Generated Code

The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction()
    % This is the "main function".  In Matlab, things work best if you rename this function to match the filename.
   [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel();
end

function [algebraicVariableCount] = getAlgebraicVariableCount() 
    % Used later when setting a global variable with the number of algebraic variables.
    % Note: This is not the "main method".  
    algebraicVariableCount =1;
end
% There are a total of 3 entries in each of the rate and state variable arrays.
% There are a total of 10 entries in the constant variable array.
%

function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel()
    % Create ALGEBRAIC of correct size
    global algebraicVariableCount;  algebraicVariableCount = getAlgebraicVariableCount();
    % Initialise constants and state variables
    [INIT_STATES, CONSTANTS] = initConsts;

    % Set timespan to solve over 
    tspan = [0, 10];

    % Set numerical accuracy options for ODE solver
    options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1);

    % Solve model with ODE solver
    [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options);

    % Compute algebraic variables
    [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS);
    ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI);

    % Plot state variables against variable of integration
    [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends();
    figure();
    plot(VOI, STATES);
    xlabel(LEGEND_VOI);
    l = legend(LEGEND_STATES);
    set(l,'Interpreter','none');
end

function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends()
    LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = '';
    LEGEND_VOI = strpad('time in component environment (hour)');
    LEGEND_STATES(:,1) = strpad('M in component M (nanomolar)');
    LEGEND_CONSTANTS(:,1) = strpad('vs in component M (flux)');
    LEGEND_CONSTANTS(:,2) = strpad('vm in component M (flux)');
    LEGEND_CONSTANTS(:,3) = strpad('Km in component M (nanomolar)');
    LEGEND_CONSTANTS(:,4) = strpad('KI in component M (nanomolar)');
    LEGEND_CONSTANTS(:,5) = strpad('n in component M (dimensionless)');
    LEGEND_STATES(:,2) = strpad('FN in component FN (nanomolar)');
    LEGEND_STATES(:,3) = strpad('FC in component FC (nanomolar)');
    LEGEND_ALGEBRAIC(:,1) = strpad('Ft in component FC (nanomolar)');
    LEGEND_CONSTANTS(:,6) = strpad('ks in component FC (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,7) = strpad('vd in component FC (flux)');
    LEGEND_CONSTANTS(:,8) = strpad('Kd in component FC (nanomolar)');
    LEGEND_CONSTANTS(:,9) = strpad('k1 in component parameters (first_order_rate_constant)');
    LEGEND_CONSTANTS(:,10) = strpad('k2 in component parameters (first_order_rate_constant)');
    LEGEND_RATES(:,1) = strpad('d/dt M in component M (nanomolar)');
    LEGEND_RATES(:,3) = strpad('d/dt FC in component FC (nanomolar)');
    LEGEND_RATES(:,2) = strpad('d/dt FN in component FN (nanomolar)');
    LEGEND_STATES  = LEGEND_STATES';
    LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC';
    LEGEND_RATES = LEGEND_RATES';
    LEGEND_CONSTANTS = LEGEND_CONSTANTS';
end

function [STATES, CONSTANTS] = initConsts()
    VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = [];
    STATES(:,1) = 0.1;
    CONSTANTS(:,1) = 1.6;
    CONSTANTS(:,2) = 0.505;
    CONSTANTS(:,3) = 0.5;
    CONSTANTS(:,4) = 1.0;
    CONSTANTS(:,5) = 4.0;
    STATES(:,2) = 0.1;
    STATES(:,3) = 0.1;
    CONSTANTS(:,6) = 0.5;
    CONSTANTS(:,7) = 1.4;
    CONSTANTS(:,8) = 0.13;
    CONSTANTS(:,9) = 0.5;
    CONSTANTS(:,10) = 0.6;
    if (isempty(STATES)), warning('Initial values for states not set');, end
end

function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS)
    global algebraicVariableCount;
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        ALGEBRAIC = zeros(1, algebraicVariableCount);
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount);
        RATES = zeros(statesRowCount, statesColumnCount);
        utilOnes = ones(statesRowCount, 1);
    end
    RATES(:,1) =  CONSTANTS(:,1).*(power(CONSTANTS(:,4), CONSTANTS(:,5))./(power(CONSTANTS(:,4), CONSTANTS(:,5))+power(STATES(:,2), CONSTANTS(:,5)))) -  CONSTANTS(:,2).*(STATES(:,1)./(CONSTANTS(:,3)+STATES(:,1)));
    RATES(:,3) = ( CONSTANTS(:,6).*STATES(:,1)+ CONSTANTS(:,10).*STATES(:,2)) - ( CONSTANTS(:,7).*(STATES(:,3)./(CONSTANTS(:,8)+STATES(:,3)))+ CONSTANTS(:,9).*STATES(:,3));
    RATES(:,2) =  CONSTANTS(:,9).*STATES(:,3) -  CONSTANTS(:,10).*STATES(:,2);
   RATES = RATES';
end

% Calculate algebraic variables
function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI)
    statesSize = size(STATES);
    statesColumnCount = statesSize(2);
    if ( statesColumnCount == 1)
        STATES = STATES';
        utilOnes = 1;
    else
        statesRowCount = statesSize(1);
        utilOnes = ones(statesRowCount, 1);
    end
    ALGEBRAIC(:,1) = STATES(:,3)+STATES(:,2);
end

% Pad out or shorten strings to a set length
function strout = strpad(strin)
    req_length = 160;
    insize = size(strin,2);
    if insize > req_length
        strout = strin(1:req_length);
    else
        strout = [strin, blanks(req_length - insize)];
    end
end