBRAIC[65] = ( CONSTANTS[19]*( ALGEBRAIC[62]*ALGEBRAIC[56] -  ALGEBRAIC[61]*ALGEBRAIC[60]))/(ALGEBRAIC[61]+ALGEBRAIC[62]+ALGEBRAIC[63]+ALGEBRAIC[64]);
ALGEBRAIC[52] = ( CONSTANTS[17]*pow(CONSTANTS[18]/(5.64000+CONSTANTS[18]), 3.00000)*pow(CONSTANTS[13]/(0.621000+CONSTANTS[13]), 2.00000)*1.60000)/(1.50000+exp(- (STATES[0]+60.0000)/40.0000));
ALGEBRAIC[51] =  CONSTANTS[15]*(STATES[0] - CONSTANTS[16]);
ALGEBRAIC[17] = (VOI>=CONSTANTS[4]&&VOI<=CONSTANTS[5]&&(VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]<=CONSTANTS[7] ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[73] = 5.00000/(1.00000+CONSTANTS[51]/STATES[19]);
ALGEBRAIC[74] = (STATES[20] - STATES[21])/CONSTANTS[52];
ALGEBRAIC[75] =  88800.0*STATES[19]*(1.00000 - STATES[22]) -  446.000*STATES[22];
ALGEBRAIC[77] =  227700.*STATES[19]*((1.00000 - STATES[23]) - STATES[24]) -  7.51000*STATES[23];
ALGEBRAIC[76] = ( CONSTANTS[50]*(STATES[21] - STATES[5]))/(1.00000+pow(0.00120000/STATES[5], 2.00000));
ALGEBRAIC[80] =  534.000*STATES[21]*(1.00000 - STATES[27]) -  445.000*STATES[27];
ALGEBRAIC[72] = (STATES[5] - STATES[19])/4.00000e-05;
ALGEBRAIC[78] =  227700.*STATES[19]*(1.00000 - STATES[25]) -  542.000*STATES[25];
ALGEBRAIC[79] =  227700.*STATES[5]*(1.00000 - STATES[26]) -  542.000*STATES[26];
ALGEBRAIC[81] =  0.00100000*( 115.000*STATES[5]*(1.00000 - STATES[28]) -  1000.00*STATES[28]);
}