Generated Code
The following is c code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 64 entries in the algebraic variable array. There are a total of 27 entries in each of the rate and state variable arrays. There are a total of 40 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[56] is i_Na in component sodium_current (nanoA). * ALGEBRAIC[36] is i_Ca_T in component T_type_Ca_channel (nanoA). * ALGEBRAIC[34] is i_Ca_L in component L_type_Ca_channel (nanoA). * ALGEBRAIC[59] is i_K in component delayed_rectifying_potassium_current (nanoA). * ALGEBRAIC[39] is i_f in component hyperpolarisation_activated_current (nanoA). * ALGEBRAIC[63] is i_B in component linear_background_current (nanoA). * ALGEBRAIC[40] is i_NaK in component sodium_potassium_pump (nanoA). * ALGEBRAIC[42] is i_NaCa in component sodium_calcium_pump (nanoA). * ALGEBRAIC[41] is i_Ca_P in component calcium_pump_current (nanoA). * CONSTANTS[4] is P_Na in component sodium_current (mul_per_second). * ALGEBRAIC[54] is E_Na in component reversal_potentials (millivolt). * STATES[1] is Na_c in component cleft_space_equations (millimolar). * STATES[2] is m in component sodium_current_m_gate (dimensionless). * STATES[3] is h1 in component sodium_current_h_gate (dimensionless). * STATES[4] is h2 in component sodium_current_h_gate (dimensionless). * ALGEBRAIC[21] is m_infinity in component sodium_current_m_gate (dimensionless). * ALGEBRAIC[27] is tau_m in component sodium_current_m_gate (second). * ALGEBRAIC[0] is alpha_m in component sodium_current_m_gate (per_second). * ALGEBRAIC[11] is beta_m in component sodium_current_m_gate (per_second). * ALGEBRAIC[22] is h1_infinity in component sodium_current_h_gate (dimensionless). * ALGEBRAIC[33] is h2_infinity in component sodium_current_h_gate (dimensionless). * ALGEBRAIC[28] is tau_h1 in component sodium_current_h_gate (second). * ALGEBRAIC[35] is tau_h2 in component sodium_current_h_gate (second). * ALGEBRAIC[1] is alpha_h1 in component sodium_current_h_gate (per_second). * ALGEBRAIC[12] is beta_h1 in component sodium_current_h_gate (per_second). * CONSTANTS[5] is g_Ca_L in component L_type_Ca_channel (microS). * CONSTANTS[6] is E_Ca_L in component L_type_Ca_channel (millivolt). * STATES[5] is d_L in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[32] is d_L_infinity in component L_type_Ca_channel_d_gate (dimensionless). * STATES[6] is f_L in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[8] is alpha_d_L in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[19] is beta_d_L in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[26] is tau_d_L in component L_type_Ca_channel_d_gate (second). * ALGEBRAIC[2] is alpha_f_L in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[13] is beta_f_L in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[29] is f_L_infinity in component L_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[23] is tau_f_L in component L_type_Ca_channel_f_gate (second). * CONSTANTS[7] is g_Ca_T in component T_type_Ca_channel (microS). * CONSTANTS[8] is E_Ca_T in component T_type_Ca_channel (millivolt). * STATES[7] is d_T in component T_type_Ca_channel_d_gate (dimensionless). * STATES[8] is f_T in component T_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[3] is alpha_d_T in component T_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[14] is beta_d_T in component T_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[30] is d_T_infinity in component T_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[24] is tau_d_T in component T_type_Ca_channel_d_gate (second). * ALGEBRAIC[4] is alpha_f_T in component T_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[15] is beta_f_T in component T_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[31] is f_T_infinity in component T_type_Ca_channel_f_gate (dimensionless). * ALGEBRAIC[25] is tau_f_T in component T_type_Ca_channel_f_gate (second). * CONSTANTS[34] is g_K in component delayed_rectifying_potassium_current (microS). * ALGEBRAIC[58] is E_K in component reversal_potentials (millivolt). * CONSTANTS[9] is K_b in component cleft_space_equations (millimolar). * STATES[9] is P_a in component delayed_rectifying_potassium_current_P_a_gate (dimensionless). * STATES[10] is P_i in component delayed_rectifying_potassium_current_P_i_gate (dimensionless). * ALGEBRAIC[16] is tau_P_a in component delayed_rectifying_potassium_current_P_a_gate (second). * ALGEBRAIC[5] is P_a_infinity in component delayed_rectifying_potassium_current_P_a_gate (dimensionless). * ALGEBRAIC[6] is alpha_P_i in component delayed_rectifying_potassium_current_P_i_gate (per_second). * ALGEBRAIC[17] is beta_P_i in component delayed_rectifying_potassium_current_P_i_gate (per_second). * ALGEBRAIC[57] is i_B_Na in component linear_background_current (nanoA). * ALGEBRAIC[62] is i_B_Ca in component linear_background_current (nanoA). * ALGEBRAIC[60] is i_B_K in component linear_background_current (nanoA). * CONSTANTS[10] is g_B_Na in component linear_background_current (microS). * CONSTANTS[11] is g_B_Ca in component linear_background_current (microS). * CONSTANTS[12] is g_B_K in component linear_background_current (microS). * ALGEBRAIC[61] is E_Ca in component reversal_potentials (millivolt). * ALGEBRAIC[37] is i_f_Na in component hyperpolarisation_activated_current (nanoA). * ALGEBRAIC[38] is i_f_K in component hyperpolarisation_activated_current (nanoA). * CONSTANTS[13] is g_f_Na in component hyperpolarisation_activated_current (microS). * CONSTANTS[14] is g_f_K in component hyperpolarisation_activated_current (microS). * STATES[11] is y in component hyperpolarisation_activated_current_y_gate (dimensionless). * ALGEBRAIC[7] is y_infinity in component hyperpolarisation_activated_current_y_gate (dimensionless). * ALGEBRAIC[18] is tau_y in component hyperpolarisation_activated_current_y_gate (second). * CONSTANTS[15] is K_m_Na in component sodium_potassium_pump (millimolar). * CONSTANTS[16] is K_m_K in component sodium_potassium_pump (millimolar). * CONSTANTS[17] is i_NaK_max in component sodium_potassium_pump (nanoA). * STATES[12] is Na_i in component intracellular_concentrations_and_buffer_equations (millimolar). * STATES[13] is K_c in component cleft_space_equations (millimolar). * CONSTANTS[18] is i_Ca_P_max in component calcium_pump_current (nanoA). * STATES[14] is Ca_i in component intracellular_concentrations_and_buffer_equations (millimolar). * CONSTANTS[19] is K_NaCa in component sodium_calcium_pump (nanoA). * CONSTANTS[20] is d_NaCa in component sodium_calcium_pump (dimensionless). * CONSTANTS[21] is gamma in component sodium_calcium_pump (dimensionless). * STATES[15] is Ca_c in component cleft_space_equations (millimolar). * STATES[16] is K_i in component intracellular_concentrations_and_buffer_equations (millimolar). * STATES[17] is Ca_Calmod in component intracellular_concentrations_and_buffer_equations (dimensionless). * STATES[18] is Ca_Trop in component intracellular_concentrations_and_buffer_equations (dimensionless). * STATES[19] is Ca_Mg_Trop in component intracellular_concentrations_and_buffer_equations (dimensionless). * STATES[20] is Mg_Mg_Trop in component intracellular_concentrations_and_buffer_equations (dimensionless). * ALGEBRAIC[43] is phi_C in component intracellular_concentrations_and_buffer_equations (per_second). * ALGEBRAIC[44] is phi_TC in component intracellular_concentrations_and_buffer_equations (per_second). * ALGEBRAIC[45] is phi_TMgC in component intracellular_concentrations_and_buffer_equations (per_second). * ALGEBRAIC[9] is phi_TMgM in component intracellular_concentrations_and_buffer_equations (per_second). * ALGEBRAIC[49] is phi_B in component intracellular_concentrations_and_buffer_equations (millimolar_per_second). * CONSTANTS[22] is Mg_i in component intracellular_concentrations_and_buffer_equations (millimolar). * ALGEBRAIC[46] is F_C in component intracellular_concentrations_and_buffer_equations (millimolar_per_second). * ALGEBRAIC[47] is F_TC in component intracellular_concentrations_and_buffer_equations (millimolar_per_second). * ALGEBRAIC[48] is F_TMgC in component intracellular_concentrations_and_buffer_equations (millimolar_per_second). * CONSTANTS[23] is Vol in component cleft_space_equations (microLitre). * CONSTANTS[35] is V_i in component intracellular_concentrations_and_buffer_equations (microLitre). * ALGEBRAIC[52] is i_up in component SR_Ca_uptake_and_release (nanoA). * ALGEBRAIC[53] is i_rel in component SR_Ca_uptake_and_release (nanoA). * CONSTANTS[24] is Na_b in component cleft_space_equations (millimolar). * CONSTANTS[25] is Ca_b in component cleft_space_equations (millimolar). * CONSTANTS[36] is V_c in component cleft_space_equations (microLitre). * CONSTANTS[26] is tau_p in component cleft_space_equations (second). * ALGEBRAIC[55] is i_tr in component SR_Ca_uptake_and_release (nanoA). * STATES[21] is Ca_up in component SR_Ca_uptake_and_release (millimolar). * STATES[22] is Ca_rel in component SR_Ca_uptake_and_release (millimolar). * CONSTANTS[27] is alpha_up in component SR_Ca_uptake_and_release (nanoA). * CONSTANTS[28] is beta_up in component SR_Ca_uptake_and_release (nanoA). * CONSTANTS[29] is alpha_rel in component SR_Ca_uptake_and_release (nanoA_per_millimolar). * CONSTANTS[37] is K1 in component SR_Ca_uptake_and_release (dimensionless). * ALGEBRAIC[51] is K2 in component SR_Ca_uptake_and_release (millimolar). * CONSTANTS[30] is k_cyca in component SR_Ca_uptake_and_release (millimolar). * CONSTANTS[31] is k_xcs in component SR_Ca_uptake_and_release (dimensionless). * CONSTANTS[32] is k_SRCa in component SR_Ca_uptake_and_release (millimolar). * CONSTANTS[33] is k_rel in component SR_Ca_uptake_and_release (millimolar). * ALGEBRAIC[10] is r_act in component SR_Ca_uptake_and_release (per_second). * ALGEBRAIC[20] is r_inact in component SR_Ca_uptake_and_release (per_second). * STATES[23] is Ca_Calse in component SR_Ca_uptake_and_release (dimensionless). * ALGEBRAIC[50] is phi_Calse in component SR_Ca_uptake_and_release (per_second). * STATES[24] is F1 in component SR_Ca_uptake_and_release (dimensionless). * STATES[25] is F2 in component SR_Ca_uptake_and_release (dimensionless). * STATES[26] is F3 in component SR_Ca_uptake_and_release (dimensionless). * CONSTANTS[38] is V_up in component SR_Ca_uptake_and_release (microLitre). * CONSTANTS[39] is V_rel in component SR_Ca_uptake_and_release (microLitre). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[2] is d/dt m in component sodium_current_m_gate (dimensionless). * RATES[3] is d/dt h1 in component sodium_current_h_gate (dimensionless). * RATES[4] is d/dt h2 in component sodium_current_h_gate (dimensionless). * RATES[5] is d/dt d_L in component L_type_Ca_channel_d_gate (dimensionless). * RATES[6] is d/dt f_L in component L_type_Ca_channel_f_gate (dimensionless). * RATES[7] is d/dt d_T in component T_type_Ca_channel_d_gate (dimensionless). * RATES[8] is d/dt f_T in component T_type_Ca_channel_f_gate (dimensionless). * RATES[9] is d/dt P_a in component delayed_rectifying_potassium_current_P_a_gate (dimensionless). * RATES[10] is d/dt P_i in component delayed_rectifying_potassium_current_P_i_gate (dimensionless). * RATES[11] is d/dt y in component hyperpolarisation_activated_current_y_gate (dimensionless). * RATES[17] is d/dt Ca_Calmod in component intracellular_concentrations_and_buffer_equations (dimensionless). * RATES[18] is d/dt Ca_Trop in component intracellular_concentrations_and_buffer_equations (dimensionless). * RATES[19] is d/dt Ca_Mg_Trop in component intracellular_concentrations_and_buffer_equations (dimensionless). * RATES[20] is d/dt Mg_Mg_Trop in component intracellular_concentrations_and_buffer_equations (dimensionless). * RATES[12] is d/dt Na_i in component intracellular_concentrations_and_buffer_equations (millimolar). * RATES[16] is d/dt K_i in component intracellular_concentrations_and_buffer_equations (millimolar). * RATES[14] is d/dt Ca_i in component intracellular_concentrations_and_buffer_equations (millimolar). * RATES[1] is d/dt Na_c in component cleft_space_equations (millimolar). * RATES[13] is d/dt K_c in component cleft_space_equations (millimolar). * RATES[15] is d/dt Ca_c in component cleft_space_equations (millimolar). * RATES[23] is d/dt Ca_Calse in component SR_Ca_uptake_and_release (dimensionless). * RATES[24] is d/dt F1 in component SR_Ca_uptake_and_release (dimensionless). * RATES[25] is d/dt F2 in component SR_Ca_uptake_and_release (dimensionless). * RATES[26] is d/dt F3 in component SR_Ca_uptake_and_release (dimensionless). * RATES[21] is d/dt Ca_up in component SR_Ca_uptake_and_release (millimolar). * RATES[22] is d/dt Ca_rel in component SR_Ca_uptake_and_release (millimolar). */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -49.54105; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 5.5e-5; CONSTANTS[4] = 0.00344; STATES[1] = 139.9988; STATES[2] = 0.250113; STATES[3] = 0.001386897; STATES[4] = 0.002065463; CONSTANTS[5] = 0.02115; CONSTANTS[6] = 46.4; STATES[5] = 0.002572773; STATES[6] = 0.98651; CONSTANTS[7] = 0.02521; CONSTANTS[8] = 45; STATES[7] = 0.02012114; STATES[8] = 0.1945111; CONSTANTS[9] = 5.4; STATES[9] = 0.02302278; STATES[10] = 0.3777728; CONSTANTS[10] = 0.00016; CONSTANTS[11] = 0.0000364; CONSTANTS[12] = 0.0000694; CONSTANTS[13] = 0.0067478; CONSTANTS[14] = 0.0128821; STATES[11] = 0.09227776; CONSTANTS[15] = 5.46; CONSTANTS[16] = 0.621; CONSTANTS[17] = 0.2192; STATES[12] = 9.701621; STATES[13] = 5.389014; CONSTANTS[18] = 0.02869; STATES[14] = 3.787018e-4; CONSTANTS[19] = 0.00001248; CONSTANTS[20] = 0.0001; CONSTANTS[21] = 0.5; STATES[15] = 2.00474; STATES[16] = 1.407347e2; STATES[17] = 0.1411678; STATES[18] = 0.07331396; STATES[19] = 0.7618549; STATES[20] = 0.2097049; CONSTANTS[22] = 2.5; CONSTANTS[23] = 3.497e-6; CONSTANTS[24] = 140; CONSTANTS[25] = 2; CONSTANTS[26] = 0.01; STATES[21] = 16.95311; STATES[22] = 16.85024; CONSTANTS[27] = 0.08; CONSTANTS[28] = 0.072; CONSTANTS[29] = 0.5; CONSTANTS[30] = 0.00005; CONSTANTS[31] = 0.9; CONSTANTS[32] = 22; CONSTANTS[33] = 0.004; STATES[23] = 0.9528726; STATES[24] = 0.1133251; STATES[25] = 0.0007594214; STATES[26] = 0.8859153; CONSTANTS[34] = 0.00693000*pow(CONSTANTS[9]/1.00000, 0.590000); CONSTANTS[35] = 0.465000*CONSTANTS[23]; CONSTANTS[36] = 0.136000*CONSTANTS[23]; CONSTANTS[37] = ( CONSTANTS[30]*CONSTANTS[31])/CONSTANTS[32]; CONSTANTS[38] = 0.0116600*CONSTANTS[35]; CONSTANTS[39] = 0.00129600*CONSTANTS[35]; } void computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[9] = 1290.00*CONSTANTS[22]*(1.00000 - (STATES[19]+STATES[20])) - 429.000*STATES[20]; RATES[20] = ALGEBRAIC[9]; ALGEBRAIC[10] = 240.000*exp( (STATES[0] - 40.0000)*0.0800000)+ 240.000*pow(STATES[14]/(STATES[14]+CONSTANTS[33]), 4.00000); RATES[24] = 0.960000*STATES[26] - ALGEBRAIC[10]*STATES[24]; ALGEBRAIC[16] = 1.00000/( 17.0000*exp( 0.0398000*STATES[0])+ 2.11000*exp( - 0.0510000*STATES[0])); ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+5.10000)/- 7.40000)); RATES[9] = (ALGEBRAIC[5] - STATES[9])/ALGEBRAIC[16]; ALGEBRAIC[6] = 100.000*exp( - 0.0183000*STATES[0]); ALGEBRAIC[17] = 656.000*exp( 0.00942000*STATES[0]); RATES[10] = ALGEBRAIC[6]*(1.00000 - STATES[10]) - ALGEBRAIC[17]*STATES[10]; ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+72.2000)/9.00000)); ALGEBRAIC[18] = 1.00000/( 1.64830*exp((STATES[0]+54.0600)/- 24.3300)+14.0106/(0.700000+exp((STATES[0]+60.0000)/- 5.50000))); RATES[11] = (ALGEBRAIC[7] - STATES[11])/ALGEBRAIC[18]; ALGEBRAIC[20] = 40.0000+ 240.000*pow(STATES[14]/(STATES[14]+CONSTANTS[33]), 4.00000); RATES[25] = ALGEBRAIC[10]*STATES[24] - ALGEBRAIC[20]*STATES[25]; RATES[26] = ALGEBRAIC[20]*STATES[25] - 0.960000*STATES[26]; ALGEBRAIC[0] = ( - 824.000*(STATES[0]+51.9000))/(exp((STATES[0]+51.9000)/- 8.90000) - 1.00000); ALGEBRAIC[11] = 32960.0*exp((STATES[0]+51.9000)/- 8.90000); ALGEBRAIC[21] = ALGEBRAIC[0]/(ALGEBRAIC[0]+ALGEBRAIC[11]); ALGEBRAIC[27] = 1.00000/(ALGEBRAIC[0]+ALGEBRAIC[11])+1.50000e-05; RATES[2] = (ALGEBRAIC[21] - STATES[2])/ALGEBRAIC[27]; ALGEBRAIC[1] = 165.000*exp((STATES[0]+101.300)/- 12.6000); ALGEBRAIC[12] = 12360.0/( 320.000*exp((STATES[0]+101.300)/- 12.6000)+1.00000); ALGEBRAIC[22] = ALGEBRAIC[1]/(ALGEBRAIC[1]+ALGEBRAIC[12]); ALGEBRAIC[28] = 1.00000/(ALGEBRAIC[1]+ALGEBRAIC[12]); RATES[3] = (ALGEBRAIC[22] - STATES[3])/ALGEBRAIC[28]; ALGEBRAIC[32] = 1.00000/(1.00000+exp((STATES[0]+14.1000)/- 6.00000)); ALGEBRAIC[8] = ( - 28.3900*(STATES[0]+35.0000))/(exp((STATES[0]+35.0000)/- 2.50000) - 1.00000)+( - 84.9000*STATES[0])/(exp( - 0.208000*STATES[0]) - 1.00000); ALGEBRAIC[19] = ( 11.4300*(STATES[0] - 5.00000))/(exp( 0.400000*(STATES[0] - 5.00000)) - 1.00000); ALGEBRAIC[26] = 1.00000/(ALGEBRAIC[8]+ALGEBRAIC[19]); RATES[5] = (ALGEBRAIC[32] - STATES[5])/ALGEBRAIC[26]; ALGEBRAIC[29] = 1.00000/(1.00000+exp((STATES[0]+30.0000)/5.00000)); ALGEBRAIC[2] = ( 3.75000*(STATES[0]+28.0000))/(exp((STATES[0]+28.0000)/4.00000) - 1.00000); ALGEBRAIC[13] = 30.0000/(1.00000+exp((STATES[0]+28.0000)/- 4.00000)); ALGEBRAIC[23] = 1.00000/(ALGEBRAIC[2]+ALGEBRAIC[13]); RATES[6] = (ALGEBRAIC[29] - STATES[6])/ALGEBRAIC[23]; ALGEBRAIC[30] = 1.00000/(1.00000+exp((STATES[0]+26.3000)/- 6.00000)); ALGEBRAIC[3] = 1068.00*exp((STATES[0]+26.3000)/30.0000); ALGEBRAIC[14] = 1068.00*exp((STATES[0]+26.3000)/- 30.0000); ALGEBRAIC[24] = 1.00000/(ALGEBRAIC[3]+ALGEBRAIC[14]); RATES[7] = (ALGEBRAIC[30] - STATES[7])/ALGEBRAIC[24]; ALGEBRAIC[31] = 1.00000/(1.00000+exp((STATES[0]+61.7000)/5.60000)); ALGEBRAIC[4] = 15.3000*exp((STATES[0]+61.7000)/- 83.3000); ALGEBRAIC[15] = 15.0000*exp((STATES[0]+61.7000)/15.3800); ALGEBRAIC[25] = 1.00000/(ALGEBRAIC[4]+ALGEBRAIC[15]); RATES[8] = (ALGEBRAIC[31] - STATES[8])/ALGEBRAIC[25]; ALGEBRAIC[33] = ALGEBRAIC[22]; ALGEBRAIC[35] = 20.0000*ALGEBRAIC[28]; RATES[4] = (ALGEBRAIC[33] - STATES[4])/ALGEBRAIC[35]; ALGEBRAIC[43] = 129000.*STATES[14]*(1.00000 - STATES[17]) - 307.000*STATES[17]; RATES[17] = ALGEBRAIC[43]; ALGEBRAIC[44] = 50500.0*STATES[14]*(1.00000 - STATES[18]) - 252.000*STATES[18]; RATES[18] = ALGEBRAIC[44]; ALGEBRAIC[45] = 129000.*STATES[14]*(1.00000 - (STATES[19]+STATES[20])) - 4.25000*STATES[19]; RATES[19] = ALGEBRAIC[45]; ALGEBRAIC[50] = 770.000*STATES[22]*(1.00000 - STATES[23]) - 641.000*STATES[23]; RATES[23] = ALGEBRAIC[50]; ALGEBRAIC[51] = STATES[14]+ STATES[21]*CONSTANTS[37]+ CONSTANTS[30]*CONSTANTS[31]+CONSTANTS[30]; ALGEBRAIC[52] = ( CONSTANTS[27]*STATES[14] - CONSTANTS[28]*STATES[21]*CONSTANTS[37])/ALGEBRAIC[51]; ALGEBRAIC[55] = ( (STATES[21] - STATES[22])*2.00000*CONSTANTS[2]*CONSTANTS[38])/0.0641800; RATES[21] = (ALGEBRAIC[52] - ALGEBRAIC[55])/( 2.00000*CONSTANTS[38]*CONSTANTS[2]); ALGEBRAIC[53] = CONSTANTS[29]*pow(STATES[25]/(STATES[25]+0.250000), 2.00000)*STATES[22]; RATES[22] = (ALGEBRAIC[55] - ALGEBRAIC[53])/( 2.00000*CONSTANTS[39]*CONSTANTS[2]) - 11.4800*ALGEBRAIC[50]; ALGEBRAIC[54] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[1]/STATES[12]); ALGEBRAIC[56] = ( (( CONSTANTS[4]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*STATES[1]*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*(exp(( (STATES[0] - ALGEBRAIC[54])*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000))/(exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[40] = ( CONSTANTS[17]*pow(STATES[12]/(CONSTANTS[15]+STATES[12]), 3.00000)*pow(STATES[13]/(CONSTANTS[16]+STATES[13]), 2.00000)*1.60000)/(1.50000+exp((STATES[0]+60.0000)/- 40.0000)); ALGEBRAIC[42] = ( CONSTANTS[19]*( pow(STATES[12], 3.00000)*STATES[15]*exp( 0.0374300*STATES[0]*CONSTANTS[21]) - pow(STATES[1], 3.00000)*STATES[14]*exp( 0.0374300*STATES[0]*(CONSTANTS[21] - 1.00000))))/(1.00000+ CONSTANTS[20]*( STATES[14]*pow(STATES[1], 3.00000)+ STATES[15]*pow(STATES[12], 3.00000))); ALGEBRAIC[57] = CONSTANTS[10]*(STATES[0] - ALGEBRAIC[54]); ALGEBRAIC[37] = CONSTANTS[13]*pow(STATES[11], 2.00000)*(STATES[0] - 75.0000); RATES[12] = - ( 3.00000*ALGEBRAIC[40]+ 3.00000*ALGEBRAIC[42]+ALGEBRAIC[57]+ALGEBRAIC[37]+ALGEBRAIC[56])/( CONSTANTS[2]*CONSTANTS[35]); RATES[1] = (CONSTANTS[24] - STATES[1])/CONSTANTS[26]+(ALGEBRAIC[56]+ 3.00000*ALGEBRAIC[42]+ 3.00000*ALGEBRAIC[40]+ALGEBRAIC[57]+ALGEBRAIC[37])/( CONSTANTS[2]*CONSTANTS[36]); ALGEBRAIC[58] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[13]/STATES[16]); ALGEBRAIC[59] = CONSTANTS[34]*STATES[9]*STATES[10]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[60] = CONSTANTS[12]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[38] = CONSTANTS[14]*pow(STATES[11], 2.00000)*(STATES[0]+85.0000); RATES[16] = ( 2.00000*ALGEBRAIC[40] - (ALGEBRAIC[59]+ALGEBRAIC[38]+ALGEBRAIC[60]))/( CONSTANTS[2]*CONSTANTS[35]); RATES[13] = (CONSTANTS[9] - STATES[13])/CONSTANTS[26]+( - 2.00000*ALGEBRAIC[40]+ALGEBRAIC[59]+ALGEBRAIC[60]+ALGEBRAIC[38])/( CONSTANTS[2]*CONSTANTS[36]); ALGEBRAIC[36] = CONSTANTS[7]*STATES[7]*STATES[8]*(STATES[0] - CONSTANTS[8]); ALGEBRAIC[34] = CONSTANTS[5]*( STATES[6]*STATES[5]+ 0.0950000*ALGEBRAIC[32])*(STATES[0] - CONSTANTS[6]); ALGEBRAIC[41] = ( CONSTANTS[18]*STATES[14])/(STATES[14]+0.000400000); ALGEBRAIC[61] = (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[15]/STATES[14]); ALGEBRAIC[62] = CONSTANTS[11]*(STATES[0] - ALGEBRAIC[61]); ALGEBRAIC[46] = 0.0900000*ALGEBRAIC[43]; ALGEBRAIC[47] = 0.0310000*ALGEBRAIC[44]; ALGEBRAIC[48] = 0.0620000*ALGEBRAIC[45]; ALGEBRAIC[49] = ALGEBRAIC[46]+ALGEBRAIC[47]+ALGEBRAIC[48]; RATES[14] = (( 2.00000*ALGEBRAIC[42]+ALGEBRAIC[53]) - (ALGEBRAIC[34]+ALGEBRAIC[36]+ALGEBRAIC[41]+ALGEBRAIC[62]+ALGEBRAIC[52]))/( 2.00000*CONSTANTS[35]*CONSTANTS[2]) - ALGEBRAIC[49]; RATES[15] = (CONSTANTS[25] - STATES[15])/CONSTANTS[26]+( - 2.00000*ALGEBRAIC[42]+ALGEBRAIC[34]+ALGEBRAIC[36]+ALGEBRAIC[41]+ALGEBRAIC[62])/( 2.00000*CONSTANTS[2]*CONSTANTS[36]); ALGEBRAIC[39] = ALGEBRAIC[37]+ALGEBRAIC[38]; ALGEBRAIC[63] = ALGEBRAIC[57]+ALGEBRAIC[62]+ALGEBRAIC[60]; RATES[0] = - (ALGEBRAIC[56]+ALGEBRAIC[36]+ALGEBRAIC[34]+ALGEBRAIC[59]+ALGEBRAIC[39]+ALGEBRAIC[63]+ALGEBRAIC[40]+ALGEBRAIC[42]+ALGEBRAIC[41])/CONSTANTS[3]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[9] = 1290.00*CONSTANTS[22]*(1.00000 - (STATES[19]+STATES[20])) - 429.000*STATES[20]; ALGEBRAIC[10] = 240.000*exp( (STATES[0] - 40.0000)*0.0800000)+ 240.000*pow(STATES[14]/(STATES[14]+CONSTANTS[33]), 4.00000); ALGEBRAIC[16] = 1.00000/( 17.0000*exp( 0.0398000*STATES[0])+ 2.11000*exp( - 0.0510000*STATES[0])); ALGEBRAIC[5] = 1.00000/(1.00000+exp((STATES[0]+5.10000)/- 7.40000)); ALGEBRAIC[6] = 100.000*exp( - 0.0183000*STATES[0]); ALGEBRAIC[17] = 656.000*exp( 0.00942000*STATES[0]); ALGEBRAIC[7] = 1.00000/(1.00000+exp((STATES[0]+72.2000)/9.00000)); ALGEBRAIC[18] = 1.00000/( 1.64830*exp((STATES[0]+54.0600)/- 24.3300)+14.0106/(0.700000+exp((STATES[0]+60.0000)/- 5.50000))); ALGEBRAIC[20] = 40.0000+ 240.000*pow(STATES[14]/(STATES[14]+CONSTANTS[33]), 4.00000); ALGEBRAIC[0] = ( - 824.000*(STATES[0]+51.9000))/(exp((STATES[0]+51.9000)/- 8.90000) - 1.00000); ALGEBRAIC[11] = 32960.0*exp((STATES[0]+51.9000)/- 8.90000); ALGEBRAIC[21] = ALGEBRAIC[0]/(ALGEBRAIC[0]+ALGEBRAIC[11]); ALGEBRAIC[27] = 1.00000/(ALGEBRAIC[0]+ALGEBRAIC[11])+1.50000e-05; ALGEBRAIC[1] = 165.000*exp((STATES[0]+101.300)/- 12.6000); ALGEBRAIC[12] = 12360.0/( 320.000*exp((STATES[0]+101.300)/- 12.6000)+1.00000); ALGEBRAIC[22] = ALGEBRAIC[1]/(ALGEBRAIC[1]+ALGEBRAIC[12]); ALGEBRAIC[28] = 1.00000/(ALGEBRAIC[1]+ALGEBRAIC[12]); ALGEBRAIC[32] = 1.00000/(1.00000+exp((STATES[0]+14.1000)/- 6.00000)); ALGEBRAIC[8] = ( - 28.3900*(STATES[0]+35.0000))/(exp((STATES[0]+35.0000)/- 2.50000) - 1.00000)+( - 84.9000*STATES[0])/(exp( - 0.208000*STATES[0]) - 1.00000); ALGEBRAIC[19] = ( 11.4300*(STATES[0] - 5.00000))/(exp( 0.400000*(STATES[0] - 5.00000)) - 1.00000); ALGEBRAIC[26] = 1.00000/(ALGEBRAIC[8]+ALGEBRAIC[19]); ALGEBRAIC[29] = 1.00000/(1.00000+exp((STATES[0]+30.0000)/5.00000)); ALGEBRAIC[2] = ( 3.75000*(STATES[0]+28.0000))/(exp((STATES[0]+28.0000)/4.00000) - 1.00000); ALGEBRAIC[13] = 30.0000/(1.00000+exp((STATES[0]+28.0000)/- 4.00000)); ALGEBRAIC[23] = 1.00000/(ALGEBRAIC[2]+ALGEBRAIC[13]); ALGEBRAIC[30] = 1.00000/(1.00000+exp((STATES[0]+26.3000)/- 6.00000)); ALGEBRAIC[3] = 1068.00*exp((STATES[0]+26.3000)/30.0000); ALGEBRAIC[14] = 1068.00*exp((STATES[0]+26.3000)/- 30.0000); ALGEBRAIC[24] = 1.00000/(ALGEBRAIC[3]+ALGEBRAIC[14]); ALGEBRAIC[31] = 1.00000/(1.00000+exp((STATES[0]+61.7000)/5.60000)); ALGEBRAIC[4] = 15.3000*exp((STATES[0]+61.7000)/- 83.3000); ALGEBRAIC[15] = 15.0000*exp((STATES[0]+61.7000)/15.3800); ALGEBRAIC[25] = 1.00000/(ALGEBRAIC[4]+ALGEBRAIC[15]); ALGEBRAIC[33] = ALGEBRAIC[22]; ALGEBRAIC[35] = 20.0000*ALGEBRAIC[28]; ALGEBRAIC[43] = 129000.*STATES[14]*(1.00000 - STATES[17]) - 307.000*STATES[17]; ALGEBRAIC[44] = 50500.0*STATES[14]*(1.00000 - STATES[18]) - 252.000*STATES[18]; ALGEBRAIC[45] = 129000.*STATES[14]*(1.00000 - (STATES[19]+STATES[20])) - 4.25000*STATES[19]; ALGEBRAIC[50] = 770.000*STATES[22]*(1.00000 - STATES[23]) - 641.000*STATES[23]; ALGEBRAIC[51] = STATES[14]+ STATES[21]*CONSTANTS[37]+ CONSTANTS[30]*CONSTANTS[31]+CONSTANTS[30]; ALGEBRAIC[52] = ( CONSTANTS[27]*STATES[14] - CONSTANTS[28]*STATES[21]*CONSTANTS[37])/ALGEBRAIC[51]; ALGEBRAIC[55] = ( (STATES[21] - STATES[22])*2.00000*CONSTANTS[2]*CONSTANTS[38])/0.0641800; ALGEBRAIC[53] = CONSTANTS[29]*pow(STATES[25]/(STATES[25]+0.250000), 2.00000)*STATES[22]; ALGEBRAIC[54] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[1]/STATES[12]); ALGEBRAIC[56] = ( (( CONSTANTS[4]*pow(STATES[2], 3.00000)*STATES[3]*STATES[4]*STATES[1]*STATES[0]*pow(CONSTANTS[2], 2.00000))/( CONSTANTS[0]*CONSTANTS[1]))*(exp(( (STATES[0] - ALGEBRAIC[54])*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000))/(exp(( STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - 1.00000); ALGEBRAIC[40] = ( CONSTANTS[17]*pow(STATES[12]/(CONSTANTS[15]+STATES[12]), 3.00000)*pow(STATES[13]/(CONSTANTS[16]+STATES[13]), 2.00000)*1.60000)/(1.50000+exp((STATES[0]+60.0000)/- 40.0000)); ALGEBRAIC[42] = ( CONSTANTS[19]*( pow(STATES[12], 3.00000)*STATES[15]*exp( 0.0374300*STATES[0]*CONSTANTS[21]) - pow(STATES[1], 3.00000)*STATES[14]*exp( 0.0374300*STATES[0]*(CONSTANTS[21] - 1.00000))))/(1.00000+ CONSTANTS[20]*( STATES[14]*pow(STATES[1], 3.00000)+ STATES[15]*pow(STATES[12], 3.00000))); ALGEBRAIC[57] = CONSTANTS[10]*(STATES[0] - ALGEBRAIC[54]); ALGEBRAIC[37] = CONSTANTS[13]*pow(STATES[11], 2.00000)*(STATES[0] - 75.0000); ALGEBRAIC[58] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[13]/STATES[16]); ALGEBRAIC[59] = CONSTANTS[34]*STATES[9]*STATES[10]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[60] = CONSTANTS[12]*(STATES[0] - ALGEBRAIC[58]); ALGEBRAIC[38] = CONSTANTS[14]*pow(STATES[11], 2.00000)*(STATES[0]+85.0000); ALGEBRAIC[36] = CONSTANTS[7]*STATES[7]*STATES[8]*(STATES[0] - CONSTANTS[8]); ALGEBRAIC[34] = CONSTANTS[5]*( STATES[6]*STATES[5]+ 0.0950000*ALGEBRAIC[32])*(STATES[0] - CONSTANTS[6]); ALGEBRAIC[41] = ( CONSTANTS[18]*STATES[14])/(STATES[14]+0.000400000); ALGEBRAIC[61] = (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[15]/STATES[14]); ALGEBRAIC[62] = CONSTANTS[11]*(STATES[0] - ALGEBRAIC[61]); ALGEBRAIC[46] = 0.0900000*ALGEBRAIC[43]; ALGEBRAIC[47] = 0.0310000*ALGEBRAIC[44]; ALGEBRAIC[48] = 0.0620000*ALGEBRAIC[45]; ALGEBRAIC[49] = ALGEBRAIC[46]+ALGEBRAIC[47]+ALGEBRAIC[48]; ALGEBRAIC[39] = ALGEBRAIC[37]+ALGEBRAIC[38]; ALGEBRAIC[63] = ALGEBRAIC[57]+ALGEBRAIC[62]+ALGEBRAIC[60]; }