Antidiuretic Hormone and its control functions.
This section calculates the control of antidiuretic hormone secretion and also
calculates multiplier factors for control of other aspects of circulatory function
by antidiuretic hormone. The major factors that are considered to affect the rate
of antidiuretic hormone secretion are (1) a feedback effect of osmotic concentration
in the extracellular fluids as determined from the concentration of sodium (CNA),
and (2) a feedback effect of arterial pressure (PA).
keyword
AD4, AD5, AD6, and AD7:
Calculation of the effect of low levels of arterial pressure to cause secretion
of antidiuretic hormone. The mathematical steps in these blocks provide appropriate
curve shaping. Zero effect of pressure on ADH secretion occurs whenever the arterial
pressure is greater than 85 mm Hg. The factor ADHPAM is the sensitivity control for
the overall effect. The output of this set of blocks is ADHPR.
Description of Guyton antidiuretic hormone module
AD8:
The effect of sodium concentration on ADH secretion (ADHNA) is not allowed
to go below zero.
AD16:
Calculation from the plasma concentration of ADH (ADHC) of a multiplier factor (ADHMK)
to describe the effect of the ADH in affecting the kidney.
AD14 and AD15:
Calculation from the instantaneous concentration of ADH in the plasma (ADHC)
of a multiplier factor (ADHMV) to describe the effect of antidiuretic hormone
in causing contraction of many of the blood vessels of the body. Block 15 sets
a lower limit for ADHMV equal to ADHVLL, and the upper limit is ADHVUL.
1000
100
AD1, AD2, and AD3:
Calculation of a multiplier factor (ADHNA) that determines the effect of the
concentration of sodium in the extracellular fluid (CNA) on the secretion of ADH.
The lower limit of CNA at which the normal stimulating effect of changes in CNA
will affect antidiuretic hormone secretion is equal to CNR. The mathematical
steps in Blocks AD1, AD2, and AD3 provide curve shaping effects for the relationship
between CNA and ADHNA.
physiology
antidiuretic hormone
Guyton
cardiovascular circulation
organ systems
Antidiuretic Hormone
Encapsulation grouping component containing all the components in the Anti-Diuretic Hormone Model.
The inputs and outputs of the Anti-Diuretic Hormone Model must be passed by this component.
AD16 and AD17:
Calculation from the plasma concentration of ADH (ADHC) of a multiplier factor (ADHMK)
to describe the effect of the ADH in affecting the kidney. Block 17 gives a lower limit
to ADHMK equal to ADHKLL, and Block 16 gives an upper limit equal to AMKUL.
AD9:
Calculation of the net rate of ADH entry into the body fluids (ADH) by adding
the partial effect of ADHNA for osmotic control of ADH secretion plus the partial
effect ADHPR for pressure control of secretion, plus ADHINF for any rate of
infusion of ADH.
AD10, AD11, AD12, and AD13:
Calculation of instantaneous antidiuretic hormone concentration in the blood (ADHC)
by integrating in Block 12 the rate of hormone entry into the fluids (ADH) with
respect to time. A time constant for the integration (Block 11) is equal to ADHTC.
Block 13 damps the response of this integration to prevent oscillation when very
long iteration intervals are used in providing long-term solutions for the model.
AD10, AD11, AD12, and AD13:
Calculation of instantaneous antidiuretic hormone concentration in the blood (ADHC)
by integrating in Block 12 the rate of hormone entry into the fluids (ADH) with
respect to time. A time constant for the integration (Block 11) is equal to ADHTC.
Block 13 damps the response of this integration to prevent oscillation when very
long iteration intervals are used in providing long-term solutions for the model.
AD17:
Block 17 gives a lower limit to ADHMK equal to ADHKLL, and Block 16 gives an upper limit equal to AMKUL.
Guyton
AD15:
Block 15 sets a lower limit for ADHMV equal to ADHVLL, and the upper limit is ADHVUL.
AD4, AD5, AD6, and AD7:
Calculation of the effect of low levels of arterial pressure to cause secretion
of antidiuretic hormone. The mathematical steps in these blocks provide appropriate
curve shaping. Zero effect of pressure on ADH secretion occurs whenever the arterial
pressure is greater than 85 mm Hg. The factor ADHPAM is the sensitivity control for
the overall effect. The output of this set of blocks is ADHPR.
2008-00-00 00:00
AD4, AD5, AD6, and AD7:
Calculation of the effect of low levels of arterial pressure to cause secretion
of antidiuretic hormone. The mathematical steps in these blocks provide appropriate
curve shaping. Zero effect of pressure on ADH secretion occurs whenever the arterial
pressure is greater than 85 mm Hg. The factor ADHPAM is the sensitivity control for
the overall effect. The output of this set of blocks is ADHPR.
AD9:
Calculation of the net rate of ADH entry into the body fluids (ADH) by adding
the partial effect of ADHNA for osmotic control of ADH secretion plus the partial
effect ADHPR for pressure control of secretion, plus ADHINF for any rate of
infusion of ADH.
AD14:
Calculation from the instantaneous concentration of ADH in the plasma (ADHC)
of a multiplier factor (ADHMV) to describe the effect of antidiuretic hormone
in causing contraction of many of the blood vessels of the body.
AD1, AD2, and AD3:
Calculation of a multiplier factor (ADHNA) that determines the effect of the
concentration of sodium in the extracellular fluid (CNA) on the secretion of ADH.
The lower limit of CNA at which the normal stimulating effect of changes in CNA
will affect antidiuretic hormone secretion is equal to CNR. The mathematical
steps in Blocks AD1, AD2, and AD3 provide curve shaping effects for the relationship
between CNA and ADHNA.
AD8:
The effect of sodium concentration on ADH secretion (ADHNA) is not allowed
to go below zero.