Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 207 entries in the algebraic variable array.
   There are a total of 60 entries in each of the rate and state variable arrays.
   There are a total of 388 entries in the constant variable array.
 */
/*
 * VOI is time in component Environment (second).
 * CONSTANTS[0] is ExpType in component Environment (dimensionless).
 * CONSTANTS[1] is StateType in component Environment (dimensionless).
 * CONSTANTS[2] is F in component parameters (kilojoule_per_mole_per_millivolt).
 * CONSTANTS[323] is V_cyto in component parameters (cyto_per_cell).
 * CONSTANTS[307] is V_mito in component parameters (mito_per_cell).
 * CONSTANTS[3] is W_x in component parameters (l_water_per_l_mito).
 * CONSTANTS[4] is W_i in component parameters (l_water_per_l_mito).
 * CONSTANTS[286] is W_c in component parameters (l_water_per_l_cyto).
 * CONSTANTS[5] is gamma in component parameters (per_micrometer).
 * CONSTANTS[6] is rho_m in component parameters (mg_per_mitochondria).
 * CONSTANTS[7] is n_A in component parameters (dimensionless).
 * CONSTANTS[8] is p_PI in component parameters (micrometer_per_second).
 * CONSTANTS[9] is p_A in component parameters (micrometer_per_second).
 * CONSTANTS[10] is p_TI in component parameters (micrometer_per_second).
 * CONSTANTS[11] is k_mADP in component parameters (molar).
 * CONSTANTS[12] is theta in component parameters (dimensionless).
 * CONSTANTS[13] is k_O2 in component parameters (molar).
 * CONSTANTS[14] is NAD_tot in component parameters (molar).
 * CONSTANTS[15] is Q_tot in component parameters (molar).
 * CONSTANTS[16] is cytC_tot in component parameters (molar).
 * CONSTANTS[17] is A_tot in component parameters (molar).
 * CONSTANTS[18] is CR_tot in component parameters (molar).
 * CONSTANTS[19] is CO2_tot_x in component parameters (molar).
 * CONSTANTS[20] is FAD_tot in component parameters (molar).
 * CONSTANTS[21] is C_IM in component parameters (mole_per_l_mito_volume_per_mv).
 * CONSTANTS[22] is X_pdh in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[23] is X_cits in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[24] is X_acon in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[25] is X_isod in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[26] is X_akgd in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[27] is K_ir_akgd in component parameters (molar).
 * CONSTANTS[28] is X_scoas in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[29] is X_sdh in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[30] is X_fum in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[31] is X_mdh in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[32] is X_ndk in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[33] is X_got in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[34] is X_PYRH in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[35] is X_GLUH in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[36] is X_CITMAL in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[37] is X_AKGMAL in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[38] is X_SUCMAL in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[39] is X_MALPI in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[40] is X_ASPGLU in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[41] is X_C1 in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[42] is X_C3 in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_half_molar).
 * CONSTANTS[43] is k_PI_1 in component parameters (molar).
 * CONSTANTS[44] is k_PI_2 in component parameters (molar).
 * CONSTANTS[45] is X_C4 in component parameters (mole_per_second_per_l_mito_volume_per_molar).
 * CONSTANTS[46] is X_F1 in component parameters (mole_per_second_per_l_mito_volume_per_molar).
 * CONSTANTS[47] is X_ANT in component parameters (mole_per_second_per_l_mito_volume).
 * CONSTANTS[48] is X_PiHt in component parameters (mole_per_second_per_l_mito_volume_per_molar).
 * CONSTANTS[49] is k_PiHt in component parameters (molar).
 * CONSTANTS[50] is X_KH in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[51] is X_Hle in component parameters (mole_per_second_per_l_mito_volume_per_molar_per_mv).
 * CONSTANTS[273] is X_HK in component parameters (mole_per_second_per_l_cyto_volume).
 * CONSTANTS[52] is J_AtC in component parameters (mole_per_second_per_l_cyto_volume).
 * CONSTANTS[274] is RT in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[53] is dGf1_H2O in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[54] is dGf1_O2 in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[55] is dGf1_NADH in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[56] is dGf1_NAD in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[57] is dGf1_QH2 in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[58] is dGf1_COQ in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[59] is dGf1_ATP in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[60] is dGf1_ADP in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[61] is dGf1_AMP in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[62] is dGf1_GTP in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[63] is dGf1_GDP in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[64] is dGf1_Cred in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[65] is dGf1_Cox in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[66] is dGf1_Pi in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[67] is dGf1_PCr in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[68] is dGf1_Cr in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[69] is dGf1_FADH2 in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[70] is dGf1_FAD in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[71] is dGf1_COASH in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[72] is dGf1_ACCOA in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[73] is dGf1_OAA in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[74] is dGf1_CIT in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[75] is dGf1_ICIT in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[76] is dGf1_AKG in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[77] is dGf1_SCOA in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[78] is dGf1_SUC in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[79] is dGf1_FUM in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[80] is dGf1_MAL in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[81] is dGf1_ASP in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[82] is dGf1_GLU in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[83] is dGf1_CO2_tot in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[84] is dGf1_PYR in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[85] is dGf1_GLC in component thermodynamic_data (kilojoule_per_mole).
 * CONSTANTS[86] is dGf1_G6P in component thermodynamic_data (kilojoule_per_mole).
 * ALGEBRAIC[0] is P_ATP_x in component P_ATP (dimensionless).
 * ALGEBRAIC[134] is P_ATP_i in component P_ATP (dimensionless).
 * ALGEBRAIC[1] is P_ATP_c in component P_ATP (dimensionless).
 * ALGEBRAIC[2] is uATP_x in component P_ATP (molar).
 * ALGEBRAIC[3] is mATP_c in component P_ATP (molar).
 * CONSTANTS[296] is K_H in component P_ATP (molar).
 * CONSTANTS[311] is K_Mg in component P_ATP (molar).
 * CONSTANTS[325] is K_K in component P_ATP (molar).
 * STATES[0] is ATP_x in component dATP_x_dt (molar).
 * STATES[1] is H_x in component dH_x_dt (molar).
 * STATES[2] is Mg_x in component dMg_x_dt (molar).
 * STATES[3] is K_x in component dK_x_dt (molar).
 * ALGEBRAIC[118] is H_i in component dH_i_dt (molar).
 * ALGEBRAIC[119] is Mg_i in component dMg_i_dt (molar).
 * ALGEBRAIC[120] is K_i in component dK_i_dt (molar).
 * STATES[4] is ATP_c in component dATP_c_dt (molar).
 * STATES[5] is H_c in component dH_c_dt (molar).
 * STATES[6] is Mg_c in component dMg_c_dt (molar).
 * STATES[7] is K_c in component dK_c_dt (molar).
 * ALGEBRAIC[4] is P_ADP_x in component P_ADP (dimensionless).
 * ALGEBRAIC[135] is P_ADP_i in component P_ADP (dimensionless).
 * ALGEBRAIC[5] is P_ADP_c in component P_ADP (dimensionless).
 * ALGEBRAIC[6] is uADP_x in component P_ADP (molar).
 * ALGEBRAIC[7] is mADP_c in component P_ADP (molar).
 * CONSTANTS[332] is K_H in component P_ADP (molar).
 * CONSTANTS[336] is K_Mg in component P_ADP (molar).
 * CONSTANTS[340] is K_K in component P_ADP (molar).
 * STATES[8] is ADP_x in component dADP_x_dt (molar).
 * STATES[9] is ADP_c in component dADP_c_dt (molar).
 * ALGEBRAIC[8] is P_AMP_x in component P_AMP (dimensionless).
 * ALGEBRAIC[136] is P_AMP_i in component P_AMP (dimensionless).
 * ALGEBRAIC[9] is P_AMP_c in component P_AMP (dimensionless).
 * ALGEBRAIC[10] is uAMP_x in component P_AMP (molar).
 * CONSTANTS[344] is K_H in component P_AMP (molar).
 * CONSTANTS[347] is K_Mg in component P_AMP (molar).
 * CONSTANTS[349] is K_K in component P_AMP (molar).
 * STATES[10] is AMP_x in component dAMP_x_dt (molar).
 * ALGEBRAIC[11] is P_GTP_x in component P_GTP (dimensionless).
 * ALGEBRAIC[137] is P_GTP_i in component P_GTP (dimensionless).
 * ALGEBRAIC[12] is P_GTP_c in component P_GTP (dimensionless).
 * ALGEBRAIC[13] is uGTP_x in component P_GTP (molar).
 * CONSTANTS[313] is K_H in component P_GTP (molar).
 * CONSTANTS[326] is K_Mg in component P_GTP (molar).
 * CONSTANTS[333] is K_K in component P_GTP (molar).
 * STATES[11] is GTP_x in component dGTP_x_dt (molar).
 * ALGEBRAIC[14] is P_GDP_x in component P_GDP (dimensionless).
 * ALGEBRAIC[138] is P_GDP_i in component P_GDP (dimensionless).
 * ALGEBRAIC[15] is P_GDP_c in component P_GDP (dimensionless).
 * ALGEBRAIC[16] is uGDP_x in component P_GDP (molar).
 * CONSTANTS[337] is K_H in component P_GDP (molar).
 * CONSTANTS[341] is K_Mg in component P_GDP (molar).
 * CONSTANTS[345] is K_K in component P_GDP (molar).
 * STATES[12] is GDP_x in component dGDP_x_dt (molar).
 * ALGEBRAIC[17] is P_PI_x in component P_PI (dimensionless).
 * ALGEBRAIC[139] is P_PI_i in component P_PI (dimensionless).
 * ALGEBRAIC[18] is P_PI_c in component P_PI (dimensionless).
 * ALGEBRAIC[19] is hPI_x in component P_PI (molar).
 * ALGEBRAIC[140] is hPI_i in component P_PI (molar).
 * STATES[13] is PI_x in component dPI_x_dt (molar).
 * STATES[14] is PI_i in component dPI_i_dt (molar).
 * CONSTANTS[351] is K_H in component P_PI (molar).
 * CONSTANTS[353] is K_Mg in component P_PI (molar).
 * CONSTANTS[355] is K_K in component P_PI (molar).
 * ALGEBRAIC[20] is P_COASH_x in component P_COASH (dimensionless).
 * ALGEBRAIC[141] is P_COASH_i in component P_COASH (dimensionless).
 * ALGEBRAIC[21] is P_COASH_c in component P_COASH (dimensionless).
 * CONSTANTS[357] is K_H in component P_COASH (molar).
 * CONSTANTS[87] is K_Mg in component P_COASH (molar).
 * CONSTANTS[88] is K_K in component P_COASH (molar).
 * ALGEBRAIC[22] is P_OAA_x in component P_OAA (dimensionless).
 * ALGEBRAIC[142] is P_OAA_i in component P_OAA (dimensionless).
 * ALGEBRAIC[23] is P_OAA_c in component P_OAA (dimensionless).
 * CONSTANTS[359] is K_Mg in component P_OAA (molar).
 * CONSTANTS[89] is K_H in component P_OAA (molar).
 * CONSTANTS[90] is K_K in component P_OAA (molar).
 * ALGEBRAIC[24] is P_CIT_x in component P_CIT (dimensionless).
 * ALGEBRAIC[143] is P_CIT_i in component P_CIT (dimensionless).
 * ALGEBRAIC[25] is P_CIT_c in component P_CIT (dimensionless).
 * ALGEBRAIC[26] is uCIT_x in component P_CIT (molar).
 * ALGEBRAIC[144] is uCIT_i in component P_CIT (molar).
 * ALGEBRAIC[27] is hCIT_x in component P_CIT (molar).
 * ALGEBRAIC[145] is hCIT_i in component P_CIT (molar).
 * STATES[15] is CIT_x in component dCIT_x_dt (molar).
 * STATES[16] is CIT_i in component dCIT_i_dt (molar).
 * CONSTANTS[360] is K_H in component P_CIT (molar).
 * CONSTANTS[361] is K_Mg in component P_CIT (molar).
 * CONSTANTS[362] is K_K in component P_CIT (molar).
 * ALGEBRAIC[28] is P_ICIT_x in component P_ICIT (dimensionless).
 * ALGEBRAIC[146] is P_ICIT_i in component P_ICIT (dimensionless).
 * ALGEBRAIC[29] is P_ICIT_c in component P_ICIT (dimensionless).
 * CONSTANTS[363] is K_H in component P_ICIT (molar).
 * CONSTANTS[364] is K_Mg in component P_ICIT (molar).
 * CONSTANTS[91] is K_K in component P_ICIT (molar).
 * ALGEBRAIC[30] is P_SCOA_x in component P_SCOA (dimensionless).
 * ALGEBRAIC[147] is P_SCOA_i in component P_SCOA (dimensionless).
 * ALGEBRAIC[31] is P_SCOA_c in component P_SCOA (dimensionless).
 * CONSTANTS[365] is K_H in component P_SCOA (molar).
 * CONSTANTS[92] is K_Mg in component P_SCOA (molar).
 * CONSTANTS[93] is K_K in component P_SCOA (molar).
 * ALGEBRAIC[32] is P_SUC_x in component P_SUC (dimensionless).
 * ALGEBRAIC[148] is P_SUC_i in component P_SUC (dimensionless).
 * ALGEBRAIC[33] is P_SUC_c in component P_SUC (dimensionless).
 * CONSTANTS[366] is K_H in component P_SUC (molar).
 * CONSTANTS[367] is K_Mg in component P_SUC (molar).
 * CONSTANTS[368] is K_K in component P_SUC (molar).
 * ALGEBRAIC[34] is P_FUM_x in component P_FUM (dimensionless).
 * ALGEBRAIC[149] is P_FUM_i in component P_FUM (dimensionless).
 * ALGEBRAIC[35] is P_FUM_c in component P_FUM (dimensionless).
 * CONSTANTS[369] is K_H in component P_FUM (molar).
 * CONSTANTS[94] is K_Mg in component P_FUM (molar).
 * CONSTANTS[95] is K_K in component P_FUM (molar).
 * ALGEBRAIC[36] is P_MAL_x in component P_MAL (dimensionless).
 * ALGEBRAIC[150] is P_MAL_i in component P_MAL (dimensionless).
 * ALGEBRAIC[37] is P_MAL_c in component P_MAL (dimensionless).
 * CONSTANTS[370] is K_H in component P_MAL (molar).
 * CONSTANTS[371] is K_Mg in component P_MAL (molar).
 * CONSTANTS[372] is K_K in component P_MAL (molar).
 * ALGEBRAIC[38] is P_CO2_tot_x in component P_CO2_tot (dimensionless).
 * ALGEBRAIC[151] is P_CO2_tot_i in component P_CO2_tot (dimensionless).
 * ALGEBRAIC[39] is P_CO2_tot_c in component P_CO2_tot (dimensionless).
 * CONSTANTS[373] is K_H in component P_CO2_tot (molar).
 * CONSTANTS[96] is K_Mg in component P_CO2_tot (molar).
 * CONSTANTS[97] is K_K in component P_CO2_tot (molar).
 * ALGEBRAIC[40] is P_PYR_x in component P_PYR (dimensionless).
 * ALGEBRAIC[152] is P_PYR_i in component P_PYR (dimensionless).
 * ALGEBRAIC[41] is P_PYR_c in component P_PYR (dimensionless).
 * CONSTANTS[374] is K_Mg in component P_PYR (molar).
 * CONSTANTS[98] is K_H in component P_PYR (molar).
 * CONSTANTS[99] is K_K in component P_PYR (molar).
 * ALGEBRAIC[42] is P_G6P_x in component P_G6P (dimensionless).
 * ALGEBRAIC[153] is P_G6P_i in component P_G6P (dimensionless).
 * ALGEBRAIC[43] is P_G6P_c in component P_G6P (dimensionless).
 * CONSTANTS[375] is K_H in component P_G6P (molar).
 * CONSTANTS[100] is K_Mg in component P_G6P (molar).
 * CONSTANTS[101] is K_K in component P_G6P (molar).
 * ALGEBRAIC[44] is P_GLU_x in component P_GLU (dimensionless).
 * ALGEBRAIC[154] is P_GLU_i in component P_GLU (dimensionless).
 * ALGEBRAIC[45] is P_GLU_c in component P_GLU (dimensionless).
 * CONSTANTS[376] is K_H in component P_GLU (molar).
 * CONSTANTS[377] is K_Mg in component P_GLU (molar).
 * CONSTANTS[102] is K_K in component P_GLU (molar).
 * ALGEBRAIC[46] is P_ASP_x in component P_ASP (dimensionless).
 * ALGEBRAIC[155] is P_ASP_i in component P_ASP (dimensionless).
 * ALGEBRAIC[47] is P_ASP_c in component P_ASP (dimensionless).
 * CONSTANTS[378] is K_H in component P_ASP (molar).
 * CONSTANTS[379] is K_Mg in component P_ASP (molar).
 * CONSTANTS[103] is K_K in component P_ASP (molar).
 * CONSTANTS[275] is P_GLC_c in component P_GLC (dimensionless).
 * CONSTANTS[104] is K_H in component P_GLC (molar).
 * CONSTANTS[105] is K_Mg in component P_GLC (molar).
 * CONSTANTS[106] is K_K in component P_GLC (molar).
 * CONSTANTS[276] is P_NAD_x in component P_NAD (dimensionless).
 * CONSTANTS[107] is K_H in component P_NAD (molar).
 * CONSTANTS[108] is K_Mg in component P_NAD (molar).
 * CONSTANTS[109] is K_K in component P_NAD (molar).
 * CONSTANTS[277] is P_NADH_x in component P_NADH (dimensionless).
 * CONSTANTS[110] is K_H in component P_NADH (molar).
 * CONSTANTS[111] is K_Mg in component P_NADH (molar).
 * CONSTANTS[112] is K_K in component P_NADH (molar).
 * CONSTANTS[304] is P_QH2_x in component P_QH2 (dimensionless).
 * CONSTANTS[113] is K_H in component P_QH2 (molar).
 * CONSTANTS[114] is K_Mg in component P_QH2 (molar).
 * CONSTANTS[115] is K_K in component P_QH2 (molar).
 * CONSTANTS[320] is P_COQ_x in component P_COQ (dimensionless).
 * CONSTANTS[116] is K_H in component P_COQ (molar).
 * CONSTANTS[117] is K_Mg in component P_COQ (molar).
 * CONSTANTS[118] is K_K in component P_COQ (molar).
 * CONSTANTS[278] is P_ACCOA_x in component P_ACCOA (dimensionless).
 * CONSTANTS[119] is K_H in component P_ACCOA (molar).
 * CONSTANTS[120] is K_Mg in component P_ACCOA (molar).
 * CONSTANTS[121] is K_K in component P_ACCOA (molar).
 * CONSTANTS[306] is P_AKG_x in component P_AKG (dimensionless).
 * CONSTANTS[122] is K_H in component P_AKG (molar).
 * CONSTANTS[123] is K_Mg in component P_AKG (molar).
 * CONSTANTS[124] is K_K in component P_AKG (molar).
 * CONSTANTS[279] is P_O2_x in component P_O2 (dimensionless).
 * CONSTANTS[125] is K_H in component P_O2 (molar).
 * CONSTANTS[126] is K_Mg in component P_O2 (molar).
 * CONSTANTS[127] is K_K in component P_O2 (molar).
 * CONSTANTS[280] is P_FADH2_x in component P_FADH2 (dimensionless).
 * CONSTANTS[128] is K_H in component P_FADH2 (molar).
 * CONSTANTS[129] is K_Mg in component P_FADH2 (molar).
 * CONSTANTS[130] is K_K in component P_FADH2 (molar).
 * CONSTANTS[281] is P_FAD_x in component P_FAD (dimensionless).
 * CONSTANTS[131] is K_H in component P_FAD (molar).
 * CONSTANTS[132] is K_Mg in component P_FAD (molar).
 * CONSTANTS[133] is K_K in component P_FAD (molar).
 * CONSTANTS[282] is P_H_x in component P_H (dimensionless).
 * CONSTANTS[134] is K_H in component P_H (molar).
 * CONSTANTS[135] is K_Mg in component P_H (molar).
 * CONSTANTS[136] is K_K in component P_H (molar).
 * CONSTANTS[283] is P_Mg_x in component P_Mg (dimensionless).
 * CONSTANTS[137] is K_H in component P_Mg (molar).
 * CONSTANTS[138] is K_Mg in component P_Mg (molar).
 * CONSTANTS[139] is K_K in component P_Mg (molar).
 * CONSTANTS[284] is P_K_x in component P_K (dimensionless).
 * CONSTANTS[140] is K_H in component P_K (molar).
 * CONSTANTS[141] is K_Mg in component P_K (molar).
 * CONSTANTS[142] is K_K in component P_K (molar).
 * ALGEBRAIC[156] is J_pdh in component J_pdh (mole_per_second_per_l_mito_volume).
 * STATES[17] is PYR_x in component dPYR_x_dt (molar).
 * STATES[18] is COASH_x in component dCOASH_x_dt (molar).
 * ALGEBRAIC[113] is NAD_x in component dNAD_x_dt (molar).
 * STATES[19] is CO2_tot_x in component dCO2_tot_x_dt (molar).
 * STATES[20] is ACCOA_x in component dACCOA_x_dt (molar).
 * STATES[21] is NADH_x in component dNADH_x_dt (molar).
 * ALGEBRAIC[48] is K_eq_pdh in component J_pdh (dimensionless).
 * CONSTANTS[314] is K0_eq_pdh in component J_pdh (molar).
 * CONSTANTS[298] is dGr0_pdh in component J_pdh (kilojoule_per_mole).
 * CONSTANTS[143] is K_mA in component J_pdh (molar).
 * CONSTANTS[144] is K_mB in component J_pdh (molar).
 * CONSTANTS[145] is K_mC in component J_pdh (molar).
 * ALGEBRAIC[49] is alpha_i1 in component J_pdh (dimensionless).
 * ALGEBRAIC[50] is alpha_i2 in component J_pdh (dimensionless).
 * CONSTANTS[146] is K_iACCOA in component J_pdh (molar).
 * CONSTANTS[147] is K_iNADH in component J_pdh (molar).
 * CONSTANTS[148] is minCon in component J_pdh (molar).
 * ALGEBRAIC[54] is J_cits in component J_cits (mole_per_second_per_l_mito_volume).
 * STATES[22] is OAA_x in component dOAA_x_dt (molar).
 * STATES[23] is SCOA_x in component dSCOA_x_dt (molar).
 * ALGEBRAIC[51] is K_eq_cits in component J_cits (dimensionless).
 * CONSTANTS[315] is K0_eq_cits in component J_cits (molar_squared).
 * CONSTANTS[299] is dGr0_cits in component J_cits (kilojoule_per_mole).
 * CONSTANTS[149] is K_mA in component J_cits (molar).
 * CONSTANTS[150] is K_mB in component J_cits (molar).
 * CONSTANTS[151] is K_ia in component J_cits (molar).
 * CONSTANTS[152] is K_iCIT in component J_cits (molar).
 * CONSTANTS[153] is K_iATP in component J_cits (molar).
 * CONSTANTS[154] is K_iADP in component J_cits (molar).
 * CONSTANTS[155] is K_iAMP in component J_cits (molar).
 * CONSTANTS[156] is K_iCOASH in component J_cits (molar).
 * CONSTANTS[157] is K_iSCOA in component J_cits (molar).
 * ALGEBRAIC[52] is alpha_i1 in component J_cits (dimensionless).
 * ALGEBRAIC[53] is alpha_i2 in component J_cits (dimensionless).
 * ALGEBRAIC[57] is J_acon in component J_acon (mole_per_second_per_l_mito_volume).
 * STATES[24] is ICIT_x in component dICIT_x_dt (molar).
 * ALGEBRAIC[56] is V_mr in component J_acon (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[55] is K_eq_acon in component J_acon (dimensionless).
 * CONSTANTS[316] is K0_eq_acon in component J_acon (dimensionless).
 * CONSTANTS[300] is dGr0_acon in component J_acon (kilojoule_per_mole).
 * CONSTANTS[158] is K_mA in component J_acon (molar).
 * CONSTANTS[159] is K_mP in component J_acon (molar).
 * ALGEBRAIC[157] is J_isod in component J_isod (mole_per_second_per_l_mito_volume).
 * STATES[25] is AKG_x in component dAKG_x_dt (molar).
 * ALGEBRAIC[58] is K_eq_isod in component J_isod (molar).
 * CONSTANTS[317] is K0_eq_isod in component J_isod (molar_cubed).
 * CONSTANTS[301] is dGr0_isod in component J_isod (kilojoule_per_mole).
 * CONSTANTS[160] is K_mA in component J_isod (molar).
 * CONSTANTS[161] is K_mB in component J_isod (molar).
 * CONSTANTS[162] is K_ib in component J_isod (molar).
 * CONSTANTS[163] is K_iq in component J_isod (molar).
 * ALGEBRAIC[59] is alpha_i in component J_isod (dimensionless).
 * CONSTANTS[164] is n_H in component J_isod (dimensionless).
 * CONSTANTS[165] is K_iATP in component J_isod (molar).
 * CONSTANTS[166] is K_aADP in component J_isod (molar).
 * CONSTANTS[167] is minCon in component J_isod (molar).
 * ALGEBRAIC[158] is J_akgd in component J_akgd (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[60] is K_eq_akgd in component J_akgd (dimensionless).
 * CONSTANTS[318] is K0_eq_akgd in component J_akgd (molar).
 * CONSTANTS[302] is dGr0_akgd in component J_akgd (kilojoule_per_mole).
 * CONSTANTS[168] is K_mA in component J_akgd (molar).
 * CONSTANTS[169] is K_mB in component J_akgd (molar).
 * CONSTANTS[170] is K_mC in component J_akgd (molar).
 * CONSTANTS[171] is K_iq in component J_akgd (molar).
 * CONSTANTS[172] is K_ir1 in component J_akgd (molar).
 * CONSTANTS[173] is K_ir2 in component J_akgd (molar).
 * CONSTANTS[174] is K_iATP in component J_akgd (molar).
 * CONSTANTS[175] is K_aADP in component J_akgd (molar).
 * ALGEBRAIC[61] is alpha_i in component J_akgd (dimensionless).
 * CONSTANTS[176] is minCon in component J_akgd (molar).
 * ALGEBRAIC[64] is J_scoas in component J_scoas (mole_per_second_per_l_mito_volume).
 * STATES[26] is SUC_x in component dSUC_x_dt (molar).
 * ALGEBRAIC[62] is K_eq_scoas in component J_scoas (dimensionless).
 * CONSTANTS[319] is K0_eq_scoas in component J_scoas (molar).
 * CONSTANTS[303] is dGr0_scoas in component J_scoas (kilojoule_per_mole).
 * ALGEBRAIC[63] is V_mr in component J_scoas (mole_per_second_per_l_mito_volume).
 * CONSTANTS[177] is K_ia in component J_scoas (molar).
 * CONSTANTS[178] is K_ib in component J_scoas (molar).
 * CONSTANTS[179] is K_ic in component J_scoas (molar).
 * CONSTANTS[180] is K_ip in component J_scoas (molar).
 * CONSTANTS[181] is K_iq in component J_scoas (molar).
 * CONSTANTS[182] is K_ir in component J_scoas (molar).
 * CONSTANTS[183] is K_mA in component J_scoas (molar).
 * CONSTANTS[184] is K_mB in component J_scoas (molar).
 * CONSTANTS[185] is K_mC in component J_scoas (molar).
 * CONSTANTS[186] is K_mP in component J_scoas (molar).
 * CONSTANTS[187] is K_mQ in component J_scoas (molar).
 * CONSTANTS[188] is K_mR in component J_scoas (molar).
 * ALGEBRAIC[159] is J_sdh in component J_sdh (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[114] is COQ_x in component dCOQ_x_dt (molar).
 * STATES[27] is QH2_x in component dQH2_x_dt (molar).
 * STATES[28] is FUM_x in component dFUM_x_dt (molar).
 * ALGEBRAIC[65] is K_eq_sdh in component J_sdh (dimensionless).
 * CONSTANTS[334] is K0_eq_sdh in component J_sdh (dimensionless).
 * CONSTANTS[327] is dGr0_sdh in component J_sdh (kilojoule_per_mole).
 * ALGEBRAIC[66] is V_mr in component J_sdh (mole_per_second_per_l_mito_volume).
 * CONSTANTS[189] is K_ia in component J_sdh (molar).
 * CONSTANTS[190] is K_iq in component J_sdh (molar).
 * CONSTANTS[191] is K_mSUC in component J_sdh (molar).
 * CONSTANTS[192] is K_mCOQ in component J_sdh (molar).
 * CONSTANTS[193] is K_mQH2 in component J_sdh (molar).
 * CONSTANTS[194] is K_mFUM in component J_sdh (molar).
 * ALGEBRAIC[67] is alpha_i in component J_sdh (dimensionless).
 * CONSTANTS[195] is K_iOAA in component J_sdh (molar).
 * CONSTANTS[196] is K_aSUC in component J_sdh (molar).
 * CONSTANTS[197] is K_aFUM in component J_sdh (molar).
 * ALGEBRAIC[71] is J_fum in component J_fum (mole_per_second_per_l_mito_volume).
 * STATES[29] is MAL_x in component dMAL_x_dt (molar).
 * ALGEBRAIC[68] is K_eq_fum in component J_fum (dimensionless).
 * CONSTANTS[342] is K0_eq_fum in component J_fum (dimensionless).
 * CONSTANTS[338] is dGr0_fum in component J_fum (kilojoule_per_mole).
 * ALGEBRAIC[69] is V_mr in component J_fum (mole_per_second_per_l_mito_volume).
 * CONSTANTS[198] is K_mFUM in component J_fum (molar).
 * CONSTANTS[199] is K_mMAL in component J_fum (molar).
 * ALGEBRAIC[70] is alpha_i in component J_fum (dimensionless).
 * CONSTANTS[200] is K_iCIT in component J_fum (molar).
 * CONSTANTS[201] is K_iATP in component J_fum (molar).
 * CONSTANTS[202] is K_iADP in component J_fum (molar).
 * CONSTANTS[203] is K_iGTP in component J_fum (molar).
 * CONSTANTS[204] is K_iGDP in component J_fum (molar).
 * ALGEBRAIC[160] is J_mdh in component J_mdh (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[72] is K_eq_mdh in component J_mdh (dimensionless).
 * CONSTANTS[321] is K0_eq_mdh in component J_mdh (molar).
 * CONSTANTS[305] is dGr0_mdh in component J_mdh (kilojoule_per_mole).
 * ALGEBRAIC[73] is V_mr in component J_mdh (mole_per_second_per_l_mito_volume).
 * CONSTANTS[205] is K_ia in component J_mdh (molar).
 * CONSTANTS[206] is K_ib in component J_mdh (molar).
 * CONSTANTS[207] is K_ip in component J_mdh (molar).
 * CONSTANTS[208] is K_iq in component J_mdh (molar).
 * CONSTANTS[209] is K_mNAD in component J_mdh (molar).
 * CONSTANTS[210] is K_mMAL in component J_mdh (molar).
 * CONSTANTS[211] is K_mOAA in component J_mdh (molar).
 * CONSTANTS[212] is K_mNADH in component J_mdh (molar).
 * ALGEBRAIC[74] is alpha_i in component J_mdh (dimensionless).
 * CONSTANTS[213] is K_iATP in component J_mdh (molar).
 * CONSTANTS[214] is K_iADP in component J_mdh (molar).
 * CONSTANTS[215] is K_iAMP in component J_mdh (molar).
 * ALGEBRAIC[78] is J_ndk_f in component J_ndk (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[79] is J_ndk in component J_ndk (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[75] is K_eq_ndk in component J_ndk (dimensionless).
 * CONSTANTS[312] is K0_eq_ndk in component J_ndk (dimensionless).
 * CONSTANTS[297] is dGr0_ndk in component J_ndk (kilojoule_per_mole).
 * ALGEBRAIC[76] is V_mr in component J_ndk (mole_per_second_per_l_mito_volume).
 * CONSTANTS[216] is K_ia in component J_ndk (molar).
 * CONSTANTS[217] is K_ib in component J_ndk (molar).
 * CONSTANTS[218] is K_ip in component J_ndk (molar).
 * CONSTANTS[219] is K_iq in component J_ndk (molar).
 * CONSTANTS[220] is K_mA in component J_ndk (molar).
 * CONSTANTS[221] is K_mB in component J_ndk (molar).
 * CONSTANTS[222] is K_mP in component J_ndk (molar).
 * CONSTANTS[223] is K_mQ in component J_ndk (molar).
 * ALGEBRAIC[77] is alpha_i in component J_ndk (dimensionless).
 * CONSTANTS[224] is K_iAMP in component J_ndk (molar).
 * CONSTANTS[225] is minCon in component J_ndk (molar).
 * ALGEBRAIC[83] is J_got_f in component J_got (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[84] is J_got in component J_got (mole_per_second_per_l_mito_volume).
 * STATES[30] is ASP_x in component dASP_x_dt (molar).
 * STATES[31] is GLU_x in component dGLU_x_dt (molar).
 * ALGEBRAIC[80] is K_eq_got in component J_got (dimensionless).
 * CONSTANTS[328] is K0_eq_got in component J_got (dimensionless).
 * CONSTANTS[322] is dGr0_got in component J_got (kilojoule_per_mole).
 * ALGEBRAIC[81] is V_mr in component J_got (mole_per_second_per_l_mito_volume).
 * CONSTANTS[226] is K_ia in component J_got (molar).
 * CONSTANTS[227] is K_ib in component J_got (molar).
 * CONSTANTS[228] is K_ip in component J_got (molar).
 * CONSTANTS[229] is K_iq in component J_got (molar).
 * CONSTANTS[230] is K_mA in component J_got (molar).
 * CONSTANTS[231] is K_mB in component J_got (molar).
 * CONSTANTS[232] is K_mP in component J_got (molar).
 * CONSTANTS[233] is K_mQ in component J_got (molar).
 * ALGEBRAIC[82] is alpha_i in component J_got (dimensionless).
 * CONSTANTS[234] is K_iAKG in component J_got (molar).
 * CONSTANTS[235] is minCon in component J_got (molar).
 * ALGEBRAIC[161] is J_PYRH in component J_PYRH (mole_per_second_per_l_mito_volume).
 * STATES[32] is PYR_i in component dPYR_i_dt (molar).
 * ALGEBRAIC[162] is J_GLUH in component J_GLUH (mole_per_second_per_l_mito_volume).
 * STATES[33] is GLU_i in component dGLU_i_dt (molar).
 * ALGEBRAIC[163] is J_CITMAL in component J_CITMAL (mole_per_second_per_l_mito_volume).
 * STATES[34] is MAL_i in component dMAL_i_dt (molar).
 * ALGEBRAIC[85] is J_AKGMAL in component J_AKGMAL (mole_per_second_per_l_mito_volume).
 * CONSTANTS[236] is K_mAKGi in component J_AKGMAL (molar).
 * CONSTANTS[237] is K_mAKGx in component J_AKGMAL (molar).
 * CONSTANTS[238] is K_mMALi in component J_AKGMAL (molar).
 * CONSTANTS[239] is K_mMALx in component J_AKGMAL (molar).
 * STATES[35] is AKG_i in component dAKG_i_dt (molar).
 * ALGEBRAIC[164] is J_MALPI in component J_MALPI (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[166] is J_ASPGLU in component J_ASPGLU (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[165] is K_eqASPGLU in component J_ASPGLU (dimensionless).
 * CONSTANTS[285] is K_hASPGLU in component J_ASPGLU (molar).
 * CONSTANTS[240] is K_iASPi in component J_ASPGLU (molar).
 * CONSTANTS[241] is K_iASPx in component J_ASPGLU (molar).
 * CONSTANTS[242] is K_iGLUi in component J_ASPGLU (molar).
 * CONSTANTS[243] is K_iGLUx in component J_ASPGLU (molar).
 * STATES[36] is ASP_i in component dASP_i_dt (molar).
 * CONSTANTS[244] is m in component J_ASPGLU (dimensionless).
 * CONSTANTS[245] is pKa_ASPGLU in component J_ASPGLU (dimensionless).
 * STATES[37] is dPsi in component ddPsi_dt (millivolt).
 * ALGEBRAIC[167] is J_SUCMAL in component J_SUCMAL (mole_per_second_per_l_mito_volume).
 * STATES[38] is SUC_i in component dSUC_i_dt (molar).
 * ALGEBRAIC[86] is J_PYRt in component J_PYRt (mole_per_second_per_l_mito_volume).
 * STATES[39] is PYR_c in component dPYR_c_dt (molar).
 * ALGEBRAIC[87] is J_CITt in component J_CITt (mole_per_second_per_l_mito_volume).
 * STATES[40] is CIT_c in component dCIT_c_dt (molar).
 * ALGEBRAIC[88] is J_MALt in component J_MALt (mole_per_second_per_l_mito_volume).
 * STATES[41] is MAL_c in component dMAL_c_dt (molar).
 * ALGEBRAIC[89] is J_AKGt in component J_AKGt (mole_per_second_per_l_mito_volume).
 * STATES[42] is AKG_c in component dAKG_c_dt (molar).
 * ALGEBRAIC[90] is J_SUCt in component J_SUCt (mole_per_second_per_l_mito_volume).
 * STATES[43] is SUC_c in component dSUC_c_dt (molar).
 * ALGEBRAIC[91] is J_GLUt in component J_GLUt (mole_per_second_per_l_mito_volume).
 * STATES[44] is GLU_c in component dGLU_c_dt (molar).
 * ALGEBRAIC[92] is J_ASPt in component J_ASPt (mole_per_second_per_l_mito_volume).
 * STATES[45] is ASP_c in component dASP_c_dt (molar).
 * ALGEBRAIC[93] is J_FUMt in component J_FUMt (mole_per_second_per_l_mito_volume).
 * CONSTANTS[246] is zero in component J_FUMt (micrometer_per_second).
 * STATES[46] is FUM_c in component dFUM_c_dt (molar).
 * STATES[47] is FUM_i in component dFUM_i_dt (molar).
 * ALGEBRAIC[94] is J_ICITt in component J_ICITt (mole_per_second_per_l_mito_volume).
 * STATES[48] is ICIT_c in component dICIT_c_dt (molar).
 * STATES[49] is ICIT_i in component dICIT_i_dt (molar).
 * ALGEBRAIC[95] is J_ADPt in component J_ADPt (mole_per_second_per_l_mito_volume).
 * STATES[50] is ADP_i in component dADP_i_dt (molar).
 * ALGEBRAIC[96] is J_ATPt in component J_ATPt (mole_per_second_per_l_mito_volume).
 * STATES[51] is ATP_i in component dATP_i_dt (molar).
 * ALGEBRAIC[97] is J_AMPt in component J_AMPt (mole_per_second_per_l_mito_volume).
 * STATES[52] is AMP_c in component dAMP_c_dt (molar).
 * STATES[53] is AMP_i in component dAMP_i_dt (molar).
 * ALGEBRAIC[98] is J_PIt in component J_PIt (mole_per_second_per_l_mito_volume).
 * STATES[54] is PI_c in component dPI_c_dt (molar).
 * ALGEBRAIC[169] is J_C1 in component J_C1 (mole_per_second_per_l_mito_volume).
 * CONSTANTS[287] is dGr0_C1 in component J_C1 (kilojoule_per_mole).
 * ALGEBRAIC[99] is K_eq_C1 in component J_C1 (per_molar).
 * ALGEBRAIC[168] is K_app_C1 in component J_C1 (dimensionless).
 * ALGEBRAIC[171] is J_C3 in component J_C3 (mole_per_second_per_l_mito_volume).
 * CONSTANTS[288] is dGr0_C3 in component J_C3 (kilojoule_per_mole).
 * ALGEBRAIC[100] is K_eq_C3 in component J_C3 (molar_squared).
 * ALGEBRAIC[101] is K_app_C3 in component J_C3 (dimensionless).
 * ALGEBRAIC[102] is QH2_x in component J_C3 (molar).
 * ALGEBRAIC[170] is COQ_x in component J_C3 (molar).
 * STATES[55] is Cred_i in component dCred_i_dt (molar).
 * ALGEBRAIC[115] is Cox_i in component dCox_i_dt (molar).
 * CONSTANTS[247] is minCon in component J_C3 (molar).
 * ALGEBRAIC[173] is J_C4 in component J_C4 (mole_per_second_per_l_mito_volume).
 * CONSTANTS[289] is dGr0_C4 in component J_C4 (kilojoule_per_mole).
 * ALGEBRAIC[103] is K_eq_C4 in component J_C4 (dimensionless).
 * ALGEBRAIC[172] is K_app_C4 in component J_C4 (dimensionless).
 * ALGEBRAIC[104] is O2_x in component J_C4 (molar).
 * STATES[56] is O2_x in component dO2_x_dt (molar).
 * CONSTANTS[248] is minCon in component J_C4 (molar).
 * ALGEBRAIC[175] is J_F1 in component J_F1 (mole_per_second_per_l_mito_volume).
 * CONSTANTS[290] is dGr0_F1 in component J_F1 (kilojoule_per_mole).
 * ALGEBRAIC[105] is K_eq_F1 in component J_F1 (per_molar_squared).
 * ALGEBRAIC[174] is K_app_F1 in component J_F1 (per_molar).
 * ALGEBRAIC[176] is J_ANT in component J_ANT (mole_per_second_per_l_mito_volume).
 * CONSTANTS[249] is minCond in component J_ANT (molar).
 * ALGEBRAIC[177] is J_PIHt in component J_PIHt (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[178] is J_Hle in component J_Hle (mole_per_second_per_l_mito_volume).
 * CONSTANTS[250] is minCond in component J_Hle (millivolt).
 * ALGEBRAIC[179] is J_KH in component J_KH (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[108] is J_HK in component J_HK (mole_per_second_per_l_cyto_volume).
 * CONSTANTS[308] is dGr0_HK in component J_HK (kilojoule_per_mole).
 * STATES[57] is GLC_c in component dGLC_c_dt (molar).
 * STATES[58] is G6P_c in component dG6P_c_dt (molar).
 * CONSTANTS[251] is K_ia in component J_HK (molar).
 * CONSTANTS[252] is K_ib in component J_HK (molar).
 * CONSTANTS[253] is K_ip in component J_HK (molar).
 * CONSTANTS[254] is K_iq in component J_HK (molar).
 * CONSTANTS[255] is K_mA in component J_HK (molar).
 * CONSTANTS[256] is K_mB in component J_HK (molar).
 * CONSTANTS[257] is K_mP in component J_HK (molar).
 * CONSTANTS[258] is K_mQ in component J_HK (molar).
 * CONSTANTS[259] is Ki_G6P in component J_HK (molar).
 * CONSTANTS[324] is K_eq_HK in component J_HK (molar).
 * ALGEBRAIC[106] is Kapp_HK in component J_HK (dimensionless).
 * ALGEBRAIC[107] is Kapp_HK_m in component J_HK (dimensionless).
 * ALGEBRAIC[110] is J_CKc in component J_CKc (mole_per_second_per_l_cyto_volume).
 * CONSTANTS[260] is X_CK in component J_CKc (mole_per_second_per_l_cyto_volume_per_molar_per_molar).
 * CONSTANTS[309] is K_CK in component J_CKc (per_molar).
 * STATES[59] is PCr_c in component dPCr_c_dt (molar).
 * ALGEBRAIC[109] is Cr_c in component J_CKc (molar).
 * ALGEBRAIC[181] is J_AKi in component J_AK (mole_per_second_per_l_mito_volume).
 * ALGEBRAIC[112] is J_AKc in component J_AK (mole_per_second_per_l_mito_volume).
 * CONSTANTS[261] is X_AK in component J_AK (mole_per_second_per_l_mito_volume_per_molar_per_molar).
 * CONSTANTS[380] is dGr0_AK in component J_AK (kilojoule_per_mole).
 * CONSTANTS[381] is K_eq_AK in component J_AK (dimensionless).
 * ALGEBRAIC[180] is Kapp_AKi in component J_AK (dimensionless).
 * ALGEBRAIC[111] is Kapp_AKc in component J_AK (dimensionless).
 * ALGEBRAIC[202] is dNAD_x_dt in component dNAD_x_dt (molar_per_second).
 * ALGEBRAIC[185] is dNADH_x_dt in component dNADH_x_dt (molar_per_second).
 * ALGEBRAIC[203] is dCOQ_x_dt in component dCOQ_x_dt (molar_per_second).
 * ALGEBRAIC[186] is dQH2_x_dt in component dQH2_x_dt (molar_per_second).
 * ALGEBRAIC[182] is dATP_x_dt in component dATP_x_dt (molar_per_second).
 * ALGEBRAIC[183] is dADP_x_dt in component dADP_x_dt (molar_per_second).
 * CONSTANTS[262] is dAMP_x_dt in component dAMP_x_dt (molar_per_second).
 * ALGEBRAIC[116] is dGTP_x_dt in component dGTP_x_dt (molar_per_second).
 * ALGEBRAIC[117] is dGDP_x_dt in component dGDP_x_dt (molar_per_second).
 * ALGEBRAIC[184] is dPI_x_dt in component dPI_x_dt (molar_per_second).
 * ALGEBRAIC[187] is dPYR_x_dt in component dPYR_x_dt (molar_per_second).
 * ALGEBRAIC[188] is dACCOA_x_dt in component dACCOA_x_dt (molar_per_second).
 * ALGEBRAIC[189] is dCIT_x_dt in component dCIT_x_dt (molar_per_second).
 * ALGEBRAIC[190] is dICIT_x_dt in component dICIT_x_dt (molar_per_second).
 * ALGEBRAIC[191] is dAKG_x_dt in component dAKG_x_dt (molar_per_second).
 * ALGEBRAIC[192] is dSCOA_x_dt in component dSCOA_x_dt (molar_per_second).
 * ALGEBRAIC[193] is dCOASH_x_dt in component dCOASH_x_dt (molar_per_second).
 * ALGEBRAIC[194] is dSUC_x_dt in component dSUC_x_dt (molar_per_second).
 * ALGEBRAIC[195] is dFUM_x_dt in component dFUM_x_dt (molar_per_second).
 * ALGEBRAIC[196] is dMAL_x_dt in component dMAL_x_dt (molar_per_second).
 * ALGEBRAIC[197] is dOAA_x_dt in component dOAA_x_dt (molar_per_second).
 * ALGEBRAIC[198] is dGLU_x_dt in component dGLU_x_dt (molar_per_second).
 * ALGEBRAIC[199] is dASP_x_dt in component dASP_x_dt (molar_per_second).
 * CONSTANTS[263] is dO2_x_dt in component dO2_x_dt (molar_per_second).
 * CONSTANTS[264] is dCO2_tot_x_dt in component dCO2_tot_x_dt (molar_per_second).
 * CONSTANTS[331] is Rm_cyto in component dPYR_c_dt (mito_per_cyto).
 * CONSTANTS[335] is Rm_cyto in component dCIT_c_dt (mito_per_cyto).
 * CONSTANTS[330] is Rm_cyto in component dICIT_c_dt (mito_per_cyto).
 * CONSTANTS[339] is Rm_cyto in component dAKG_c_dt (mito_per_cyto).
 * CONSTANTS[343] is Rm_cyto in component dSUC_c_dt (mito_per_cyto).
 * CONSTANTS[329] is Rm_cyto in component dFUM_c_dt (mito_per_cyto).
 * CONSTANTS[346] is Rm_cyto in component dMAL_c_dt (mito_per_cyto).
 * CONSTANTS[348] is Rm_cyto in component dGLU_c_dt (mito_per_cyto).
 * CONSTANTS[350] is Rm_cyto in component dASP_c_dt (mito_per_cyto).
 * CONSTANTS[352] is Rm_cyto in component dPI_c_dt (mito_per_cyto).
 * CONSTANTS[265] is conversion_factor in component dPI_c_dt (mito_per_cyto).
 * CONSTANTS[354] is Rm_cyto in component dATP_c_dt (mito_per_cyto).
 * CONSTANTS[266] is conversion_factor in component dATP_c_dt (mito_per_cyto).
 * CONSTANTS[356] is Rm_cyto in component dADP_c_dt (mito_per_cyto).
 * CONSTANTS[267] is conversion_factor in component dADP_c_dt (mito_per_cyto).
 * CONSTANTS[358] is Rm_cyto in component dAMP_c_dt (mito_per_cyto).
 * CONSTANTS[268] is conversion_factor in component dAMP_c_dt (mito_per_cyto).
 * CONSTANTS[310] is FAD_x in component dFAD_x_dt (molar).
 * CONSTANTS[269] is dFAD_x_dt in component dFAD_x_dt (molar_per_second).
 * CONSTANTS[270] is dFADH2_x_dt in component dFAD_x_dt (molar_per_second).
 * CONSTANTS[291] is FADH2_x in component dFAD_x_dt (molar).
 * CONSTANTS[292] is dH_x_dt in component dH_x_dt (molar_per_second).
 * ALGEBRAIC[133] is D in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[204] is phi_H in component BINDING_IONS (molar_per_second).
 * ALGEBRAIC[205] is phi_Mg in component BINDING_IONS (molar_per_second).
 * ALGEBRAIC[206] is phi_K in component BINDING_IONS (molar_per_second).
 * ALGEBRAIC[121] is dHB_dMg in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[122] is dHB_dK in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[125] is dMgB_dK in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[128] is dKB_dMg in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[132] is alpha_K in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[131] is alpha_Mg in component BINDING_IONS (dimensionless).
 * CONSTANTS[293] is dMg_x_dt in component dMg_x_dt (molar_per_second).
 * ALGEBRAIC[130] is alpha_H in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[127] is dKB_dH in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[124] is dMgB_dH in component BINDING_IONS (dimensionless).
 * CONSTANTS[294] is dK_x_dt in component dK_x_dt (molar_per_second).
 * ALGEBRAIC[123] is dHB_dH in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[126] is dMgB_dMg in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[129] is dKB_dK in component BINDING_IONS (dimensionless).
 * ALGEBRAIC[200] is J_H_t in component BINDING_IONS (molar_per_second).
 * CONSTANTS[295] is J_Mg_t in component BINDING_IONS (molar_per_second).
 * ALGEBRAIC[201] is J_K_t in component BINDING_IONS (molar_per_second).
 * CONSTANTS[271] is B_x in component BINDING_IONS (molar).
 * CONSTANTS[272] is K_BX in component BINDING_IONS (molar).
 * RATES[37] is d/dt dPsi in component ddPsi_dt (millivolt).
 * RATES[0] is d/dt ATP_x in component dATP_x_dt (molar).
 * RATES[8] is d/dt ADP_x in component dADP_x_dt (molar).
 * RATES[10] is d/dt AMP_x in component dAMP_x_dt (molar).
 * RATES[11] is d/dt GTP_x in component dGTP_x_dt (molar).
 * RATES[12] is d/dt GDP_x in component dGDP_x_dt (molar).
 * RATES[13] is d/dt PI_x in component dPI_x_dt (molar).
 * RATES[21] is d/dt NADH_x in component dNADH_x_dt (molar).
 * RATES[27] is d/dt QH2_x in component dQH2_x_dt (molar).
 * RATES[17] is d/dt PYR_x in component dPYR_x_dt (molar).
 * RATES[20] is d/dt ACCOA_x in component dACCOA_x_dt (molar).
 * RATES[15] is d/dt CIT_x in component dCIT_x_dt (molar).
 * RATES[24] is d/dt ICIT_x in component dICIT_x_dt (molar).
 * RATES[25] is d/dt AKG_x in component dAKG_x_dt (molar).
 * RATES[23] is d/dt SCOA_x in component dSCOA_x_dt (molar).
 * RATES[18] is d/dt COASH_x in component dCOASH_x_dt (molar).
 * RATES[26] is d/dt SUC_x in component dSUC_x_dt (molar).
 * RATES[28] is d/dt FUM_x in component dFUM_x_dt (molar).
 * RATES[29] is d/dt MAL_x in component dMAL_x_dt (molar).
 * RATES[22] is d/dt OAA_x in component dOAA_x_dt (molar).
 * RATES[31] is d/dt GLU_x in component dGLU_x_dt (molar).
 * RATES[30] is d/dt ASP_x in component dASP_x_dt (molar).
 * RATES[56] is d/dt O2_x in component dO2_x_dt (molar).
 * RATES[19] is d/dt CO2_tot_x in component dCO2_tot_x_dt (molar).
 * RATES[55] is d/dt Cred_i in component dCred_i_dt (molar).
 * RATES[51] is d/dt ATP_i in component dATP_i_dt (molar).
 * RATES[50] is d/dt ADP_i in component dADP_i_dt (molar).
 * RATES[53] is d/dt AMP_i in component dAMP_i_dt (molar).
 * RATES[14] is d/dt PI_i in component dPI_i_dt (molar).
 * RATES[32] is d/dt PYR_i in component dPYR_i_dt (molar).
 * RATES[16] is d/dt CIT_i in component dCIT_i_dt (molar).
 * RATES[49] is d/dt ICIT_i in component dICIT_i_dt (molar).
 * RATES[35] is d/dt AKG_i in component dAKG_i_dt (molar).
 * RATES[38] is d/dt SUC_i in component dSUC_i_dt (molar).
 * RATES[47] is d/dt FUM_i in component dFUM_i_dt (molar).
 * RATES[34] is d/dt MAL_i in component dMAL_i_dt (molar).
 * RATES[33] is d/dt GLU_i in component dGLU_i_dt (molar).
 * RATES[36] is d/dt ASP_i in component dASP_i_dt (molar).
 * RATES[39] is d/dt PYR_c in component dPYR_c_dt (molar).
 * RATES[40] is d/dt CIT_c in component dCIT_c_dt (molar).
 * RATES[48] is d/dt ICIT_c in component dICIT_c_dt (molar).
 * RATES[42] is d/dt AKG_c in component dAKG_c_dt (molar).
 * RATES[43] is d/dt SUC_c in component dSUC_c_dt (molar).
 * RATES[46] is d/dt FUM_c in component dFUM_c_dt (molar).
 * RATES[41] is d/dt MAL_c in component dMAL_c_dt (molar).
 * RATES[44] is d/dt GLU_c in component dGLU_c_dt (molar).
 * RATES[45] is d/dt ASP_c in component dASP_c_dt (molar).
 * RATES[5] is d/dt H_c in component dH_c_dt (molar).
 * RATES[6] is d/dt Mg_c in component dMg_c_dt (molar).
 * RATES[7] is d/dt K_c in component dK_c_dt (molar).
 * RATES[54] is d/dt PI_c in component dPI_c_dt (molar).
 * RATES[4] is d/dt ATP_c in component dATP_c_dt (molar).
 * RATES[9] is d/dt ADP_c in component dADP_c_dt (molar).
 * RATES[57] is d/dt GLC_c in component dGLC_c_dt (molar).
 * RATES[58] is d/dt G6P_c in component dG6P_c_dt (molar).
 * RATES[59] is d/dt PCr_c in component dPCr_c_dt (molar).
 * RATES[52] is d/dt AMP_c in component dAMP_c_dt (molar).
 * RATES[1] is d/dt H_x in component dH_x_dt (molar).
 * RATES[2] is d/dt Mg_x in component dMg_x_dt (molar).
 * RATES[3] is d/dt K_x in component dK_x_dt (molar).
 * There are a total of 22 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
CONSTANTS[0] = 1;
CONSTANTS[1] = 2;
CONSTANTS[2] = 0.096484;
CONSTANTS[3] = 0.651384;
CONSTANTS[4] = 0.072376;
CONSTANTS[5] = 5.99;
CONSTANTS[6] = 2.725e5;
CONSTANTS[7] = 3;
CONSTANTS[8] = 327;
CONSTANTS[9] = 85;
CONSTANTS[10] = 85;
CONSTANTS[11] = 3.5e-6;
CONSTANTS[12] = 0.6;
CONSTANTS[13] = 1.2e-4;
CONSTANTS[14] = 2.97e-3;
CONSTANTS[15] = 1.35e-3;
CONSTANTS[16] = 2.7e-3;
CONSTANTS[17] = 10e-3;
CONSTANTS[18] = 42.7e-3;
CONSTANTS[19] = 21.4e-3;
CONSTANTS[20] = 1e-4;
CONSTANTS[21] = 6.75e-6;
CONSTANTS[22] = 0.205093643103884;
CONSTANTS[23] = 9.82530750761898;
CONSTANTS[24] = 0.027665411180519;
CONSTANTS[25] = 0.492047553306503;
CONSTANTS[26] = 0.087630003425524;
CONSTANTS[27] = 6.04e-7;
CONSTANTS[28] = 0.448520452008943;
CONSTANTS[29] = 0.08578867843174;
CONSTANTS[30] = 0.00707728025683;
CONSTANTS[31] = 0.077060004692409;
CONSTANTS[32] = 0.025543515147654;
CONSTANTS[33] = 4.551391837332316;
CONSTANTS[34] = 2.996779273769102e8;
CONSTANTS[35] = 2.725114215177993e8;
CONSTANTS[36] = 80.432110322866379;
CONSTANTS[37] = 0.282091450119444;
CONSTANTS[38] = 96.995618247389871;
CONSTANTS[39] = 16.062441848715917;
CONSTANTS[40] = 5.865621634754698e-5;
CONSTANTS[41] = 3.236481869934019e4;
CONSTANTS[42] = 0.790813746051711;
CONSTANTS[43] = 3.248913595933763e-5;
CONSTANTS[44] = 0.003474542589709;
CONSTANTS[45] = 1.076088893810943e-4;
CONSTANTS[46] = 8.120393248498723e3;
CONSTANTS[47] = 0.007522124149343;
CONSTANTS[48] = 3.335568500871044e7;
CONSTANTS[49] = 0.00161251709168;
CONSTANTS[50] = 4.758023126099895e6;
CONSTANTS[51] = 3.02092849850504e2;
CONSTANTS[52] = 0;
CONSTANTS[53] = -235.74;
CONSTANTS[54] = 16.4;
CONSTANTS[55] = 39.31;
CONSTANTS[56] = 18.1;
CONSTANTS[57] = -23.3;
CONSTANTS[58] = 65.17;
CONSTANTS[59] = -2771;
CONSTANTS[60] = -1903.96;
CONSTANTS[61] = -1034.66;
CONSTANTS[62] = -2771;
CONSTANTS[63] = -1903.96;
CONSTANTS[64] = -27.41;
CONSTANTS[65] = -6.52;
CONSTANTS[66] = -1098.27;
CONSTANTS[67] = 0;
CONSTANTS[68] = -252.68;
CONSTANTS[69] = -67.6;
CONSTANTS[70] = 19.55;
CONSTANTS[71] = -0.72;
CONSTANTS[72] = -178.19;
CONSTANTS[73] = -794.74;
CONSTANTS[74] = -1165.59;
CONSTANTS[75] = -1158.94;
CONSTANTS[76] = -793.41;
CONSTANTS[77] = -507.55;
CONSTANTS[78] = -690.44;
CONSTANTS[79] = -603.32;
CONSTANTS[80] = -842.66;
CONSTANTS[81] = -692.26;
CONSTANTS[82] = -692.4;
CONSTANTS[83] = -530.71;
CONSTANTS[84] = -470.82;
CONSTANTS[85] = -907.21;
CONSTANTS[86] = -1758.87;
STATES[0] = 1.025e-11;
STATES[1] = 5.7919e-8;
STATES[2] = 0.0046388;
STATES[3] = 0.086878;
STATES[4] = 1e-9;
STATES[5] = 1e-7;
STATES[6] = 0.005;
STATES[7] = 0.15;
STATES[8] = 0.01;
STATES[9] = 1e-9;
STATES[10] = 1e-6;
STATES[11] = 2.7157e-10;
STATES[12] = 0.005;
STATES[13] = 2.9918e-4;
STATES[14] = 1.1574e-4;
CONSTANTS[87] = 1e20;
CONSTANTS[88] = 1e20;
CONSTANTS[89] = 1e20;
CONSTANTS[90] = 1e20;
STATES[15] = 6.815100000000001e-5;
STATES[16] = 1e-9;
CONSTANTS[91] = 1e20;
CONSTANTS[92] = 1e20;
CONSTANTS[93] = 1e20;
CONSTANTS[94] = 1e20;
CONSTANTS[95] = 1e20;
CONSTANTS[96] = 1e20;
CONSTANTS[97] = 1e20;
CONSTANTS[98] = 1e20;
CONSTANTS[99] = 1e20;
CONSTANTS[100] = 1e20;
CONSTANTS[101] = 1e20;
CONSTANTS[102] = 1e20;
CONSTANTS[103] = 1e20;
CONSTANTS[104] = 1e20;
CONSTANTS[105] = 1e20;
CONSTANTS[106] = 1e20;
CONSTANTS[107] = 1e20;
CONSTANTS[108] = 1e20;
CONSTANTS[109] = 1e20;
CONSTANTS[110] = 1e20;
CONSTANTS[111] = 1e20;
CONSTANTS[112] = 1e20;
CONSTANTS[113] = 1e20;
CONSTANTS[114] = 1e20;
CONSTANTS[115] = 1e20;
CONSTANTS[116] = 1e20;
CONSTANTS[117] = 1e20;
CONSTANTS[118] = 1e20;
CONSTANTS[119] = 1e20;
CONSTANTS[120] = 1e20;
CONSTANTS[121] = 1e20;
CONSTANTS[122] = 1e20;
CONSTANTS[123] = 1e20;
CONSTANTS[124] = 1e20;
CONSTANTS[125] = 1e20;
CONSTANTS[126] = 1e20;
CONSTANTS[127] = 1e20;
CONSTANTS[128] = 1e20;
CONSTANTS[129] = 1e20;
CONSTANTS[130] = 1e20;
CONSTANTS[131] = 1e20;
CONSTANTS[132] = 1e20;
CONSTANTS[133] = 1e20;
CONSTANTS[134] = 1e20;
CONSTANTS[135] = 1e20;
CONSTANTS[136] = 1e20;
CONSTANTS[137] = 1e20;
CONSTANTS[138] = 1e20;
CONSTANTS[139] = 1e20;
CONSTANTS[140] = 1e20;
CONSTANTS[141] = 1e20;
CONSTANTS[142] = 1e20;
STATES[17] = 1.2076e-11;
STATES[18] = 0.0030107;
STATES[19] = 0.0214;
STATES[20] = 2.5507e-12;
STATES[21] = 8.484200000000001e-21;
CONSTANTS[143] = 38.3e-6;
CONSTANTS[144] = 9.9e-6;
CONSTANTS[145] = 60.7e-6;
CONSTANTS[146] = 40.2e-6;
CONSTANTS[147] = 40e-6;
CONSTANTS[148] = 1e-32;
STATES[22] = 8.9236e-4;
STATES[23] = 6.9627e-10;
CONSTANTS[149] = 4e-6;
CONSTANTS[150] = 14e-6;
CONSTANTS[151] = 3.33e-6;
CONSTANTS[152] = 1600e-6;
CONSTANTS[153] = 900e-6;
CONSTANTS[154] = 1800e-6;
CONSTANTS[155] = 6000e-6;
CONSTANTS[156] = 67e-6;
CONSTANTS[157] = 140e-6;
STATES[24] = 9.3558e-7;
CONSTANTS[158] = 1161e-6;
CONSTANTS[159] = 434e-6;
STATES[25] = 4.7979e-11;
CONSTANTS[160] = 74e-6;
CONSTANTS[161] = 183e-6;
CONSTANTS[162] = 23.8e-6;
CONSTANTS[163] = 29e-6;
CONSTANTS[164] = 3;
CONSTANTS[165] = 91e-6;
CONSTANTS[166] = 50e-6;
CONSTANTS[167] = 1e-32;
CONSTANTS[168] = 80e-6;
CONSTANTS[169] = 55e-6;
CONSTANTS[170] = 21e-6;
CONSTANTS[171] = 6.9e-6;
CONSTANTS[172] = 6.010527470838273e-7;
CONSTANTS[173] = 1e3;
CONSTANTS[174] = 50e-6;
CONSTANTS[175] = 100e-6;
CONSTANTS[176] = 1e-32;
STATES[26] = 2.1681e-7;
CONSTANTS[177] = 5.5e-6;
CONSTANTS[178] = 100e-6;
CONSTANTS[179] = 2000e-6;
CONSTANTS[180] = 20e-6;
CONSTANTS[181] = 3000e-6;
CONSTANTS[182] = 11.1e-6;
CONSTANTS[183] = 16e-6;
CONSTANTS[184] = 55e-6;
CONSTANTS[185] = 660e-6;
CONSTANTS[186] = 20e-6;
CONSTANTS[187] = 880e-6;
CONSTANTS[188] = 11.1e-6;
STATES[27] = 0;
STATES[28] = 7.8476e-9;
CONSTANTS[189] = 120e-6;
CONSTANTS[190] = 1275e-6;
CONSTANTS[191] = 467e-6;
CONSTANTS[192] = 480e-6;
CONSTANTS[193] = 2.45e-6;
CONSTANTS[194] = 1200e-6;
CONSTANTS[195] = 1.5e-6;
CONSTANTS[196] = 450e-6;
CONSTANTS[197] = 375e-6;
STATES[29] = 3.2191e-8;
CONSTANTS[198] = 44.7e-6;
CONSTANTS[199] = 197.7e-6;
CONSTANTS[200] = 3500e-6;
CONSTANTS[201] = 40e-6;
CONSTANTS[202] = 400e-6;
CONSTANTS[203] = 80e-6;
CONSTANTS[204] = 330e-6;
CONSTANTS[205] = 279e-6;
CONSTANTS[206] = 360e-6;
CONSTANTS[207] = 5.5e-6;
CONSTANTS[208] = 3.18e-6;
CONSTANTS[209] = 90.55e-6;
CONSTANTS[210] = 250e-6;
CONSTANTS[211] = 6.128e-6;
CONSTANTS[212] = 2.58e-6;
CONSTANTS[213] = 183.2e-6;
CONSTANTS[214] = 394.4e-6;
CONSTANTS[215] = 420e-6;
CONSTANTS[216] = 170e-6;
CONSTANTS[217] = 143.6e-6;
CONSTANTS[218] = 146.6e-6;
CONSTANTS[219] = 156.5e-6;
CONSTANTS[220] = 111e-6;
CONSTANTS[221] = 100e-6;
CONSTANTS[222] = 260e-6;
CONSTANTS[223] = 278e-6;
CONSTANTS[224] = 650e-6;
CONSTANTS[225] = 1e-32;
STATES[30] = 1.0217e-4;
STATES[31] = 9.9311e-12;
CONSTANTS[226] = 3480e-6;
CONSTANTS[227] = 710e-6;
CONSTANTS[228] = 50e-6;
CONSTANTS[229] = 8400e-6;
CONSTANTS[230] = 3900e-6;
CONSTANTS[231] = 430e-6;
CONSTANTS[232] = 88e-6;
CONSTANTS[233] = 8900e-6;
CONSTANTS[234] = 16.6e-3;
CONSTANTS[235] = 1e-32;
STATES[32] = 9.1804e-10;
STATES[33] = 5.7539e-12;
STATES[34] = 1e-9;
CONSTANTS[236] = 0.3e-3;
CONSTANTS[237] = 0.17e-3;
CONSTANTS[238] = 1.4e-3;
CONSTANTS[239] = 0.7e-3;
STATES[35] = 9.999500000000001e-10;
CONSTANTS[240] = 28e-6;
CONSTANTS[241] = 2.8e-3;
CONSTANTS[242] = 180e-6;
CONSTANTS[243] = 1.6e-3;
STATES[36] = 4.4404e-9;
CONSTANTS[244] = 1.8;
CONSTANTS[245] = 6.5;
STATES[37] = -14.087;
STATES[38] = 1e-9;
STATES[39] = 1e-9;
STATES[40] = 1e-9;
STATES[41] = 1e-9;
STATES[42] = 1e-9;
STATES[43] = 1e-9;
STATES[44] = 5.754e-12;
STATES[45] = 4.4404e-9;
CONSTANTS[246] = 0;
STATES[46] = 1e-9;
STATES[47] = 1e-9;
STATES[48] = 1e-9;
STATES[49] = 1e-9;
STATES[50] = 1e-9;
STATES[51] = 1e-9;
STATES[52] = 1e-9;
STATES[53] = 1e-9;
STATES[54] = 1.1574e-4;
STATES[55] = 9.6996e-8;
CONSTANTS[247] = 1e-32;
STATES[56] = 6.499999999999999e-5;
CONSTANTS[248] = 1e-32;
CONSTANTS[249] = 1e-9;
CONSTANTS[250] = 1e-9;
STATES[57] = 1e-9;
STATES[58] = 1e-9;
CONSTANTS[251] = 1e-3;
CONSTANTS[252] = 47e-6;
CONSTANTS[253] = 47e-6;
CONSTANTS[254] = 1e-3;
CONSTANTS[255] = 1e-3;
CONSTANTS[256] = 47e-6;
CONSTANTS[257] = 47e-6;
CONSTANTS[258] = 1e-3;
CONSTANTS[259] = 10e-6;
CONSTANTS[260] = 1e7;
STATES[59] = 1e-9;
CONSTANTS[261] = 1e7;
CONSTANTS[262] = 0;
CONSTANTS[263] = 0;
CONSTANTS[264] = 0;
CONSTANTS[265] = 1;
CONSTANTS[266] = 1;
CONSTANTS[267] = 1;
CONSTANTS[268] = 1;
CONSTANTS[269] = 0;
CONSTANTS[270] = 0;
CONSTANTS[271] = 0.02;
CONSTANTS[272] = 1e-7;
CONSTANTS[273] = (CONSTANTS[0]==1.00000&&CONSTANTS[1]==3.00000 ? 0.107108 : 0.00000);
CONSTANTS[274] = (CONSTANTS[0]==1.00000 ? ( 8.31400*(28.0000+273.150))/1000.00 : ( 8.31400*(37.0000+273.150))/1000.00);
CONSTANTS[275] = 1.00000;
CONSTANTS[276] = 1.00000;
CONSTANTS[277] = 1.00000;
CONSTANTS[278] = 1.00000;
CONSTANTS[279] = 1.00000;
CONSTANTS[280] = 1.00000;
CONSTANTS[281] = 1.00000;
CONSTANTS[282] = 1.00000;
CONSTANTS[283] = 1.00000;
CONSTANTS[284] = 1.00000;
CONSTANTS[285] =  1.00000*pow(10.0000, - CONSTANTS[245]);
CONSTANTS[286] = (CONSTANTS[0]==1.00000 ? 80.0000 : CONSTANTS[0]==2.00000 ? 800.000 : CONSTANTS[0]==3.00000||CONSTANTS[0]==4.00000 ?  0.807000*1.04400 : 80.0000);
CONSTANTS[287] = ((CONSTANTS[56]+CONSTANTS[57]) - CONSTANTS[55]) - CONSTANTS[58];
CONSTANTS[288] = ((CONSTANTS[58]+ 2.00000*CONSTANTS[64]) - CONSTANTS[57]) -  2.00000*CONSTANTS[65];
CONSTANTS[289] = (( 2.00000*CONSTANTS[65]+CONSTANTS[53]) -  2.00000*CONSTANTS[64]) -  0.500000*CONSTANTS[54];
CONSTANTS[290] = ((CONSTANTS[59]+CONSTANTS[53]) - CONSTANTS[60]) - CONSTANTS[66];
CONSTANTS[291] = CONSTANTS[20]/2.00000;
CONSTANTS[292] = 0.00000;
CONSTANTS[293] = 0.00000;
CONSTANTS[294] = 0.00000;
CONSTANTS[295] = 0.00000;
CONSTANTS[382] = 0.00000;
CONSTANTS[383] = 0.00000;
CONSTANTS[384] = 0.00000;
CONSTANTS[385] = 0.00000;
CONSTANTS[386] = 0.00000;
CONSTANTS[387] = 0.00000;
CONSTANTS[296] =  1.00000*pow(10.0000, - 6.59000);
CONSTANTS[297] = ((CONSTANTS[63]+CONSTANTS[59]) - CONSTANTS[62]) - CONSTANTS[60];
CONSTANTS[298] = ((((CONSTANTS[83]+CONSTANTS[72]+CONSTANTS[55]) - CONSTANTS[84]) - CONSTANTS[71]) - CONSTANTS[56]) - CONSTANTS[53];
CONSTANTS[299] = (((CONSTANTS[71]+CONSTANTS[74]) - CONSTANTS[72]) - CONSTANTS[73]) - CONSTANTS[53];
CONSTANTS[300] = CONSTANTS[75] - CONSTANTS[74];
CONSTANTS[301] = (((CONSTANTS[76]+CONSTANTS[55]+CONSTANTS[83]) - CONSTANTS[75]) - CONSTANTS[56]) - CONSTANTS[53];
CONSTANTS[302] = ((((CONSTANTS[83]+CONSTANTS[77]+CONSTANTS[55]) - CONSTANTS[76]) - CONSTANTS[71]) - CONSTANTS[56]) - CONSTANTS[53];
CONSTANTS[303] = (((CONSTANTS[71]+CONSTANTS[78]+CONSTANTS[62]) - CONSTANTS[63]) - CONSTANTS[77]) - CONSTANTS[66];
CONSTANTS[304] = 1.00000;
CONSTANTS[305] = ((CONSTANTS[73]+CONSTANTS[55]) - CONSTANTS[56]) - CONSTANTS[80];
CONSTANTS[306] = 1.00000;
CONSTANTS[307] = (CONSTANTS[0]==3.00000 ? 0.288200 : CONSTANTS[0]==4.00000 ? 0.0560000 : 0.00000);
CONSTANTS[308] = ((CONSTANTS[86]+CONSTANTS[60]) - CONSTANTS[85]) - CONSTANTS[59];
CONSTANTS[309] = exp(50.7800/CONSTANTS[274])/1.00000;
CONSTANTS[310] = CONSTANTS[20] - CONSTANTS[291];
CONSTANTS[311] =  1.00000*pow(10.0000, - 3.82000);
CONSTANTS[312] = exp(- CONSTANTS[297]/CONSTANTS[274]);
CONSTANTS[313] = CONSTANTS[296];
CONSTANTS[314] =  1.00000*exp(- CONSTANTS[298]/CONSTANTS[274]);
CONSTANTS[315] =  1.00000*exp(- CONSTANTS[299]/CONSTANTS[274]);
CONSTANTS[316] = exp(- CONSTANTS[300]/CONSTANTS[274]);
CONSTANTS[317] =  1.00000*exp(- CONSTANTS[301]/CONSTANTS[274]);
CONSTANTS[318] =  1.00000*exp(- CONSTANTS[302]/CONSTANTS[274]);
CONSTANTS[319] =  1.00000*exp(- CONSTANTS[303]/CONSTANTS[274]);
CONSTANTS[320] = 1.00000;
CONSTANTS[321] =  1.00000*exp(- CONSTANTS[305]/CONSTANTS[274]);
CONSTANTS[322] = ((CONSTANTS[73]+CONSTANTS[82]) - CONSTANTS[81]) - CONSTANTS[76];
CONSTANTS[323] = (CONSTANTS[0]==3.00000 ? 0.680100 : CONSTANTS[0]==4.00000 ? 0.894000 : 1.00000);
CONSTANTS[324] =  1.00000*exp(- CONSTANTS[308]/CONSTANTS[274]);
CONSTANTS[325] =  1.00000*pow(10.0000, - 1.01300);
CONSTANTS[326] = CONSTANTS[311];
CONSTANTS[327] = ((CONSTANTS[57]+CONSTANTS[79]) - CONSTANTS[78]) - CONSTANTS[58];
CONSTANTS[328] = exp(- CONSTANTS[322]/CONSTANTS[274]);
CONSTANTS[329] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[330] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[331] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==3.00000||CONSTANTS[0]==4.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[332] =  1.00000*pow(10.0000, - 6.42000);
CONSTANTS[333] = CONSTANTS[325];
CONSTANTS[334] = exp(- CONSTANTS[327]/CONSTANTS[274]);
CONSTANTS[335] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[336] =  1.00000*pow(10.0000, - 2.79000);
CONSTANTS[337] = CONSTANTS[332];
CONSTANTS[338] = (CONSTANTS[80] - CONSTANTS[79]) - CONSTANTS[53];
CONSTANTS[339] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[340] =  1.00000*pow(10.0000, - 0.882000);
CONSTANTS[341] = CONSTANTS[336];
CONSTANTS[342] = exp(- CONSTANTS[338]/CONSTANTS[274]);
CONSTANTS[343] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[344] =  1.00000*pow(10.0000, - 6.22000);
CONSTANTS[345] = CONSTANTS[340];
CONSTANTS[346] = (CONSTANTS[1]==0.00000||CONSTANTS[0]==5.00000 ? 0.00000 : CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[347] =  1.00000*pow(10.0000, - 1.86000);
CONSTANTS[348] = (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[349] =  1.00000*pow(10.0000, - 0.621500);
CONSTANTS[350] = (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? 1.00000 : CONSTANTS[307]/CONSTANTS[323]);
CONSTANTS[351] =  1.00000*pow(10.0000, - 6.71000);
CONSTANTS[352] = CONSTANTS[307]/CONSTANTS[323];
CONSTANTS[353] =  1.00000*pow(10.0000, - 1.69000);
CONSTANTS[354] = CONSTANTS[307]/CONSTANTS[323];
CONSTANTS[355] =  1.00000*pow(10.0000, 0.00740000);
CONSTANTS[356] = CONSTANTS[307]/CONSTANTS[323];
CONSTANTS[357] =  1.00000*pow(10.0000, - 8.13000);
CONSTANTS[358] = CONSTANTS[307]/CONSTANTS[323];
CONSTANTS[359] =  1.00000*pow(10.0000, - 0.862900);
CONSTANTS[360] =  1.00000*pow(10.0000, - 5.63000);
CONSTANTS[361] =  1.00000*pow(10.0000, - 3.37000);
CONSTANTS[362] =  1.00000*pow(10.0000, - 0.339000);
CONSTANTS[363] =  1.00000*pow(10.0000, - 5.64000);
CONSTANTS[364] =  1.00000*pow(10.0000, - 2.46000);
CONSTANTS[365] =  1.00000*pow(10.0000, - 3.96000);
CONSTANTS[366] =  1.00000*pow(10.0000, - 5.13000);
CONSTANTS[367] =  1.00000*pow(10.0000, - 1.17000);
CONSTANTS[368] =  1.00000*pow(10.0000, - 0.352500);
CONSTANTS[369] =  1.00000*pow(10.0000, - 4.10000);
CONSTANTS[370] =  1.00000*pow(10.0000, - 4.75000);
CONSTANTS[371] =  1.00000*pow(10.0000, - 1.55000);
CONSTANTS[372] =  1.00000*pow(10.0000, 0.107000);
CONSTANTS[373] =  1.00000*pow(10.0000, - 9.82000);
CONSTANTS[374] =  1.00000*pow(10.0000, - 1.02000);
CONSTANTS[375] =  1.00000*pow(10.0000, - 5.91000);
CONSTANTS[376] =  1.00000*pow(10.0000, - 4.06000);
CONSTANTS[377] =  1.00000*pow(10.0000, - 1.82000);
CONSTANTS[378] =  1.00000*pow(10.0000, - 3.65000);
CONSTANTS[379] =  1.00000*pow(10.0000, - 2.32000);
CONSTANTS[380] = (CONSTANTS[59]+CONSTANTS[61]) -  2.00000*CONSTANTS[60];
CONSTANTS[381] = exp(- CONSTANTS[380]/CONSTANTS[274]);
RATES[37] = 0.1001;
RATES[0] = 0.1001;
RATES[8] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[21] = 0.1001;
RATES[27] = 0.1001;
RATES[17] = 0.1001;
RATES[20] = 0.1001;
RATES[15] = 0.1001;
RATES[24] = 0.1001;
RATES[25] = 0.1001;
RATES[23] = 0.1001;
RATES[18] = 0.1001;
RATES[26] = 0.1001;
RATES[28] = 0.1001;
RATES[29] = 0.1001;
RATES[22] = 0.1001;
RATES[31] = 0.1001;
RATES[30] = 0.1001;
RATES[55] = 0.1001;
RATES[51] = 0.1001;
RATES[50] = 0.1001;
RATES[53] = 0.1001;
RATES[14] = 0.1001;
RATES[32] = 0.1001;
RATES[16] = 0.1001;
RATES[49] = 0.1001;
RATES[35] = 0.1001;
RATES[38] = 0.1001;
RATES[47] = 0.1001;
RATES[34] = 0.1001;
RATES[33] = 0.1001;
RATES[36] = 0.1001;
RATES[39] = 0.1001;
RATES[40] = 0.1001;
RATES[48] = 0.1001;
RATES[42] = 0.1001;
RATES[43] = 0.1001;
RATES[46] = 0.1001;
RATES[41] = 0.1001;
RATES[44] = 0.1001;
RATES[45] = 0.1001;
RATES[54] = 0.1001;
RATES[4] = 0.1001;
RATES[9] = 0.1001;
RATES[57] = 0.1001;
RATES[58] = 0.1001;
RATES[59] = 0.1001;
RATES[52] = 0.1001;
RATES[1] = 0.1001;
RATES[2] = 0.1001;
RATES[3] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[37] - ((((( 4.00000*ALGEBRAIC[169]+ 2.00000*ALGEBRAIC[171]+ 4.00000*ALGEBRAIC[173]) -  CONSTANTS[7]*ALGEBRAIC[175]) - ALGEBRAIC[176]) - ALGEBRAIC[178])+ALGEBRAIC[166])/CONSTANTS[21];
resid[1] = RATES[0] - ((ALGEBRAIC[79]+ALGEBRAIC[175]) - ALGEBRAIC[176])/CONSTANTS[3];
resid[2] = RATES[8] - ((- ALGEBRAIC[79] - ALGEBRAIC[175])+ALGEBRAIC[176])/CONSTANTS[3];
resid[3] = RATES[11] - (ALGEBRAIC[64] - ALGEBRAIC[79])/CONSTANTS[3];
resid[4] = RATES[12] - (- ALGEBRAIC[64]+ALGEBRAIC[79])/CONSTANTS[3];
resid[5] = RATES[13] - (((- ALGEBRAIC[64] - ALGEBRAIC[175])+ALGEBRAIC[177]) - ALGEBRAIC[164])/CONSTANTS[3];
resid[6] = RATES[21] - ((ALGEBRAIC[156]+ALGEBRAIC[157]+ALGEBRAIC[158]+ALGEBRAIC[160]) - ALGEBRAIC[169])/CONSTANTS[3];
resid[7] = RATES[27] - ((ALGEBRAIC[159]+ALGEBRAIC[169]) - ALGEBRAIC[171])/CONSTANTS[3];
resid[8] = RATES[17] - (- ALGEBRAIC[156]+ALGEBRAIC[161])/CONSTANTS[3];
resid[9] = RATES[20] - (ALGEBRAIC[156] - ALGEBRAIC[54])/CONSTANTS[3];
resid[10] = RATES[15] - (- ALGEBRAIC[57]+ALGEBRAIC[163]+ALGEBRAIC[54])/CONSTANTS[3];
resid[11] = RATES[24] - (ALGEBRAIC[57] - ALGEBRAIC[157])/CONSTANTS[3];
resid[12] = RATES[25] - (((ALGEBRAIC[157] - ALGEBRAIC[158]) - ALGEBRAIC[84])+ALGEBRAIC[85])/CONSTANTS[3];
resid[13] = RATES[23] - (ALGEBRAIC[158] - ALGEBRAIC[64])/CONSTANTS[3];
resid[14] = RATES[18] - ((- ALGEBRAIC[156] - ALGEBRAIC[158])+ALGEBRAIC[64]+ALGEBRAIC[54])/CONSTANTS[3];
resid[15] = RATES[26] - ((ALGEBRAIC[64] - ALGEBRAIC[159])+ALGEBRAIC[167])/CONSTANTS[3];
resid[16] = RATES[28] - (ALGEBRAIC[159] - ALGEBRAIC[71])/CONSTANTS[3];
resid[17] = RATES[29] - (((((ALGEBRAIC[71] - ALGEBRAIC[160])+ALGEBRAIC[164]) - ALGEBRAIC[85]) - ALGEBRAIC[163]) - ALGEBRAIC[167])/CONSTANTS[3];
resid[18] = RATES[22] - (- ALGEBRAIC[54]+ALGEBRAIC[160]+ALGEBRAIC[84])/CONSTANTS[3];
resid[19] = RATES[31] - ((ALGEBRAIC[84]+ALGEBRAIC[162]) - ALGEBRAIC[166])/CONSTANTS[3];
resid[20] = RATES[30] - (- ALGEBRAIC[84]+ALGEBRAIC[166])/CONSTANTS[3];
resid[21] = RATES[55] - ( 2.00000*ALGEBRAIC[171] -  2.00000*ALGEBRAIC[173])/CONSTANTS[4];
resid[22] = RATES[51] - (ALGEBRAIC[96]+ALGEBRAIC[176]+ALGEBRAIC[181])/CONSTANTS[4];
resid[23] = RATES[50] - ((ALGEBRAIC[95] - ALGEBRAIC[176]) -  2.00000*ALGEBRAIC[181])/CONSTANTS[4];
resid[24] = RATES[53] - (ALGEBRAIC[97]+ALGEBRAIC[181])/CONSTANTS[4];
resid[25] = RATES[14] - (- ALGEBRAIC[177]+ALGEBRAIC[98]+ALGEBRAIC[164])/CONSTANTS[4];
resid[26] = RATES[32] - (- ALGEBRAIC[161]+ALGEBRAIC[86])/CONSTANTS[4];
resid[27] = RATES[16] - (- ALGEBRAIC[163]+ALGEBRAIC[87])/CONSTANTS[4];
resid[28] = RATES[49] - ALGEBRAIC[94]/CONSTANTS[4];
resid[29] = RATES[35] - (- ALGEBRAIC[85]+ALGEBRAIC[89])/CONSTANTS[4];
resid[30] = RATES[38] - (ALGEBRAIC[90] - ALGEBRAIC[167])/CONSTANTS[4];
resid[31] = RATES[47] - ALGEBRAIC[93]/CONSTANTS[4];
resid[32] = RATES[34] - (- ALGEBRAIC[164]+ALGEBRAIC[88]+ALGEBRAIC[85]+ALGEBRAIC[163]+ALGEBRAIC[167])/CONSTANTS[4];
resid[33] = RATES[33] - (- ALGEBRAIC[162]+ALGEBRAIC[166]+ALGEBRAIC[91])/CONSTANTS[4];
resid[34] = RATES[36] - (- ALGEBRAIC[166]+ALGEBRAIC[92])/CONSTANTS[4];
resid[35] = RATES[39] - ( - CONSTANTS[331]*ALGEBRAIC[86])/CONSTANTS[286];
resid[36] = RATES[40] - ( - CONSTANTS[335]*ALGEBRAIC[87])/CONSTANTS[286];
resid[37] = RATES[48] - ( - CONSTANTS[330]*ALGEBRAIC[94])/CONSTANTS[286];
resid[38] = RATES[42] - ( - CONSTANTS[339]*ALGEBRAIC[89])/CONSTANTS[286];
resid[39] = RATES[43] - ( - CONSTANTS[343]*ALGEBRAIC[90])/CONSTANTS[286];
resid[40] = RATES[46] - ( - CONSTANTS[329]*ALGEBRAIC[93])/CONSTANTS[286];
resid[41] = RATES[41] - ( - CONSTANTS[346]*ALGEBRAIC[88])/CONSTANTS[286];
resid[42] = RATES[44] - ( - CONSTANTS[348]*ALGEBRAIC[91])/CONSTANTS[286];
resid[43] = RATES[45] - ( - CONSTANTS[350]*ALGEBRAIC[92])/CONSTANTS[286];
resid[44] = RATES[54] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? ( - ALGEBRAIC[98]*CONSTANTS[265])/CONSTANTS[286] : ( CONSTANTS[352]*ALGEBRAIC[98]+CONSTANTS[52])/CONSTANTS[286]);
resid[45] = RATES[4] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? ( - (1.00000+CONSTANTS[286]/1.00000)*ALGEBRAIC[108] -  CONSTANTS[266]*ALGEBRAIC[96])/CONSTANTS[286] : (( - CONSTANTS[354]*ALGEBRAIC[96]+ALGEBRAIC[110]+ CONSTANTS[266]*ALGEBRAIC[112]) - CONSTANTS[52])/CONSTANTS[286]);
resid[46] = RATES[9] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? ( (1.00000+CONSTANTS[286]/1.00000)*ALGEBRAIC[108] -  CONSTANTS[267]*ALGEBRAIC[95])/CONSTANTS[286] : ((( - CONSTANTS[356]*ALGEBRAIC[95] - ALGEBRAIC[110]) -  2.00000*CONSTANTS[267]*ALGEBRAIC[112])+CONSTANTS[52])/CONSTANTS[286]);
resid[47] = RATES[57] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? ( - (1.00000+CONSTANTS[286]/1.00000)*ALGEBRAIC[108])/CONSTANTS[286] : 0.00000);
resid[48] = RATES[58] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? ( (1.00000+CONSTANTS[286]/1.00000)*ALGEBRAIC[108])/CONSTANTS[286] : 0.00000);
resid[49] = RATES[59] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? 0.00000 : - ALGEBRAIC[110]/CONSTANTS[286]);
resid[50] = RATES[52] - (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000||CONSTANTS[0]==6.00000 ? 0.00000 : ( - CONSTANTS[358]*ALGEBRAIC[97]+ CONSTANTS[268]*ALGEBRAIC[112])/CONSTANTS[286]);
resid[51] = RATES[1] - ( ( ALGEBRAIC[128]*ALGEBRAIC[125] -  ALGEBRAIC[131]*ALGEBRAIC[132])*ALGEBRAIC[204]+ ( ALGEBRAIC[132]*ALGEBRAIC[121] -  ALGEBRAIC[122]*ALGEBRAIC[128])*ALGEBRAIC[205]+ ( ALGEBRAIC[131]*ALGEBRAIC[122] -  ALGEBRAIC[121]*ALGEBRAIC[125])*ALGEBRAIC[206])/ALGEBRAIC[133];
resid[52] = RATES[2] - ( ( ALGEBRAIC[132]*ALGEBRAIC[124] -  ALGEBRAIC[127]*ALGEBRAIC[125])*ALGEBRAIC[204]+ ( ALGEBRAIC[127]*ALGEBRAIC[122] -  ALGEBRAIC[130]*ALGEBRAIC[132])*ALGEBRAIC[205]+ ( ALGEBRAIC[130]*ALGEBRAIC[125] -  ALGEBRAIC[122]*ALGEBRAIC[124])*ALGEBRAIC[206])/ALGEBRAIC[133];
resid[53] = RATES[3] - ( ( ALGEBRAIC[131]*ALGEBRAIC[127] -  ALGEBRAIC[128]*ALGEBRAIC[124])*ALGEBRAIC[204]+ ( ALGEBRAIC[130]*ALGEBRAIC[128] -  ALGEBRAIC[127]*ALGEBRAIC[121])*ALGEBRAIC[205]+ ( ALGEBRAIC[124]*ALGEBRAIC[121] -  ALGEBRAIC[130]*ALGEBRAIC[131])*ALGEBRAIC[206])/ALGEBRAIC[133];
resid[54] = RATES[10] - CONSTANTS[382];
resid[55] = RATES[56] - CONSTANTS[383];
resid[56] = RATES[19] - CONSTANTS[384];
resid[57] = RATES[5] - CONSTANTS[385];
resid[58] = RATES[6] - CONSTANTS[386];
resid[59] = RATES[7] - CONSTANTS[387];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[12] = ALGEBRAIC[1];
ALGEBRAIC[15] = ALGEBRAIC[5];
ALGEBRAIC[18] = 1.00000+STATES[5]/CONSTANTS[351]+STATES[6]/CONSTANTS[353]+STATES[7]/CONSTANTS[355];
ALGEBRAIC[21] = 1.00000+STATES[5]/CONSTANTS[357];
ALGEBRAIC[23] = 1.00000+STATES[6]/CONSTANTS[359];
ALGEBRAIC[25] = 1.00000+STATES[5]/CONSTANTS[360]+STATES[6]/CONSTANTS[361]+STATES[7]/CONSTANTS[362];
ALGEBRAIC[29] = 1.00000+STATES[5]/CONSTANTS[363]+STATES[6]/CONSTANTS[364];
ALGEBRAIC[31] = 1.00000+STATES[5]/CONSTANTS[365];
ALGEBRAIC[33] = 1.00000+STATES[5]/CONSTANTS[366]+STATES[6]/CONSTANTS[367]+STATES[7]/CONSTANTS[368];
ALGEBRAIC[35] = 1.00000+STATES[5]/CONSTANTS[369];
ALGEBRAIC[37] = 1.00000+STATES[5]/CONSTANTS[370]+STATES[6]/CONSTANTS[371]+STATES[7]/CONSTANTS[372];
ALGEBRAIC[39] = 1.00000+STATES[5]/CONSTANTS[373];
ALGEBRAIC[41] = 1.00000+STATES[6]/CONSTANTS[374];
ALGEBRAIC[42] = 1.00000+STATES[1]/CONSTANTS[375];
ALGEBRAIC[45] = 1.00000+STATES[5]/CONSTANTS[376]+STATES[6]/CONSTANTS[377];
ALGEBRAIC[47] = 1.00000+STATES[5]/CONSTANTS[378]+STATES[6]/CONSTANTS[379];
ALGEBRAIC[137] = ALGEBRAIC[134];
ALGEBRAIC[138] = ALGEBRAIC[135];
ALGEBRAIC[141] = 1.00000+ALGEBRAIC[118]/CONSTANTS[357];
ALGEBRAIC[142] = 1.00000+ALGEBRAIC[119]/CONSTANTS[359];
ALGEBRAIC[144] = ( STATES[16]*(1.00000+ALGEBRAIC[118]/CONSTANTS[360]))/ALGEBRAIC[143];
ALGEBRAIC[146] = 1.00000+ALGEBRAIC[118]/CONSTANTS[363]+ALGEBRAIC[119]/CONSTANTS[364];
ALGEBRAIC[147] = 1.00000+ALGEBRAIC[118]/CONSTANTS[365];
ALGEBRAIC[149] = 1.00000+ALGEBRAIC[118]/CONSTANTS[369];
ALGEBRAIC[151] = 1.00000+ALGEBRAIC[118]/CONSTANTS[373];
ALGEBRAIC[153] = 1.00000+ALGEBRAIC[118]/CONSTANTS[375];
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[20] = 1.00000+STATES[1]/CONSTANTS[357];
ALGEBRAIC[22] = 1.00000+STATES[2]/CONSTANTS[359];
ALGEBRAIC[24] = 1.00000+STATES[1]/CONSTANTS[360]+STATES[2]/CONSTANTS[361]+STATES[3]/CONSTANTS[362];
ALGEBRAIC[51] = ( CONSTANTS[315]*ALGEBRAIC[24]*ALGEBRAIC[20])/( pow(STATES[1], 2.00000)*CONSTANTS[278]*ALGEBRAIC[22]);
ALGEBRAIC[26] = ( STATES[15]*(1.00000+STATES[1]/CONSTANTS[360]))/ALGEBRAIC[24];
ALGEBRAIC[52] = 1.00000+ALGEBRAIC[26]/CONSTANTS[152];
ALGEBRAIC[0] = 1.00000+STATES[1]/CONSTANTS[296]+STATES[2]/CONSTANTS[311]+STATES[3]/CONSTANTS[325];
ALGEBRAIC[2] = ( STATES[0]*(1.00000+STATES[1]/CONSTANTS[296]))/ALGEBRAIC[0];
ALGEBRAIC[4] = 1.00000+STATES[1]/CONSTANTS[332]+STATES[2]/CONSTANTS[336]+STATES[3]/CONSTANTS[340];
ALGEBRAIC[6] = ( STATES[8]*(1.00000+STATES[1]/CONSTANTS[332]))/ALGEBRAIC[4];
ALGEBRAIC[8] = 1.00000+STATES[1]/CONSTANTS[344]+STATES[2]/CONSTANTS[347]+STATES[3]/CONSTANTS[349];
ALGEBRAIC[10] = ( STATES[10]*(1.00000+STATES[1]/CONSTANTS[344]))/ALGEBRAIC[8];
ALGEBRAIC[53] = 1.00000+ALGEBRAIC[2]/CONSTANTS[153]+ALGEBRAIC[6]/CONSTANTS[154]+ALGEBRAIC[10]/CONSTANTS[155]+STATES[18]/CONSTANTS[156]+STATES[23]/CONSTANTS[157];
ALGEBRAIC[54] = ( CONSTANTS[23]*( STATES[20]*STATES[22] - ( STATES[18]*STATES[15])/ALGEBRAIC[51]))/( CONSTANTS[151]*CONSTANTS[150]*ALGEBRAIC[52]+ CONSTANTS[149]*ALGEBRAIC[52]*STATES[20]+ CONSTANTS[150]*ALGEBRAIC[53]*STATES[22]+ STATES[22]*STATES[20]);
ALGEBRAIC[28] = 1.00000+STATES[1]/CONSTANTS[363]+STATES[2]/CONSTANTS[364];
ALGEBRAIC[55] = ( CONSTANTS[316]*ALGEBRAIC[28])/ALGEBRAIC[24];
ALGEBRAIC[56] = ( CONSTANTS[24]*CONSTANTS[159])/( CONSTANTS[158]*ALGEBRAIC[55]);
ALGEBRAIC[57] = ( CONSTANTS[24]*ALGEBRAIC[56]*(STATES[15] - STATES[24]/ALGEBRAIC[55]))/( CONSTANTS[158]*ALGEBRAIC[56]+ ALGEBRAIC[56]*STATES[15]+( CONSTANTS[24]*STATES[24])/ALGEBRAIC[55]);
ALGEBRAIC[11] = ALGEBRAIC[0];
ALGEBRAIC[14] = ALGEBRAIC[4];
ALGEBRAIC[17] = 1.00000+STATES[1]/CONSTANTS[351]+STATES[2]/CONSTANTS[353]+STATES[3]/CONSTANTS[355];
ALGEBRAIC[30] = 1.00000+STATES[1]/CONSTANTS[365];
ALGEBRAIC[32] = 1.00000+STATES[1]/CONSTANTS[366]+STATES[2]/CONSTANTS[367]+STATES[3]/CONSTANTS[368];
ALGEBRAIC[62] = ( CONSTANTS[319]*ALGEBRAIC[20]*ALGEBRAIC[32]*ALGEBRAIC[11])/( STATES[1]*ALGEBRAIC[14]*ALGEBRAIC[30]*ALGEBRAIC[17]);
ALGEBRAIC[63] = ( CONSTANTS[28]*CONSTANTS[186]*CONSTANTS[181]*CONSTANTS[182])/( ALGEBRAIC[62]*CONSTANTS[177]*CONSTANTS[178]*CONSTANTS[185]);
ALGEBRAIC[64] = ( CONSTANTS[28]*ALGEBRAIC[63]*( STATES[12]*STATES[23]*STATES[13] - ( STATES[18]*STATES[26]*STATES[11])/ALGEBRAIC[62]))/( ALGEBRAIC[63]*CONSTANTS[177]*CONSTANTS[178]*CONSTANTS[185]+ ALGEBRAIC[63]*CONSTANTS[178]*CONSTANTS[185]*STATES[12]+ ALGEBRAIC[63]*CONSTANTS[177]*CONSTANTS[184]*STATES[13]+ ALGEBRAIC[63]*CONSTANTS[185]*STATES[12]*STATES[23]+ ALGEBRAIC[63]*CONSTANTS[184]*STATES[12]*STATES[13]+ ALGEBRAIC[63]*CONSTANTS[183]*STATES[23]*STATES[13]+ ALGEBRAIC[63]*STATES[12]*STATES[23]*STATES[13]+( CONSTANTS[28]*CONSTANTS[182]*CONSTANTS[187]*STATES[18])/ALGEBRAIC[62]+( CONSTANTS[28]*CONSTANTS[181]*CONSTANTS[186]*STATES[11])/ALGEBRAIC[62]+( CONSTANTS[28]*CONSTANTS[188]*STATES[18]*STATES[26])/ALGEBRAIC[62]+( CONSTANTS[28]*CONSTANTS[187]*STATES[18]*STATES[11])/ALGEBRAIC[62]+( CONSTANTS[28]*CONSTANTS[186]*STATES[26]*STATES[11])/ALGEBRAIC[62]+( CONSTANTS[28]*STATES[18]*STATES[26]*STATES[11])/ALGEBRAIC[62]+( CONSTANTS[28]*CONSTANTS[187]*CONSTANTS[182]*STATES[12]*STATES[18])/( CONSTANTS[177]*ALGEBRAIC[62])+( ALGEBRAIC[63]*CONSTANTS[177]*CONSTANTS[184]*STATES[13]*STATES[11])/CONSTANTS[182]+( CONSTANTS[28]*CONSTANTS[187]*CONSTANTS[182]*STATES[12]*STATES[23]*STATES[18])/( CONSTANTS[177]*CONSTANTS[178]*ALGEBRAIC[62])+( ALGEBRAIC[63]*CONSTANTS[183]*STATES[23]*STATES[13]*STATES[11])/CONSTANTS[182]+( CONSTANTS[28]*CONSTANTS[188]*STATES[12]*STATES[18]*STATES[26])/( CONSTANTS[177]*ALGEBRAIC[62])+( ALGEBRAIC[63]*CONSTANTS[177]*CONSTANTS[184]*STATES[13]*STATES[26]*STATES[11])/( CONSTANTS[181]*CONSTANTS[182])+( CONSTANTS[28]*CONSTANTS[182]*CONSTANTS[187]*STATES[12]*STATES[23]*STATES[13]*STATES[18])/( CONSTANTS[177]*CONSTANTS[178]*CONSTANTS[179]*ALGEBRAIC[62])+( CONSTANTS[28]*CONSTANTS[180]*CONSTANTS[188]*STATES[12]*STATES[23]*STATES[13]*STATES[26])/( CONSTANTS[177]*CONSTANTS[178]*CONSTANTS[179]*ALGEBRAIC[62])+( CONSTANTS[28]*CONSTANTS[188]*STATES[12]*STATES[23]*STATES[18]*STATES[26])/( CONSTANTS[177]*CONSTANTS[178]*ALGEBRAIC[62])+( ALGEBRAIC[63]*CONSTANTS[183]*STATES[23]*STATES[13]*STATES[26]*STATES[11])/( CONSTANTS[181]*CONSTANTS[182])+( ALGEBRAIC[63]*CONSTANTS[183]*CONSTANTS[179]*STATES[23]*STATES[18]*STATES[26]*STATES[11])/( CONSTANTS[180]*CONSTANTS[181]*CONSTANTS[182])+( ALGEBRAIC[63]*CONSTANTS[177]*CONSTANTS[184]*STATES[13]*STATES[18]*STATES[26]*STATES[11])/( CONSTANTS[180]*CONSTANTS[181]*CONSTANTS[182])+( CONSTANTS[28]*CONSTANTS[188]*STATES[12]*STATES[23]*STATES[13]*STATES[18]*STATES[26])/( CONSTANTS[177]*CONSTANTS[178]*CONSTANTS[179]*ALGEBRAIC[62])+( ALGEBRAIC[63]*CONSTANTS[183]*STATES[23]*STATES[13]*STATES[18]*STATES[26]*STATES[11])/( CONSTANTS[180]*CONSTANTS[181]*CONSTANTS[182]));
ALGEBRAIC[34] = 1.00000+STATES[1]/CONSTANTS[369];
ALGEBRAIC[36] = 1.00000+STATES[1]/CONSTANTS[370]+STATES[2]/CONSTANTS[371]+STATES[3]/CONSTANTS[372];
ALGEBRAIC[68] = ( CONSTANTS[342]*ALGEBRAIC[36])/ALGEBRAIC[34];
ALGEBRAIC[69] = ( CONSTANTS[30]*CONSTANTS[199])/( ALGEBRAIC[68]*CONSTANTS[198]);
ALGEBRAIC[13] = ( STATES[11]*(1.00000+STATES[1]/CONSTANTS[313]))/ALGEBRAIC[11];
ALGEBRAIC[16] = ( STATES[12]*(1.00000+STATES[1]/CONSTANTS[337]))/ALGEBRAIC[14];
ALGEBRAIC[70] = 1.00000+STATES[15]/CONSTANTS[200]+ALGEBRAIC[2]/CONSTANTS[201]+ALGEBRAIC[6]/CONSTANTS[202]+ALGEBRAIC[13]/CONSTANTS[203]+ALGEBRAIC[16]/CONSTANTS[204];
ALGEBRAIC[71] = ( ALGEBRAIC[69]*CONSTANTS[30]*(STATES[28] - STATES[29]/ALGEBRAIC[68]))/( CONSTANTS[198]*ALGEBRAIC[69]*ALGEBRAIC[70]+ ALGEBRAIC[69]*STATES[28]+( CONSTANTS[30]*STATES[29])/ALGEBRAIC[68]);
ALGEBRAIC[75] = ( CONSTANTS[312]*ALGEBRAIC[14]*ALGEBRAIC[0])/( ALGEBRAIC[11]*ALGEBRAIC[4]);
ALGEBRAIC[76] = ( CONSTANTS[32]*CONSTANTS[223]*CONSTANTS[218])/( ALGEBRAIC[75]*CONSTANTS[216]*CONSTANTS[221]);
ALGEBRAIC[77] = 1.00000+ALGEBRAIC[10]/CONSTANTS[224];
ALGEBRAIC[78] = (CONDVAR[8]>0.00000&&CONDVAR[9]>0.00000 ? ( (( CONSTANTS[32]*ALGEBRAIC[76])/ALGEBRAIC[77])*STATES[11]*STATES[8])/( ALGEBRAIC[76]*CONSTANTS[221]*STATES[11]+ ALGEBRAIC[76]*CONSTANTS[220]*STATES[8]+( CONSTANTS[32]*CONSTANTS[223]*STATES[12])/ALGEBRAIC[75]+( CONSTANTS[32]*CONSTANTS[222]*STATES[0])/ALGEBRAIC[75]+ ALGEBRAIC[76]*STATES[11]*STATES[8]+( CONSTANTS[32]*CONSTANTS[223]*STATES[11]*STATES[12])/( ALGEBRAIC[75]*CONSTANTS[216])+( CONSTANTS[32]*STATES[12]*STATES[0])/ALGEBRAIC[75]+( ALGEBRAIC[76]*CONSTANTS[220]*STATES[8]*STATES[0])/CONSTANTS[219]) : 0.00000);
ALGEBRAIC[79] = (CONDVAR[10]>0.00000&&CONDVAR[11]>0.00000 ? ALGEBRAIC[78] - (( (( CONSTANTS[32]*ALGEBRAIC[76])/ALGEBRAIC[77])*STATES[12]*STATES[0])/ALGEBRAIC[75])/( ALGEBRAIC[76]*CONSTANTS[221]*STATES[11]+ ALGEBRAIC[76]*CONSTANTS[220]*STATES[8]+( CONSTANTS[32]*CONSTANTS[223]*STATES[12])/ALGEBRAIC[75]+( CONSTANTS[32]*CONSTANTS[222]*STATES[0])/ALGEBRAIC[75]+ ALGEBRAIC[76]*STATES[11]*STATES[8]+( CONSTANTS[32]*CONSTANTS[223]*STATES[11]*STATES[12])/( ALGEBRAIC[75]*CONSTANTS[216])+( CONSTANTS[32]*STATES[12]*STATES[0])/ALGEBRAIC[75]+( ALGEBRAIC[76]*CONSTANTS[220]*STATES[8]*STATES[0])/CONSTANTS[219]) : ALGEBRAIC[78]);
ALGEBRAIC[44] = 1.00000+STATES[1]/CONSTANTS[376]+STATES[2]/CONSTANTS[377];
ALGEBRAIC[46] = 1.00000+STATES[1]/CONSTANTS[378]+STATES[2]/CONSTANTS[379];
ALGEBRAIC[80] = ( CONSTANTS[328]*ALGEBRAIC[44]*ALGEBRAIC[22])/( ALGEBRAIC[46]*CONSTANTS[306]);
ALGEBRAIC[81] = ( CONSTANTS[33]*CONSTANTS[233]*CONSTANTS[228])/( ALGEBRAIC[80]*CONSTANTS[226]*CONSTANTS[231]);
ALGEBRAIC[82] = 1.00000+STATES[25]/CONSTANTS[234];
ALGEBRAIC[83] = (CONDVAR[12]>0.00000&&CONDVAR[13]>0.00000 ? ( CONSTANTS[33]*ALGEBRAIC[81]*STATES[30]*STATES[25])/( ALGEBRAIC[81]*CONSTANTS[231]*STATES[30]+ ALGEBRAIC[81]*CONSTANTS[230]*ALGEBRAIC[82]*STATES[25]+( CONSTANTS[33]*CONSTANTS[233]*ALGEBRAIC[82]*STATES[22])/ALGEBRAIC[80]+( CONSTANTS[33]*CONSTANTS[232]*STATES[31])/ALGEBRAIC[80]+ ALGEBRAIC[81]*STATES[30]*STATES[25]+( CONSTANTS[33]*CONSTANTS[233]*STATES[30]*STATES[22])/( ALGEBRAIC[80]*CONSTANTS[226])+( CONSTANTS[33]*STATES[22]*STATES[31])/ALGEBRAIC[80]+( ALGEBRAIC[81]*CONSTANTS[230]*STATES[25]*STATES[31])/CONSTANTS[229]) : 0.00000);
ALGEBRAIC[84] = (CONDVAR[14]>0.00000&&CONDVAR[15]>0.00000 ? ALGEBRAIC[83] - (( CONSTANTS[33]*ALGEBRAIC[81]*STATES[22]*STATES[31])/ALGEBRAIC[80])/( ALGEBRAIC[81]*CONSTANTS[231]*STATES[30]+ ALGEBRAIC[81]*CONSTANTS[230]*ALGEBRAIC[82]*STATES[25]+( CONSTANTS[33]*CONSTANTS[233]*ALGEBRAIC[82]*STATES[22])/ALGEBRAIC[80]+( CONSTANTS[33]*CONSTANTS[232]*STATES[31])/ALGEBRAIC[80]+ ALGEBRAIC[81]*STATES[30]*STATES[25]+( CONSTANTS[33]*CONSTANTS[233]*STATES[30]*STATES[22])/( ALGEBRAIC[80]*CONSTANTS[226])+( CONSTANTS[33]*STATES[22]*STATES[31])/ALGEBRAIC[80]+( ALGEBRAIC[81]*CONSTANTS[230]*STATES[25]*STATES[31])/CONSTANTS[229]) : ALGEBRAIC[83]);
ALGEBRAIC[85] = ( CONSTANTS[37]*( STATES[35]*STATES[29] -  STATES[25]*STATES[34]))/( CONSTANTS[236]*CONSTANTS[239]*(2.00000+STATES[34]/CONSTANTS[238]+STATES[29]/CONSTANTS[239]+STATES[35]/CONSTANTS[236]+STATES[25]/CONSTANTS[237]+( STATES[34]*STATES[25])/( CONSTANTS[238]*CONSTANTS[237])+( STATES[29]*STATES[35])/( CONSTANTS[239]*CONSTANTS[236])));
ALGEBRAIC[86] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[39] - STATES[32]);
ALGEBRAIC[87] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[40] - STATES[16]);
ALGEBRAIC[88] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[41] - STATES[34]);
ALGEBRAIC[89] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[42] - STATES[35]);
ALGEBRAIC[90] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[43] - STATES[38]);
ALGEBRAIC[91] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[44] - STATES[33]);
ALGEBRAIC[92] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[45] - STATES[36]);
ALGEBRAIC[93] =  CONSTANTS[5]*CONSTANTS[246]*(STATES[46] - STATES[47]);
ALGEBRAIC[94] =  CONSTANTS[5]*CONSTANTS[10]*(STATES[48] - STATES[49]);
ALGEBRAIC[95] =  CONSTANTS[5]*CONSTANTS[9]*(STATES[9] - STATES[50]);
ALGEBRAIC[96] =  CONSTANTS[5]*CONSTANTS[9]*(STATES[4] - STATES[51]);
ALGEBRAIC[97] =  CONSTANTS[5]*CONSTANTS[9]*(STATES[52] - STATES[53]);
ALGEBRAIC[98] =  CONSTANTS[5]*CONSTANTS[8]*(STATES[54] - STATES[14]);
ALGEBRAIC[1] = 1.00000+STATES[5]/CONSTANTS[296]+STATES[6]/CONSTANTS[311]+STATES[7]/CONSTANTS[325];
ALGEBRAIC[3] = (( STATES[4]*STATES[6])/CONSTANTS[311])/ALGEBRAIC[1];
ALGEBRAIC[5] = 1.00000+STATES[5]/CONSTANTS[332]+STATES[6]/CONSTANTS[336]+STATES[7]/CONSTANTS[340];
ALGEBRAIC[7] = (( STATES[9]*STATES[6])/CONSTANTS[336])/ALGEBRAIC[5];
ALGEBRAIC[43] = 1.00000+STATES[5]/CONSTANTS[375];
ALGEBRAIC[106] = ( CONSTANTS[324]*ALGEBRAIC[43]*ALGEBRAIC[5])/( STATES[5]*ALGEBRAIC[1]*CONSTANTS[275]);
ALGEBRAIC[107] = ( ALGEBRAIC[106]*CONSTANTS[311]*ALGEBRAIC[1])/( CONSTANTS[336]*ALGEBRAIC[5]);
ALGEBRAIC[108] = ( (CONSTANTS[273]/( CONSTANTS[252]*CONSTANTS[255]))*( ALGEBRAIC[3]*STATES[57] - ( STATES[58]*ALGEBRAIC[7])/ALGEBRAIC[107]))/(1.00000+ALGEBRAIC[3]/CONSTANTS[251]+STATES[57]/CONSTANTS[252]+( ALGEBRAIC[3]*STATES[57])/( CONSTANTS[252]*CONSTANTS[255])+STATES[58]/CONSTANTS[253]+ALGEBRAIC[7]/CONSTANTS[254]+( STATES[58]*ALGEBRAIC[7])/( CONSTANTS[254]*CONSTANTS[257])+( STATES[58]*STATES[57])/( CONSTANTS[259]*CONSTANTS[252]));
ALGEBRAIC[109] = CONSTANTS[18] - STATES[59];
ALGEBRAIC[110] = (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000 ? 0.00000 :  CONSTANTS[260]*( (( CONSTANTS[309]*STATES[9])/ALGEBRAIC[5])*STATES[59]*STATES[5] -  (STATES[4]/ALGEBRAIC[1])*ALGEBRAIC[109]));
ALGEBRAIC[9] = 1.00000+STATES[5]/CONSTANTS[344]+STATES[6]/CONSTANTS[347]+STATES[7]/CONSTANTS[349];
ALGEBRAIC[111] = ( CONSTANTS[381]*ALGEBRAIC[1]*ALGEBRAIC[9])/( ALGEBRAIC[5]*ALGEBRAIC[5]);
ALGEBRAIC[112] = (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000 ? 0.00000 :  CONSTANTS[261]*( ALGEBRAIC[111]*STATES[9]*STATES[9] -  STATES[52]*STATES[4]));
ALGEBRAIC[38] = 1.00000+STATES[1]/CONSTANTS[373];
ALGEBRAIC[40] = 1.00000+STATES[2]/CONSTANTS[374];
ALGEBRAIC[113] = CONSTANTS[14] - STATES[21];
ALGEBRAIC[114] = CONSTANTS[15] - STATES[27];
ALGEBRAIC[121] = - (( STATES[1]*STATES[1])/( CONSTANTS[134]*CONSTANTS[135]*pow(CONSTANTS[282], 2.00000))+( STATES[1]*STATES[0])/( CONSTANTS[296]*CONSTANTS[311]*pow(ALGEBRAIC[0], 2.00000))+( STATES[1]*STATES[8])/( CONSTANTS[332]*CONSTANTS[336]*pow(ALGEBRAIC[4], 2.00000))+( STATES[1]*STATES[10])/( CONSTANTS[344]*CONSTANTS[347]*pow(ALGEBRAIC[8], 2.00000))+( STATES[1]*STATES[11])/( CONSTANTS[296]*CONSTANTS[311]*pow(ALGEBRAIC[11], 2.00000))+( STATES[1]*STATES[12])/( CONSTANTS[332]*CONSTANTS[336]*pow(ALGEBRAIC[14], 2.00000))+( STATES[1]*STATES[13])/( CONSTANTS[351]*CONSTANTS[353]*pow(ALGEBRAIC[17], 2.00000))+( STATES[1]*STATES[21])/( CONSTANTS[110]*CONSTANTS[111]*pow(CONSTANTS[277], 2.00000))+( STATES[1]*ALGEBRAIC[113])/( CONSTANTS[107]*CONSTANTS[108]*pow(CONSTANTS[276], 2.00000))+( STATES[1]*STATES[27])/( CONSTANTS[113]*CONSTANTS[114]*pow(CONSTANTS[304], 2.00000))+( STATES[1]*ALGEBRAIC[114])/( CONSTANTS[116]*CONSTANTS[117]*pow(CONSTANTS[320], 2.00000))+( STATES[1]*STATES[17])/( CONSTANTS[98]*CONSTANTS[374]*pow(ALGEBRAIC[40], 2.00000))+( STATES[1]*STATES[22])/( CONSTANTS[89]*CONSTANTS[359]*pow(ALGEBRAIC[22], 2.00000))+( STATES[1]*STATES[20])/( CONSTANTS[119]*CONSTANTS[120]*pow(CONSTANTS[278], 2.00000))+( STATES[1]*STATES[15])/( CONSTANTS[360]*CONSTANTS[361]*pow(ALGEBRAIC[24], 2.00000))+( STATES[1]*STATES[24])/( CONSTANTS[363]*CONSTANTS[364]*pow(ALGEBRAIC[28], 2.00000))+( STATES[1]*STATES[25])/( CONSTANTS[122]*CONSTANTS[123]*pow(CONSTANTS[306], 2.00000))+( STATES[1]*STATES[23])/( CONSTANTS[365]*CONSTANTS[92]*pow(ALGEBRAIC[30], 2.00000))+( STATES[1]*STATES[18])/( CONSTANTS[357]*CONSTANTS[87]*pow(ALGEBRAIC[20], 2.00000))+( STATES[1]*STATES[26])/( CONSTANTS[366]*CONSTANTS[367]*pow(ALGEBRAIC[32], 2.00000))+( STATES[1]*STATES[28])/( CONSTANTS[369]*CONSTANTS[94]*pow(ALGEBRAIC[34], 2.00000))+( STATES[1]*STATES[29])/( CONSTANTS[370]*CONSTANTS[371]*pow(ALGEBRAIC[36], 2.00000))+( STATES[1]*STATES[31])/( CONSTANTS[376]*CONSTANTS[377]*pow(ALGEBRAIC[44], 2.00000))+( STATES[1]*STATES[30])/( CONSTANTS[378]*CONSTANTS[379]*pow(ALGEBRAIC[46], 2.00000))+( STATES[1]*STATES[3])/( CONSTANTS[140]*CONSTANTS[141]*pow(CONSTANTS[284], 2.00000))+( STATES[1]*STATES[2])/( CONSTANTS[137]*CONSTANTS[138]*pow(CONSTANTS[283], 2.00000))+( STATES[1]*STATES[56])/( CONSTANTS[125]*CONSTANTS[126]*pow(CONSTANTS[279], 2.00000))+( STATES[1]*CONSTANTS[291])/( CONSTANTS[128]*CONSTANTS[129]*pow(CONSTANTS[280], 2.00000))+( STATES[1]*CONSTANTS[310])/( CONSTANTS[131]*CONSTANTS[132]*pow(CONSTANTS[281], 2.00000))+( STATES[1]*STATES[19])/( CONSTANTS[373]*CONSTANTS[96]*pow(ALGEBRAIC[38], 2.00000)));
ALGEBRAIC[122] = - (( STATES[1]*STATES[1])/( CONSTANTS[134]*CONSTANTS[136]*pow(CONSTANTS[282], 2.00000))+( STATES[1]*STATES[0])/( CONSTANTS[296]*CONSTANTS[325]*pow(ALGEBRAIC[0], 2.00000))+( STATES[1]*STATES[8])/( CONSTANTS[332]*CONSTANTS[340]*pow(ALGEBRAIC[4], 2.00000))+( STATES[1]*STATES[10])/( CONSTANTS[344]*CONSTANTS[349]*pow(ALGEBRAIC[8], 2.00000))+( STATES[1]*STATES[11])/( CONSTANTS[296]*CONSTANTS[325]*pow(ALGEBRAIC[11], 2.00000))+( STATES[1]*STATES[12])/( CONSTANTS[332]*CONSTANTS[340]*pow(ALGEBRAIC[14], 2.00000))+( STATES[1]*STATES[13])/( CONSTANTS[351]*CONSTANTS[355]*pow(ALGEBRAIC[17], 2.00000))+( STATES[1]*STATES[21])/( CONSTANTS[110]*CONSTANTS[112]*pow(CONSTANTS[277], 2.00000))+( STATES[1]*ALGEBRAIC[113])/( CONSTANTS[107]*CONSTANTS[109]*pow(CONSTANTS[276], 2.00000))+( STATES[1]*STATES[27])/( CONSTANTS[113]*CONSTANTS[115]*pow(CONSTANTS[304], 2.00000))+( STATES[1]*ALGEBRAIC[114])/( CONSTANTS[116]*CONSTANTS[118]*pow(CONSTANTS[320], 2.00000))+( STATES[1]*STATES[17])/( CONSTANTS[98]*CONSTANTS[99]*pow(ALGEBRAIC[40], 2.00000))+( STATES[1]*STATES[22])/( CONSTANTS[89]*CONSTANTS[90]*pow(ALGEBRAIC[22], 2.00000))+( STATES[1]*STATES[20])/( CONSTANTS[119]*CONSTANTS[121]*pow(CONSTANTS[278], 2.00000))+( STATES[1]*STATES[15])/( CONSTANTS[360]*CONSTANTS[362]*pow(ALGEBRAIC[24], 2.00000))+( STATES[1]*STATES[24])/( CONSTANTS[363]*CONSTANTS[91]*pow(ALGEBRAIC[28], 2.00000))+( STATES[1]*STATES[25])/( CONSTANTS[122]*CONSTANTS[124]*pow(CONSTANTS[306], 2.00000))+( STATES[1]*STATES[23])/( CONSTANTS[365]*CONSTANTS[93]*pow(ALGEBRAIC[30], 2.00000))+( STATES[1]*STATES[18])/( CONSTANTS[357]*CONSTANTS[88]*pow(ALGEBRAIC[20], 2.00000))+( STATES[1]*STATES[26])/( CONSTANTS[366]*CONSTANTS[368]*pow(ALGEBRAIC[32], 2.00000))+( STATES[1]*STATES[28])/( CONSTANTS[369]*CONSTANTS[95]*pow(ALGEBRAIC[34], 2.00000))+( STATES[1]*STATES[29])/( CONSTANTS[370]*CONSTANTS[372]*pow(ALGEBRAIC[36], 2.00000))+( STATES[1]*STATES[31])/( CONSTANTS[376]*CONSTANTS[102]*pow(ALGEBRAIC[44], 2.00000))+( STATES[1]*STATES[30])/( CONSTANTS[378]*CONSTANTS[103]*pow(ALGEBRAIC[46], 2.00000))+( STATES[1]*STATES[3])/( CONSTANTS[140]*CONSTANTS[142]*pow(CONSTANTS[284], 2.00000))+( STATES[1]*STATES[2])/( CONSTANTS[137]*CONSTANTS[139]*pow(CONSTANTS[283], 2.00000))+( STATES[1]*STATES[56])/( CONSTANTS[125]*CONSTANTS[127]*pow(CONSTANTS[279], 2.00000))+( STATES[1]*CONSTANTS[291])/( CONSTANTS[128]*CONSTANTS[130]*pow(CONSTANTS[280], 2.00000))+( STATES[1]*CONSTANTS[310])/( CONSTANTS[131]*CONSTANTS[133]*pow(CONSTANTS[281], 2.00000))+( STATES[1]*STATES[19])/( CONSTANTS[373]*CONSTANTS[97]*pow(ALGEBRAIC[38], 2.00000)));
ALGEBRAIC[124] = - (( STATES[2]*STATES[1])/( CONSTANTS[135]*CONSTANTS[134]*pow(CONSTANTS[282], 2.00000))+( STATES[2]*STATES[0])/( CONSTANTS[311]*CONSTANTS[296]*pow(ALGEBRAIC[0], 2.00000))+( STATES[2]*STATES[8])/( CONSTANTS[336]*CONSTANTS[332]*pow(ALGEBRAIC[4], 2.00000))+( STATES[2]*STATES[10])/( CONSTANTS[347]*CONSTANTS[344]*pow(ALGEBRAIC[8], 2.00000))+( STATES[2]*STATES[11])/( CONSTANTS[311]*CONSTANTS[296]*pow(ALGEBRAIC[11], 2.00000))+( STATES[2]*STATES[12])/( CONSTANTS[336]*CONSTANTS[332]*pow(ALGEBRAIC[14], 2.00000))+( STATES[2]*STATES[13])/( CONSTANTS[353]*CONSTANTS[351]*pow(ALGEBRAIC[17], 2.00000))+( STATES[2]*STATES[21])/( CONSTANTS[111]*CONSTANTS[110]*pow(CONSTANTS[277], 2.00000))+( STATES[2]*ALGEBRAIC[113])/( CONSTANTS[108]*CONSTANTS[107]*pow(CONSTANTS[276], 2.00000))+( STATES[2]*STATES[27])/( CONSTANTS[114]*CONSTANTS[113]*pow(CONSTANTS[304], 2.00000))+( STATES[2]*ALGEBRAIC[114])/( CONSTANTS[117]*CONSTANTS[116]*pow(CONSTANTS[320], 2.00000))+( STATES[2]*STATES[17])/( CONSTANTS[374]*CONSTANTS[98]*pow(ALGEBRAIC[40], 2.00000))+( STATES[2]*STATES[22])/( CONSTANTS[359]*CONSTANTS[89]*pow(ALGEBRAIC[22], 2.00000))+( STATES[2]*STATES[20])/( CONSTANTS[120]*CONSTANTS[119]*pow(CONSTANTS[278], 2.00000))+( STATES[2]*STATES[15])/( CONSTANTS[361]*CONSTANTS[360]*pow(ALGEBRAIC[24], 2.00000))+( STATES[2]*STATES[24])/( CONSTANTS[364]*CONSTANTS[363]*pow(ALGEBRAIC[28], 2.00000))+( STATES[2]*STATES[25])/( CONSTANTS[123]*CONSTANTS[122]*pow(CONSTANTS[306], 2.00000))+( STATES[2]*STATES[23])/( CONSTANTS[92]*CONSTANTS[365]*pow(ALGEBRAIC[30], 2.00000))+( STATES[2]*STATES[18])/( CONSTANTS[87]*CONSTANTS[357]*pow(ALGEBRAIC[20], 2.00000))+( STATES[2]*STATES[26])/( CONSTANTS[367]*CONSTANTS[366]*pow(ALGEBRAIC[32], 2.00000))+( STATES[2]*STATES[28])/( CONSTANTS[94]*CONSTANTS[369]*pow(ALGEBRAIC[34], 2.00000))+( STATES[2]*STATES[29])/( CONSTANTS[371]*CONSTANTS[370]*pow(ALGEBRAIC[36], 2.00000))+( STATES[2]*STATES[31])/( CONSTANTS[377]*CONSTANTS[376]*pow(ALGEBRAIC[44], 2.00000))+( STATES[2]*STATES[30])/( CONSTANTS[379]*CONSTANTS[378]*pow(ALGEBRAIC[46], 2.00000))+( STATES[2]*STATES[3])/( CONSTANTS[141]*CONSTANTS[140]*pow(CONSTANTS[284], 2.00000))+( STATES[2]*STATES[2])/( CONSTANTS[138]*CONSTANTS[137]*pow(CONSTANTS[283], 2.00000))+( STATES[2]*STATES[56])/( CONSTANTS[126]*CONSTANTS[125]*pow(CONSTANTS[279], 2.00000))+( STATES[2]*CONSTANTS[291])/( CONSTANTS[129]*CONSTANTS[128]*pow(CONSTANTS[280], 2.00000))+( STATES[2]*CONSTANTS[310])/( CONSTANTS[132]*CONSTANTS[131]*pow(CONSTANTS[281], 2.00000))+( STATES[2]*STATES[19])/( CONSTANTS[96]*CONSTANTS[373]*pow(ALGEBRAIC[38], 2.00000)));
ALGEBRAIC[125] = - (( STATES[2]*STATES[1])/( CONSTANTS[135]*CONSTANTS[136]*pow(CONSTANTS[282], 2.00000))+( STATES[2]*STATES[0])/( CONSTANTS[311]*CONSTANTS[325]*pow(ALGEBRAIC[0], 2.00000))+( STATES[2]*STATES[8])/( CONSTANTS[336]*CONSTANTS[340]*pow(ALGEBRAIC[4], 2.00000))+( STATES[2]*STATES[10])/( CONSTANTS[347]*CONSTANTS[349]*pow(ALGEBRAIC[8], 2.00000))+( STATES[2]*STATES[11])/( CONSTANTS[311]*CONSTANTS[325]*pow(ALGEBRAIC[11], 2.00000))+( STATES[2]*STATES[12])/( CONSTANTS[336]*CONSTANTS[340]*pow(ALGEBRAIC[14], 2.00000))+( STATES[2]*STATES[13])/( CONSTANTS[353]*CONSTANTS[355]*pow(ALGEBRAIC[17], 2.00000))+( STATES[2]*STATES[21])/( CONSTANTS[111]*CONSTANTS[112]*pow(CONSTANTS[277], 2.00000))+( STATES[2]*ALGEBRAIC[113])/( CONSTANTS[108]*CONSTANTS[109]*pow(CONSTANTS[276], 2.00000))+( STATES[2]*STATES[27])/( CONSTANTS[114]*CONSTANTS[115]*pow(CONSTANTS[304], 2.00000))+( STATES[2]*ALGEBRAIC[114])/( CONSTANTS[117]*CONSTANTS[118]*pow(CONSTANTS[320], 2.00000))+( STATES[2]*STATES[17])/( CONSTANTS[374]*CONSTANTS[99]*pow(ALGEBRAIC[40], 2.00000))+( STATES[2]*STATES[22])/( CONSTANTS[359]*CONSTANTS[90]*pow(ALGEBRAIC[22], 2.00000))+( STATES[2]*STATES[20])/( CONSTANTS[120]*CONSTANTS[121]*pow(CONSTANTS[278], 2.00000))+( STATES[2]*STATES[15])/( CONSTANTS[361]*CONSTANTS[362]*pow(ALGEBRAIC[24], 2.00000))+( STATES[2]*STATES[24])/( CONSTANTS[364]*CONSTANTS[91]*pow(ALGEBRAIC[28], 2.00000))+( STATES[2]*STATES[25])/( CONSTANTS[123]*CONSTANTS[124]*pow(CONSTANTS[306], 2.00000))+( STATES[2]*STATES[23])/( CONSTANTS[92]*CONSTANTS[93]*pow(ALGEBRAIC[30], 2.00000))+( STATES[2]*STATES[18])/( CONSTANTS[87]*CONSTANTS[88]*pow(ALGEBRAIC[20], 2.00000))+( STATES[2]*STATES[26])/( CONSTANTS[367]*CONSTANTS[368]*pow(ALGEBRAIC[32], 2.00000))+( STATES[2]*STATES[28])/( CONSTANTS[94]*CONSTANTS[95]*pow(ALGEBRAIC[34], 2.00000))+( STATES[2]*STATES[29])/( CONSTANTS[371]*CONSTANTS[372]*pow(ALGEBRAIC[36], 2.00000))+( STATES[2]*STATES[31])/( CONSTANTS[377]*CONSTANTS[102]*pow(ALGEBRAIC[44], 2.00000))+( STATES[2]*STATES[30])/( CONSTANTS[379]*CONSTANTS[103]*pow(ALGEBRAIC[46], 2.00000))+( STATES[2]*STATES[3])/( CONSTANTS[141]*CONSTANTS[142]*pow(CONSTANTS[284], 2.00000))+( STATES[2]*STATES[2])/( CONSTANTS[138]*CONSTANTS[139]*pow(CONSTANTS[283], 2.00000))+( STATES[2]*STATES[56])/( CONSTANTS[126]*CONSTANTS[127]*pow(CONSTANTS[279], 2.00000))+( STATES[2]*CONSTANTS[291])/( CONSTANTS[129]*CONSTANTS[130]*pow(CONSTANTS[280], 2.00000))+( STATES[2]*CONSTANTS[310])/( CONSTANTS[132]*CONSTANTS[133]*pow(CONSTANTS[281], 2.00000))+( STATES[2]*STATES[19])/( CONSTANTS[96]*CONSTANTS[97]*pow(ALGEBRAIC[38], 2.00000)));
ALGEBRAIC[127] = - (( STATES[3]*STATES[1])/( CONSTANTS[136]*CONSTANTS[134]*pow(CONSTANTS[282], 2.00000))+( STATES[3]*STATES[0])/( CONSTANTS[325]*CONSTANTS[296]*pow(ALGEBRAIC[0], 2.00000))+( STATES[3]*STATES[8])/( CONSTANTS[340]*CONSTANTS[332]*pow(ALGEBRAIC[4], 2.00000))+( STATES[3]*STATES[10])/( CONSTANTS[349]*CONSTANTS[344]*pow(ALGEBRAIC[8], 2.00000))+( STATES[3]*STATES[11])/( CONSTANTS[325]*CONSTANTS[296]*pow(ALGEBRAIC[11], 2.00000))+( STATES[3]*STATES[12])/( CONSTANTS[340]*CONSTANTS[332]*pow(ALGEBRAIC[14], 2.00000))+( STATES[3]*STATES[13])/( CONSTANTS[355]*CONSTANTS[351]*pow(ALGEBRAIC[17], 2.00000))+( STATES[3]*STATES[21])/( CONSTANTS[112]*CONSTANTS[110]*pow(CONSTANTS[277], 2.00000))+( STATES[3]*ALGEBRAIC[113])/( CONSTANTS[109]*CONSTANTS[107]*pow(CONSTANTS[276], 2.00000))+( STATES[3]*STATES[27])/( CONSTANTS[115]*CONSTANTS[113]*pow(CONSTANTS[304], 2.00000))+( STATES[3]*ALGEBRAIC[114])/( CONSTANTS[118]*CONSTANTS[116]*pow(CONSTANTS[320], 2.00000))+( STATES[3]*STATES[17])/( CONSTANTS[99]*CONSTANTS[98]*pow(ALGEBRAIC[40], 2.00000))+( STATES[3]*STATES[22])/( CONSTANTS[90]*CONSTANTS[89]*pow(ALGEBRAIC[22], 2.00000))+( STATES[3]*STATES[20])/( CONSTANTS[121]*CONSTANTS[119]*pow(CONSTANTS[278], 2.00000))+( STATES[3]*STATES[15])/( CONSTANTS[362]*CONSTANTS[360]*pow(ALGEBRAIC[24], 2.00000))+( STATES[3]*STATES[24])/( CONSTANTS[91]*CONSTANTS[363]*pow(ALGEBRAIC[28], 2.00000))+( STATES[3]*STATES[25])/( CONSTANTS[124]*CONSTANTS[122]*pow(CONSTANTS[306], 2.00000))+( STATES[3]*STATES[23])/( CONSTANTS[93]*CONSTANTS[365]*pow(ALGEBRAIC[30], 2.00000))+( STATES[3]*STATES[18])/( CONSTANTS[88]*CONSTANTS[357]*pow(ALGEBRAIC[20], 2.00000))+( STATES[3]*STATES[26])/( CONSTANTS[368]*CONSTANTS[366]*pow(ALGEBRAIC[32], 2.00000))+( STATES[3]*STATES[28])/( CONSTANTS[95]*CONSTANTS[369]*pow(ALGEBRAIC[34], 2.00000))+( STATES[3]*STATES[29])/( CONSTANTS[372]*CONSTANTS[370]*pow(ALGEBRAIC[36], 2.00000))+( STATES[3]*STATES[31])/( CONSTANTS[102]*CONSTANTS[376]*pow(ALGEBRAIC[44], 2.00000))+( STATES[3]*STATES[30])/( CONSTANTS[103]*CONSTANTS[378]*pow(ALGEBRAIC[46], 2.00000))+( STATES[3]*STATES[3])/( CONSTANTS[142]*CONSTANTS[140]*pow(CONSTANTS[284], 2.00000))+( STATES[3]*STATES[2])/( CONSTANTS[139]*CONSTANTS[137]*pow(CONSTANTS[283], 2.00000))+( STATES[3]*STATES[56])/( CONSTANTS[127]*CONSTANTS[125]*pow(CONSTANTS[279], 2.00000))+( STATES[3]*CONSTANTS[291])/( CONSTANTS[130]*CONSTANTS[128]*pow(CONSTANTS[280], 2.00000))+( STATES[3]*CONSTANTS[310])/( CONSTANTS[133]*CONSTANTS[131]*pow(CONSTANTS[281], 2.00000))+( STATES[3]*STATES[19])/( CONSTANTS[97]*CONSTANTS[373]*pow(ALGEBRAIC[38], 2.00000)));
ALGEBRAIC[128] = - (( STATES[3]*STATES[1])/( CONSTANTS[136]*CONSTANTS[135]*pow(CONSTANTS[282], 2.00000))+( STATES[3]*STATES[0])/( CONSTANTS[325]*CONSTANTS[311]*pow(ALGEBRAIC[0], 2.00000))+( STATES[3]*STATES[8])/( CONSTANTS[340]*CONSTANTS[336]*pow(ALGEBRAIC[4], 2.00000))+( STATES[3]*STATES[10])/( CONSTANTS[349]*CONSTANTS[347]*pow(ALGEBRAIC[8], 2.00000))+( STATES[3]*STATES[11])/( CONSTANTS[325]*CONSTANTS[311]*pow(ALGEBRAIC[11], 2.00000))+( STATES[3]*STATES[12])/( CONSTANTS[340]*CONSTANTS[336]*pow(ALGEBRAIC[14], 2.00000))+( STATES[3]*STATES[13])/( CONSTANTS[355]*CONSTANTS[353]*pow(ALGEBRAIC[17], 2.00000))+( STATES[3]*STATES[21])/( CONSTANTS[112]*CONSTANTS[111]*pow(CONSTANTS[277], 2.00000))+( STATES[3]*ALGEBRAIC[113])/( CONSTANTS[109]*CONSTANTS[108]*pow(CONSTANTS[276], 2.00000))+( STATES[3]*STATES[27])/( CONSTANTS[115]*CONSTANTS[114]*pow(CONSTANTS[304], 2.00000))+( STATES[3]*ALGEBRAIC[114])/( CONSTANTS[118]*CONSTANTS[117]*pow(CONSTANTS[320], 2.00000))+( STATES[3]*STATES[17])/( CONSTANTS[99]*CONSTANTS[374]*pow(ALGEBRAIC[40], 2.00000))+( STATES[3]*STATES[22])/( CONSTANTS[90]*CONSTANTS[359]*pow(ALGEBRAIC[22], 2.00000))+( STATES[3]*STATES[20])/( CONSTANTS[121]*CONSTANTS[120]*pow(CONSTANTS[278], 2.00000))+( STATES[3]*STATES[15])/( CONSTANTS[362]*CONSTANTS[361]*pow(ALGEBRAIC[24], 2.00000))+( STATES[3]*STATES[24])/( CONSTANTS[91]*CONSTANTS[364]*pow(ALGEBRAIC[28], 2.00000))+( STATES[3]*STATES[25])/( CONSTANTS[124]*CONSTANTS[123]*pow(CONSTANTS[306], 2.00000))+( STATES[3]*STATES[23])/( CONSTANTS[93]*CONSTANTS[92]*pow(ALGEBRAIC[30], 2.00000))+( STATES[3]*STATES[18])/( CONSTANTS[88]*CONSTANTS[87]*pow(ALGEBRAIC[20], 2.00000))+( STATES[3]*STATES[26])/( CONSTANTS[368]*CONSTANTS[367]*pow(ALGEBRAIC[32], 2.00000))+( STATES[3]*STATES[28])/( CONSTANTS[95]*CONSTANTS[94]*pow(ALGEBRAIC[34], 2.00000))+( STATES[3]*STATES[29])/( CONSTANTS[372]*CONSTANTS[371]*pow(ALGEBRAIC[36], 2.00000))+( STATES[3]*STATES[31])/( CONSTANTS[102]*CONSTANTS[377]*pow(ALGEBRAIC[44], 2.00000))+( STATES[3]*STATES[30])/( CONSTANTS[103]*CONSTANTS[379]*pow(ALGEBRAIC[46], 2.00000))+( STATES[3]*STATES[3])/( CONSTANTS[142]*CONSTANTS[141]*pow(CONSTANTS[284], 2.00000))+( STATES[3]*STATES[2])/( CONSTANTS[139]*CONSTANTS[138]*pow(CONSTANTS[283], 2.00000))+( STATES[3]*STATES[56])/( CONSTANTS[127]*CONSTANTS[126]*pow(CONSTANTS[279], 2.00000))+( STATES[3]*CONSTANTS[291])/( CONSTANTS[130]*CONSTANTS[129]*pow(CONSTANTS[280], 2.00000))+( STATES[3]*CONSTANTS[310])/( CONSTANTS[133]*CONSTANTS[132]*pow(CONSTANTS[281], 2.00000))+( STATES[3]*STATES[19])/( CONSTANTS[97]*CONSTANTS[96]*pow(ALGEBRAIC[38], 2.00000)));
ALGEBRAIC[123] = ( (1.00000+STATES[2]/CONSTANTS[135]+STATES[3]/CONSTANTS[136])*STATES[1])/( CONSTANTS[134]*pow(CONSTANTS[282], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[311]+STATES[3]/CONSTANTS[325])*STATES[0])/( CONSTANTS[296]*pow(ALGEBRAIC[0], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[336]+STATES[3]/CONSTANTS[340])*STATES[8])/( CONSTANTS[332]*pow(ALGEBRAIC[4], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[347]+STATES[3]/CONSTANTS[349])*STATES[10])/( CONSTANTS[344]*pow(ALGEBRAIC[8], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[311]+STATES[3]/CONSTANTS[325])*STATES[11])/( CONSTANTS[296]*pow(ALGEBRAIC[11], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[336]+STATES[3]/CONSTANTS[340])*STATES[12])/( CONSTANTS[332]*pow(ALGEBRAIC[14], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[353]+STATES[3]/CONSTANTS[355])*STATES[13])/( CONSTANTS[351]*pow(ALGEBRAIC[17], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[111]+STATES[3]/CONSTANTS[112])*STATES[21])/( CONSTANTS[110]*pow(CONSTANTS[277], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[108]+STATES[3]/CONSTANTS[109])*ALGEBRAIC[113])/( CONSTANTS[107]*pow(CONSTANTS[276], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[114]+STATES[3]/CONSTANTS[115])*STATES[27])/( CONSTANTS[113]*pow(CONSTANTS[304], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[117]+STATES[3]/CONSTANTS[118])*ALGEBRAIC[114])/( CONSTANTS[116]*pow(CONSTANTS[320], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[374]+STATES[3]/CONSTANTS[99])*STATES[17])/( CONSTANTS[98]*pow(ALGEBRAIC[40], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[359]+STATES[3]/CONSTANTS[90])*STATES[22])/( CONSTANTS[89]*pow(ALGEBRAIC[22], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[120]+STATES[3]/CONSTANTS[121])*STATES[20])/( CONSTANTS[119]*pow(CONSTANTS[278], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[361]+STATES[3]/CONSTANTS[362])*STATES[15])/( CONSTANTS[360]*pow(ALGEBRAIC[24], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[364]+STATES[3]/CONSTANTS[91])*STATES[24])/( CONSTANTS[363]*pow(ALGEBRAIC[28], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[123]+STATES[3]/CONSTANTS[124])*STATES[25])/( CONSTANTS[122]*pow(CONSTANTS[306], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[92]+STATES[3]/CONSTANTS[93])*STATES[23])/( CONSTANTS[365]*pow(ALGEBRAIC[30], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[87]+STATES[3]/CONSTANTS[88])*STATES[18])/( CONSTANTS[357]*pow(ALGEBRAIC[20], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[367]+STATES[3]/CONSTANTS[368])*STATES[26])/( CONSTANTS[366]*pow(ALGEBRAIC[32], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[94]+STATES[3]/CONSTANTS[95])*STATES[28])/( CONSTANTS[369]*pow(ALGEBRAIC[34], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[371]+STATES[3]/CONSTANTS[372])*STATES[29])/( CONSTANTS[370]*pow(ALGEBRAIC[36], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[377]+STATES[3]/CONSTANTS[102])*STATES[31])/( CONSTANTS[376]*pow(ALGEBRAIC[44], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[379]+STATES[3]/CONSTANTS[103])*STATES[30])/( CONSTANTS[378]*pow(ALGEBRAIC[46], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[141]+STATES[3]/CONSTANTS[142])*STATES[3])/( CONSTANTS[140]*pow(CONSTANTS[284], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[138]+STATES[3]/CONSTANTS[139])*STATES[2])/( CONSTANTS[137]*pow(CONSTANTS[283], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[126]+STATES[3]/CONSTANTS[127])*STATES[56])/( CONSTANTS[125]*pow(CONSTANTS[279], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[129]+STATES[3]/CONSTANTS[130])*CONSTANTS[291])/( CONSTANTS[128]*pow(CONSTANTS[280], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[132]+STATES[3]/CONSTANTS[133])*CONSTANTS[310])/( CONSTANTS[131]*pow(CONSTANTS[281], 2.00000))+( (1.00000+STATES[2]/CONSTANTS[96]+STATES[3]/CONSTANTS[97])*STATES[19])/( CONSTANTS[373]*pow(ALGEBRAIC[38], 2.00000));
ALGEBRAIC[130] = 1.00000+ALGEBRAIC[123]+CONSTANTS[271]/( CONSTANTS[272]*pow(1.00000+STATES[1]/CONSTANTS[272], 2.00000));
ALGEBRAIC[126] = ( (1.00000+STATES[1]/CONSTANTS[134]+STATES[3]/CONSTANTS[136])*STATES[1])/( CONSTANTS[135]*pow(CONSTANTS[282], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[296]+STATES[3]/CONSTANTS[325])*STATES[0])/( CONSTANTS[311]*pow(ALGEBRAIC[0], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[332]+STATES[3]/CONSTANTS[340])*STATES[8])/( CONSTANTS[336]*pow(ALGEBRAIC[4], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[344]+STATES[3]/CONSTANTS[349])*STATES[10])/( CONSTANTS[347]*pow(ALGEBRAIC[8], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[296]+STATES[3]/CONSTANTS[325])*STATES[11])/( CONSTANTS[311]*pow(ALGEBRAIC[11], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[332]+STATES[3]/CONSTANTS[340])*STATES[12])/( CONSTANTS[336]*pow(ALGEBRAIC[14], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[351]+STATES[3]/CONSTANTS[355])*STATES[13])/( CONSTANTS[353]*pow(ALGEBRAIC[17], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[110]+STATES[3]/CONSTANTS[112])*STATES[21])/( CONSTANTS[111]*pow(CONSTANTS[277], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[107]+STATES[3]/CONSTANTS[109])*ALGEBRAIC[113])/( CONSTANTS[108]*pow(CONSTANTS[276], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[113]+STATES[3]/CONSTANTS[115])*STATES[27])/( CONSTANTS[114]*pow(CONSTANTS[304], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[116]+STATES[3]/CONSTANTS[118])*ALGEBRAIC[114])/( CONSTANTS[117]*pow(CONSTANTS[320], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[98]+STATES[3]/CONSTANTS[99])*STATES[17])/( CONSTANTS[374]*pow(ALGEBRAIC[40], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[89]+STATES[3]/CONSTANTS[90])*STATES[22])/( CONSTANTS[359]*pow(ALGEBRAIC[22], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[119]+STATES[3]/CONSTANTS[121])*STATES[20])/( CONSTANTS[120]*pow(CONSTANTS[278], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[360]+STATES[3]/CONSTANTS[362])*STATES[15])/( CONSTANTS[361]*pow(ALGEBRAIC[24], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[363]+STATES[3]/CONSTANTS[91])*STATES[24])/( CONSTANTS[364]*pow(ALGEBRAIC[28], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[122]+STATES[3]/CONSTANTS[124])*STATES[25])/( CONSTANTS[123]*pow(CONSTANTS[306], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[365]+STATES[3]/CONSTANTS[93])*STATES[23])/( CONSTANTS[92]*pow(ALGEBRAIC[30], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[357]+STATES[3]/CONSTANTS[88])*STATES[18])/( CONSTANTS[87]*pow(ALGEBRAIC[20], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[366]+STATES[3]/CONSTANTS[368])*STATES[26])/( CONSTANTS[367]*pow(ALGEBRAIC[32], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[369]+STATES[3]/CONSTANTS[95])*STATES[28])/( CONSTANTS[94]*pow(ALGEBRAIC[34], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[370]+STATES[3]/CONSTANTS[372])*STATES[29])/( CONSTANTS[371]*pow(ALGEBRAIC[36], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[376]+STATES[3]/CONSTANTS[102])*STATES[31])/( CONSTANTS[377]*pow(ALGEBRAIC[44], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[378]+STATES[3]/CONSTANTS[103])*STATES[30])/( CONSTANTS[379]*pow(ALGEBRAIC[46], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[140]+STATES[3]/CONSTANTS[142])*STATES[3])/( CONSTANTS[141]*pow(CONSTANTS[284], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[137]+STATES[3]/CONSTANTS[139])*STATES[2])/( CONSTANTS[138]*pow(CONSTANTS[283], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[125]+STATES[3]/CONSTANTS[127])*STATES[56])/( CONSTANTS[126]*pow(CONSTANTS[279], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[128]+STATES[3]/CONSTANTS[130])*CONSTANTS[291])/( CONSTANTS[129]*pow(CONSTANTS[280], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[131]+STATES[3]/CONSTANTS[133])*CONSTANTS[310])/( CONSTANTS[132]*pow(CONSTANTS[281], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[373]+STATES[3]/CONSTANTS[97])*STATES[19])/( CONSTANTS[96]*pow(ALGEBRAIC[38], 2.00000));
ALGEBRAIC[131] = 1.00000+ALGEBRAIC[126];
ALGEBRAIC[129] = ( (1.00000+STATES[1]/CONSTANTS[134]+STATES[2]/CONSTANTS[135])*STATES[1])/( CONSTANTS[136]*pow(CONSTANTS[282], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[296]+STATES[2]/CONSTANTS[311])*STATES[0])/( CONSTANTS[325]*pow(ALGEBRAIC[0], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[332]+STATES[2]/CONSTANTS[336])*STATES[8])/( CONSTANTS[340]*pow(ALGEBRAIC[4], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[344]+STATES[2]/CONSTANTS[347])*STATES[10])/( CONSTANTS[349]*pow(ALGEBRAIC[8], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[296]+STATES[2]/CONSTANTS[311])*STATES[11])/( CONSTANTS[325]*pow(ALGEBRAIC[11], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[332]+STATES[2]/CONSTANTS[336])*STATES[12])/( CONSTANTS[340]*pow(ALGEBRAIC[14], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[351]+STATES[2]/CONSTANTS[353])*STATES[13])/( CONSTANTS[355]*pow(ALGEBRAIC[17], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[110]+STATES[2]/CONSTANTS[111])*STATES[21])/( CONSTANTS[112]*pow(CONSTANTS[277], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[107]+STATES[2]/CONSTANTS[108])*ALGEBRAIC[113])/( CONSTANTS[109]*pow(CONSTANTS[276], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[113]+STATES[2]/CONSTANTS[114])*STATES[27])/( CONSTANTS[115]*pow(CONSTANTS[304], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[116]+STATES[2]/CONSTANTS[117])*ALGEBRAIC[114])/( CONSTANTS[118]*pow(CONSTANTS[320], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[98]+STATES[2]/CONSTANTS[374])*STATES[17])/( CONSTANTS[99]*pow(ALGEBRAIC[40], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[89]+STATES[2]/CONSTANTS[359])*STATES[22])/( CONSTANTS[90]*pow(ALGEBRAIC[22], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[119]+STATES[2]/CONSTANTS[120])*STATES[20])/( CONSTANTS[121]*pow(CONSTANTS[278], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[360]+STATES[2]/CONSTANTS[361])*STATES[15])/( CONSTANTS[362]*pow(ALGEBRAIC[24], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[363]+STATES[2]/CONSTANTS[364])*STATES[24])/( CONSTANTS[91]*pow(ALGEBRAIC[28], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[122]+STATES[2]/CONSTANTS[123])*STATES[25])/( CONSTANTS[124]*pow(CONSTANTS[306], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[365]+STATES[2]/CONSTANTS[92])*STATES[23])/( CONSTANTS[93]*pow(ALGEBRAIC[30], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[357]+STATES[2]/CONSTANTS[87])*STATES[18])/( CONSTANTS[88]*pow(ALGEBRAIC[20], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[366]+STATES[2]/CONSTANTS[367])*STATES[26])/( CONSTANTS[368]*pow(ALGEBRAIC[32], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[369]+STATES[2]/CONSTANTS[94])*STATES[28])/( CONSTANTS[95]*pow(ALGEBRAIC[34], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[370]+STATES[2]/CONSTANTS[371])*STATES[29])/( CONSTANTS[372]*pow(ALGEBRAIC[36], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[376]+STATES[2]/CONSTANTS[377])*STATES[31])/( CONSTANTS[102]*pow(ALGEBRAIC[44], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[378]+STATES[2]/CONSTANTS[379])*STATES[30])/( CONSTANTS[103]*pow(ALGEBRAIC[46], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[140]+STATES[2]/CONSTANTS[141])*STATES[3])/( CONSTANTS[142]*pow(CONSTANTS[284], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[137]+STATES[2]/CONSTANTS[138])*STATES[2])/( CONSTANTS[139]*pow(CONSTANTS[283], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[125]+STATES[2]/CONSTANTS[126])*STATES[56])/( CONSTANTS[127]*pow(CONSTANTS[279], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[128]+STATES[2]/CONSTANTS[129])*CONSTANTS[291])/( CONSTANTS[130]*pow(CONSTANTS[280], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[131]+STATES[2]/CONSTANTS[132])*CONSTANTS[310])/( CONSTANTS[133]*pow(CONSTANTS[281], 2.00000))+( (1.00000+STATES[1]/CONSTANTS[373]+STATES[2]/CONSTANTS[96])*STATES[19])/( CONSTANTS[97]*pow(ALGEBRAIC[38], 2.00000));
ALGEBRAIC[132] = 1.00000+ALGEBRAIC[129];
ALGEBRAIC[133] = ((( ALGEBRAIC[130]*ALGEBRAIC[128]*ALGEBRAIC[125]+ ALGEBRAIC[132]*ALGEBRAIC[121]*ALGEBRAIC[124]+ ALGEBRAIC[131]*ALGEBRAIC[122]*ALGEBRAIC[127]) -  ALGEBRAIC[131]*ALGEBRAIC[132]*ALGEBRAIC[130]) -  ALGEBRAIC[122]*ALGEBRAIC[128]*ALGEBRAIC[124]) -  ALGEBRAIC[121]*ALGEBRAIC[125]*ALGEBRAIC[127];
ALGEBRAIC[48] = ( CONSTANTS[314]*ALGEBRAIC[38]*CONSTANTS[278]*CONSTANTS[277])/( STATES[1]*ALGEBRAIC[40]*ALGEBRAIC[20]*CONSTANTS[276]);
ALGEBRAIC[49] = 1.00000+STATES[20]/CONSTANTS[146];
ALGEBRAIC[50] = 1.00000+STATES[21]/CONSTANTS[147];
ALGEBRAIC[156] = (CONDVAR[0]>0.00000&&CONDVAR[1]>0.00000&&CONDVAR[2]>0.00000 ? ( CONSTANTS[22]*( STATES[17]*STATES[18]*ALGEBRAIC[113] - ( STATES[19]*STATES[20]*STATES[21])/ALGEBRAIC[48]))/( CONSTANTS[145]*ALGEBRAIC[50]*STATES[17]*STATES[18]+ CONSTANTS[144]*ALGEBRAIC[49]*STATES[17]*ALGEBRAIC[113]+ CONSTANTS[143]*STATES[18]*ALGEBRAIC[113]+ STATES[17]*STATES[18]*ALGEBRAIC[113]) : 0.00000);
ALGEBRAIC[58] = ( CONSTANTS[317]*ALGEBRAIC[38]*CONSTANTS[306]*CONSTANTS[277])/( pow(STATES[1], 2.00000)*CONSTANTS[276]*ALGEBRAIC[28]);
ALGEBRAIC[59] = 1.00000+ (CONSTANTS[166]/ALGEBRAIC[6])*(1.00000+ALGEBRAIC[2]/CONSTANTS[165]);
ALGEBRAIC[157] = (CONDVAR[3]>0.00000&&CONDVAR[4]>0.00000 ? ( CONSTANTS[25]*(1.00000 - ( STATES[19]*STATES[25]*STATES[21])/( ALGEBRAIC[58]*ALGEBRAIC[113]*STATES[24])))/(1.00000+ pow(CONSTANTS[161]/STATES[24], CONSTANTS[164])*ALGEBRAIC[59]+ (CONSTANTS[160]/ALGEBRAIC[113])*(1.00000+ pow(CONSTANTS[162]/STATES[24], CONSTANTS[164])*ALGEBRAIC[59]+( STATES[21]*ALGEBRAIC[59])/CONSTANTS[163])) : 0.00000);
ALGEBRAIC[60] = ( CONSTANTS[318]*ALGEBRAIC[38]*ALGEBRAIC[30]*CONSTANTS[277])/( STATES[1]*ALGEBRAIC[20]*CONSTANTS[306]*CONSTANTS[276]);
ALGEBRAIC[61] = 1.00000+ (CONSTANTS[175]/ALGEBRAIC[6])*(1.00000+ALGEBRAIC[2]/CONSTANTS[174]);
ALGEBRAIC[158] = (CONDVAR[5]>0.00000&&CONDVAR[6]>0.00000&&CONDVAR[7]>0.00000 ? (( CONSTANTS[26]*(1.00000 - ( STATES[19]*STATES[23]*STATES[21])/( ALGEBRAIC[60]*STATES[25]*STATES[18]*ALGEBRAIC[113])))/(1.00000+ (CONSTANTS[168]/STATES[25])*ALGEBRAIC[61]+ (CONSTANTS[169]/STATES[18])*(1.00000+STATES[23]/CONSTANTS[171])+ (CONSTANTS[170]/ALGEBRAIC[113])*(1.00000+STATES[21]/CONSTANTS[172])))/(1.00000+STATES[21]/CONSTANTS[173]) : 0.00000);
ALGEBRAIC[65] = ( CONSTANTS[334]*ALGEBRAIC[34]*CONSTANTS[304])/( ALGEBRAIC[32]*CONSTANTS[320]);
ALGEBRAIC[66] = ( CONSTANTS[29]*CONSTANTS[193]*CONSTANTS[190])/( ALGEBRAIC[65]*CONSTANTS[189]*CONSTANTS[192]);
ALGEBRAIC[67] = (1.00000+STATES[22]/CONSTANTS[195]+STATES[26]/CONSTANTS[196]+STATES[28]/CONSTANTS[197])/(1.00000+STATES[26]/CONSTANTS[196]+STATES[28]/CONSTANTS[197]);
ALGEBRAIC[159] = ( CONSTANTS[29]*ALGEBRAIC[66]*( STATES[26]*ALGEBRAIC[114] - ( STATES[27]*STATES[28])/ALGEBRAIC[65]))/( ALGEBRAIC[66]*CONSTANTS[189]*CONSTANTS[192]*ALGEBRAIC[67]+ ALGEBRAIC[66]*CONSTANTS[192]*STATES[26]+ ALGEBRAIC[66]*CONSTANTS[191]*ALGEBRAIC[67]*ALGEBRAIC[114]+( CONSTANTS[29]*CONSTANTS[194]*ALGEBRAIC[67]*STATES[27])/ALGEBRAIC[65]+( CONSTANTS[29]*CONSTANTS[193]*STATES[28])/ALGEBRAIC[65]+ ALGEBRAIC[66]*STATES[26]*ALGEBRAIC[114]+( CONSTANTS[29]*CONSTANTS[194]*STATES[26]*STATES[27])/( ALGEBRAIC[65]*CONSTANTS[189])+( ALGEBRAIC[66]*CONSTANTS[191]*ALGEBRAIC[114]*STATES[28])/CONSTANTS[190]+( CONSTANTS[29]*STATES[27]*STATES[28])/ALGEBRAIC[65]);
ALGEBRAIC[72] = ( CONSTANTS[321]*ALGEBRAIC[22]*CONSTANTS[277])/( STATES[1]*ALGEBRAIC[36]*CONSTANTS[276]);
ALGEBRAIC[73] = ( CONSTANTS[31]*CONSTANTS[208]*CONSTANTS[211])/( ALGEBRAIC[72]*CONSTANTS[205]*CONSTANTS[210]);
ALGEBRAIC[74] = 1.00000+ALGEBRAIC[2]/CONSTANTS[213]+ALGEBRAIC[6]/CONSTANTS[214]+ALGEBRAIC[10]/CONSTANTS[215];
ALGEBRAIC[160] = ( CONSTANTS[31]*ALGEBRAIC[73]*( ALGEBRAIC[113]*STATES[29] - ( STATES[22]*STATES[21])/ALGEBRAIC[72]))/( ALGEBRAIC[73]*CONSTANTS[205]*CONSTANTS[210]*ALGEBRAIC[74]+ ALGEBRAIC[73]*CONSTANTS[210]*ALGEBRAIC[113]+ ALGEBRAIC[73]*CONSTANTS[209]*ALGEBRAIC[74]*STATES[29]+( CONSTANTS[31]*CONSTANTS[212]*ALGEBRAIC[74]*STATES[22])/ALGEBRAIC[72]+( CONSTANTS[31]*CONSTANTS[211]*STATES[21])/ALGEBRAIC[72]+ ALGEBRAIC[73]*ALGEBRAIC[113]*STATES[29]+( CONSTANTS[31]*CONSTANTS[212]*ALGEBRAIC[113]*STATES[22])/( ALGEBRAIC[72]*CONSTANTS[205])+( CONSTANTS[31]*STATES[22]*STATES[21])/ALGEBRAIC[72]+( ALGEBRAIC[73]*CONSTANTS[209]*STATES[29]*STATES[21])/CONSTANTS[208]+( ALGEBRAIC[73]*ALGEBRAIC[113]*STATES[29]*STATES[22])/CONSTANTS[207]+( CONSTANTS[31]*STATES[29]*STATES[22]*STATES[21])/( CONSTANTS[206]*ALGEBRAIC[72]));
ALGEBRAIC[118] = STATES[5];
ALGEBRAIC[119] = STATES[6];
ALGEBRAIC[152] = 1.00000+ALGEBRAIC[119]/CONSTANTS[374];
ALGEBRAIC[161] =  CONSTANTS[34]*( (STATES[32]/ALGEBRAIC[152])*ALGEBRAIC[118] -  (STATES[17]/ALGEBRAIC[40])*STATES[1]);
ALGEBRAIC[154] = 1.00000+ALGEBRAIC[118]/CONSTANTS[376]+ALGEBRAIC[119]/CONSTANTS[377];
ALGEBRAIC[162] =  CONSTANTS[35]*( (STATES[33]/ALGEBRAIC[154])*ALGEBRAIC[118] -  (STATES[31]/ALGEBRAIC[44])*STATES[1]);
ALGEBRAIC[27] = (( STATES[15]*STATES[1])/CONSTANTS[360])/ALGEBRAIC[24];
ALGEBRAIC[120] = STATES[7];
ALGEBRAIC[143] = 1.00000+ALGEBRAIC[118]/CONSTANTS[360]+ALGEBRAIC[119]/CONSTANTS[361]+ALGEBRAIC[120]/CONSTANTS[362];
ALGEBRAIC[145] = (( STATES[16]*ALGEBRAIC[118])/CONSTANTS[360])/ALGEBRAIC[143];
ALGEBRAIC[150] = 1.00000+ALGEBRAIC[118]/CONSTANTS[370]+ALGEBRAIC[119]/CONSTANTS[371]+ALGEBRAIC[120]/CONSTANTS[372];
ALGEBRAIC[163] =  CONSTANTS[36]*(( ALGEBRAIC[145]*STATES[29])/ALGEBRAIC[36] - ( ALGEBRAIC[27]*STATES[34])/ALGEBRAIC[150]);
ALGEBRAIC[139] = 1.00000+ALGEBRAIC[118]/CONSTANTS[351]+ALGEBRAIC[119]/CONSTANTS[353]+ALGEBRAIC[120]/CONSTANTS[355];
ALGEBRAIC[164] =  CONSTANTS[39]*(( (STATES[34]/ALGEBRAIC[150])*STATES[13])/ALGEBRAIC[17] - ( (STATES[29]/ALGEBRAIC[36])*STATES[14])/ALGEBRAIC[139]);
ALGEBRAIC[155] = 1.00000+ALGEBRAIC[118]/CONSTANTS[378]+ALGEBRAIC[119]/CONSTANTS[379];
ALGEBRAIC[165] = ( exp(( - CONSTANTS[2]*STATES[37])/CONSTANTS[274])*ALGEBRAIC[46]*ALGEBRAIC[154])/( ALGEBRAIC[155]*ALGEBRAIC[44]);
ALGEBRAIC[166] = ( CONSTANTS[40]*( ALGEBRAIC[165]*STATES[36]*STATES[31]*STATES[1] -  STATES[30]*STATES[33]*ALGEBRAIC[118]))/( ALGEBRAIC[165]*CONSTANTS[240]*CONSTANTS[243]*CONSTANTS[285]*( 2.00000*CONSTANTS[244]+( CONSTANTS[244]*STATES[36])/CONSTANTS[240]+( STATES[36]*STATES[31]*STATES[1])/( CONSTANTS[240]*CONSTANTS[243]*CONSTANTS[285])+( CONSTANTS[244]*STATES[30]*ALGEBRAIC[118])/( CONSTANTS[241]*CONSTANTS[285])+( STATES[30]*STATES[33]*ALGEBRAIC[118])/( CONSTANTS[241]*CONSTANTS[242]*CONSTANTS[285])+( CONSTANTS[244]*STATES[30])/CONSTANTS[241]+( CONSTANTS[244]*STATES[36]*STATES[1])/( CONSTANTS[240]*CONSTANTS[285])+( CONSTANTS[244]*STATES[1])/CONSTANTS[285]+( CONSTANTS[244]*STATES[33]*ALGEBRAIC[118])/( CONSTANTS[242]*CONSTANTS[285])+( CONSTANTS[244]*ALGEBRAIC[118])/CONSTANTS[285]+( CONSTANTS[244]*STATES[31]*STATES[1])/( CONSTANTS[243]*CONSTANTS[285])));
ALGEBRAIC[148] = 1.00000+ALGEBRAIC[118]/CONSTANTS[366]+ALGEBRAIC[119]/CONSTANTS[367]+ALGEBRAIC[120]/CONSTANTS[368];
ALGEBRAIC[167] =  CONSTANTS[38]*(( (STATES[38]/ALGEBRAIC[148])*STATES[29])/ALGEBRAIC[36] - ( (STATES[26]/ALGEBRAIC[32])*STATES[34])/ALGEBRAIC[150]);
ALGEBRAIC[99] =  1.00000*exp(- (CONSTANTS[287]+ 4.00000*CONSTANTS[2]*STATES[37])/CONSTANTS[274]);
ALGEBRAIC[168] = ( ALGEBRAIC[99]*pow(STATES[1], 5.00000))/pow(ALGEBRAIC[118], 4.00000);
ALGEBRAIC[169] =  CONSTANTS[41]*( ALGEBRAIC[168]*STATES[21]*ALGEBRAIC[114] -  ALGEBRAIC[113]*STATES[27]);
ALGEBRAIC[100] =  1.00000*exp(- (CONSTANTS[288]+ 2.00000*CONSTANTS[2]*STATES[37])/CONSTANTS[274]);
ALGEBRAIC[101] = ( ALGEBRAIC[100]*pow(STATES[1], 2.00000))/pow(STATES[1], 4.00000);
ALGEBRAIC[102] = (CONDVAR[16]>0.00000 ? STATES[27] : CONSTANTS[247]);
ALGEBRAIC[170] = (CONDVAR[17]>0.00000 ? ALGEBRAIC[114] : CONSTANTS[247]);
ALGEBRAIC[115] = CONSTANTS[16] - STATES[55];
ALGEBRAIC[171] =  (( CONSTANTS[42]*(1.00000+STATES[13]/CONSTANTS[43]))/(1.00000+STATES[13]/CONSTANTS[44]))*(  pow(ALGEBRAIC[101], 1.0 / 2)*ALGEBRAIC[115]* pow(ALGEBRAIC[102], 1.0 / 2) -  STATES[55]* pow(ALGEBRAIC[170], 1.0 / 2));
ALGEBRAIC[103] = exp(- (CONSTANTS[289]+ 4.00000*CONSTANTS[2]*STATES[37])/CONSTANTS[274]);
ALGEBRAIC[172] = ( ALGEBRAIC[103]*pow(STATES[1], 4.00000))/( pow(ALGEBRAIC[118], 2.00000)*pow(1.00000, 2.00000));
ALGEBRAIC[104] = (CONDVAR[18]>0.00000 ? STATES[56] : CONSTANTS[248]);
ALGEBRAIC[173] =  CONSTANTS[45]*( (ALGEBRAIC[104]/(ALGEBRAIC[104]+CONSTANTS[13]))*exp(( CONSTANTS[2]*STATES[37])/CONSTANTS[274])*(STATES[55]/CONSTANTS[16]))*( pow(ALGEBRAIC[172], 1.00000/2.00000)*STATES[55]*pow(ALGEBRAIC[104]/1.00000, 1.00000/4.00000) - ALGEBRAIC[115]);
ALGEBRAIC[105] = exp(- (CONSTANTS[290] -  CONSTANTS[7]*CONSTANTS[2]*STATES[37])/CONSTANTS[274])/1.00000;
ALGEBRAIC[174] = ( (( ALGEBRAIC[105]*pow(ALGEBRAIC[118], CONSTANTS[7]))/pow(STATES[1], CONSTANTS[7] - 1.00000))*ALGEBRAIC[0])/( ALGEBRAIC[4]*ALGEBRAIC[17]);
ALGEBRAIC[175] =  CONSTANTS[46]*( ALGEBRAIC[174]*STATES[8]*STATES[13] - STATES[0]);
ALGEBRAIC[134] = 1.00000+ALGEBRAIC[118]/CONSTANTS[296]+ALGEBRAIC[119]/CONSTANTS[311]+ALGEBRAIC[120]/CONSTANTS[325];
ALGEBRAIC[135] = 1.00000+ALGEBRAIC[118]/CONSTANTS[332]+ALGEBRAIC[119]/CONSTANTS[336]+ALGEBRAIC[120]/CONSTANTS[340];
ALGEBRAIC[176] = (CONDVAR[19]>0.00000&&CONDVAR[20]>0.00000 ?  CONSTANTS[47]*((STATES[50]/ALGEBRAIC[135])/(STATES[50]/ALGEBRAIC[135]+ (STATES[51]/ALGEBRAIC[134])*exp(( CONSTANTS[12]*CONSTANTS[2]*STATES[37])/CONSTANTS[274])) - (STATES[8]/ALGEBRAIC[4])/(STATES[8]/ALGEBRAIC[4]+ (STATES[0]/ALGEBRAIC[0])*exp(( CONSTANTS[12]*(CONSTANTS[2] - 1.00000)*STATES[37])/CONSTANTS[274])))*((STATES[50]/ALGEBRAIC[135])/(STATES[50]/ALGEBRAIC[135]+CONSTANTS[11])) : 0.00000);
ALGEBRAIC[19] = (( STATES[13]*STATES[1])/CONSTANTS[351])/ALGEBRAIC[17];
ALGEBRAIC[140] = (( STATES[14]*ALGEBRAIC[118])/CONSTANTS[351])/ALGEBRAIC[139];
ALGEBRAIC[177] = ( CONSTANTS[48]*( ALGEBRAIC[140]*ALGEBRAIC[118] -  ALGEBRAIC[19]*STATES[1]))/( CONSTANTS[49]*(1.00000+ALGEBRAIC[140]/CONSTANTS[49])*(1.00000+ALGEBRAIC[19]/CONSTANTS[49]));
ALGEBRAIC[178] = (CONDVAR[21]>0.00000 ? ( CONSTANTS[51]*STATES[37]*( ALGEBRAIC[118]*exp(( CONSTANTS[2]*STATES[37])/CONSTANTS[274]) - STATES[1]))/(exp(( CONSTANTS[2]*STATES[37])/CONSTANTS[274]) - 1.00000) : ( CONSTANTS[51]*CONSTANTS[274]*(ALGEBRAIC[118] - STATES[1]))/CONSTANTS[2]);
ALGEBRAIC[136] = 1.00000+ALGEBRAIC[118]/CONSTANTS[344]+ALGEBRAIC[119]/CONSTANTS[347]+ALGEBRAIC[120]/CONSTANTS[349];
ALGEBRAIC[180] = ( CONSTANTS[381]*ALGEBRAIC[134]*ALGEBRAIC[136])/( ALGEBRAIC[135]*ALGEBRAIC[135]);
ALGEBRAIC[181] = (CONSTANTS[0]==1.00000||CONSTANTS[0]==2.00000||CONSTANTS[0]==5.00000 ? 0.00000 :  CONSTANTS[261]*( ALGEBRAIC[180]*STATES[50]*STATES[50] -  STATES[53]*STATES[51]));
ALGEBRAIC[185] = ((ALGEBRAIC[156]+ALGEBRAIC[157]+ALGEBRAIC[158]+ALGEBRAIC[160]) - ALGEBRAIC[169])/CONSTANTS[3];
ALGEBRAIC[202] = - ALGEBRAIC[185];
ALGEBRAIC[186] = ((ALGEBRAIC[159]+ALGEBRAIC[169]) - ALGEBRAIC[171])/CONSTANTS[3];
ALGEBRAIC[203] = - ALGEBRAIC[186];
ALGEBRAIC[182] = ((ALGEBRAIC[79]+ALGEBRAIC[175]) - ALGEBRAIC[176])/CONSTANTS[3];
ALGEBRAIC[183] = ((- ALGEBRAIC[79] - ALGEBRAIC[175])+ALGEBRAIC[176])/CONSTANTS[3];
ALGEBRAIC[116] = (ALGEBRAIC[64] - ALGEBRAIC[79])/CONSTANTS[3];
ALGEBRAIC[117] = (- ALGEBRAIC[64]+ALGEBRAIC[79])/CONSTANTS[3];
ALGEBRAIC[184] = (((- ALGEBRAIC[64] - ALGEBRAIC[175])+ALGEBRAIC[177]) - ALGEBRAIC[164])/CONSTANTS[3];
ALGEBRAIC[187] = (- ALGEBRAIC[156]+ALGEBRAIC[161])/CONSTANTS[3];
ALGEBRAIC[188] = (ALGEBRAIC[156] - ALGEBRAIC[54])/CONSTANTS[3];
ALGEBRAIC[189] = (- ALGEBRAIC[57]+ALGEBRAIC[163]+ALGEBRAIC[54])/CONSTANTS[3];
ALGEBRAIC[190] = (ALGEBRAIC[57] - ALGEBRAIC[157])/CONSTANTS[3];
ALGEBRAIC[191] = (((ALGEBRAIC[157] - ALGEBRAIC[158]) - ALGEBRAIC[84])+ALGEBRAIC[85])/CONSTANTS[3];
ALGEBRAIC[192] = (ALGEBRAIC[158] - ALGEBRAIC[64])/CONSTANTS[3];
ALGEBRAIC[193] = ((- ALGEBRAIC[156] - ALGEBRAIC[158])+ALGEBRAIC[64]+ALGEBRAIC[54])/CONSTANTS[3];
ALGEBRAIC[194] = ((ALGEBRAIC[64] - ALGEBRAIC[159])+ALGEBRAIC[167])/CONSTANTS[3];
ALGEBRAIC[195] = (ALGEBRAIC[159] - ALGEBRAIC[71])/CONSTANTS[3];
ALGEBRAIC[196] = (((((ALGEBRAIC[71] - ALGEBRAIC[160])+ALGEBRAIC[164]) - ALGEBRAIC[85]) - ALGEBRAIC[163]) - ALGEBRAIC[167])/CONSTANTS[3];
ALGEBRAIC[197] = (- ALGEBRAIC[54]+ALGEBRAIC[160]+ALGEBRAIC[84])/CONSTANTS[3];
ALGEBRAIC[198] = ((ALGEBRAIC[84]+ALGEBRAIC[162]) - ALGEBRAIC[166])/CONSTANTS[3];
ALGEBRAIC[199] = (- ALGEBRAIC[84]+ALGEBRAIC[166])/CONSTANTS[3];
ALGEBRAIC[179] =  CONSTANTS[50]*( ALGEBRAIC[120]*STATES[1] -  STATES[3]*ALGEBRAIC[118]);
ALGEBRAIC[200] = (((((((((- ALGEBRAIC[156]+ 2.00000*ALGEBRAIC[54]) - ALGEBRAIC[158])+ALGEBRAIC[64]+ALGEBRAIC[160]+ALGEBRAIC[161]+ALGEBRAIC[162]+ALGEBRAIC[163]) - ALGEBRAIC[166]) -  5.00000*ALGEBRAIC[169]) -  2.00000*ALGEBRAIC[171]) -  4.00000*ALGEBRAIC[173])+ (CONSTANTS[7] - 1.00000)*ALGEBRAIC[175]+ 2.00000*ALGEBRAIC[177]+ALGEBRAIC[178]) - ALGEBRAIC[179])/CONSTANTS[3];
ALGEBRAIC[204] = - (( STATES[1]*CONSTANTS[292])/( CONSTANTS[134]*CONSTANTS[282])+( STATES[1]*ALGEBRAIC[182])/( CONSTANTS[296]*ALGEBRAIC[0])+( STATES[1]*ALGEBRAIC[183])/( CONSTANTS[332]*ALGEBRAIC[4])+( STATES[1]*CONSTANTS[262])/( CONSTANTS[344]*ALGEBRAIC[8])+( STATES[1]*ALGEBRAIC[116])/( CONSTANTS[296]*ALGEBRAIC[11])+( STATES[1]*ALGEBRAIC[117])/( CONSTANTS[332]*ALGEBRAIC[14])+( STATES[1]*ALGEBRAIC[184])/( CONSTANTS[351]*ALGEBRAIC[17])+( STATES[1]*ALGEBRAIC[185])/( CONSTANTS[110]*CONSTANTS[277])+( STATES[1]*ALGEBRAIC[202])/( CONSTANTS[107]*CONSTANTS[276])+( STATES[1]*ALGEBRAIC[186])/( CONSTANTS[113]*CONSTANTS[304])+( STATES[1]*ALGEBRAIC[203])/( CONSTANTS[116]*CONSTANTS[320])+( STATES[1]*ALGEBRAIC[187])/( CONSTANTS[98]*ALGEBRAIC[40])+( STATES[1]*ALGEBRAIC[197])/( CONSTANTS[89]*ALGEBRAIC[22])+( STATES[1]*ALGEBRAIC[188])/( CONSTANTS[119]*CONSTANTS[278])+( STATES[1]*ALGEBRAIC[189])/( CONSTANTS[360]*ALGEBRAIC[24])+( STATES[1]*ALGEBRAIC[190])/( CONSTANTS[363]*ALGEBRAIC[28])+( STATES[1]*ALGEBRAIC[191])/( CONSTANTS[122]*CONSTANTS[306])+( STATES[1]*ALGEBRAIC[192])/( CONSTANTS[365]*ALGEBRAIC[30])+( STATES[1]*ALGEBRAIC[193])/( CONSTANTS[357]*ALGEBRAIC[20])+( STATES[1]*ALGEBRAIC[194])/( CONSTANTS[366]*ALGEBRAIC[32])+( STATES[1]*ALGEBRAIC[195])/( CONSTANTS[369]*ALGEBRAIC[34])+( STATES[1]*ALGEBRAIC[196])/( CONSTANTS[370]*ALGEBRAIC[36])+( STATES[1]*ALGEBRAIC[198])/( CONSTANTS[376]*ALGEBRAIC[44])+( STATES[1]*ALGEBRAIC[199])/( CONSTANTS[378]*ALGEBRAIC[46])+( STATES[1]*CONSTANTS[294])/( CONSTANTS[140]*CONSTANTS[284])+( STATES[1]*CONSTANTS[293])/( CONSTANTS[137]*CONSTANTS[283])+( STATES[1]*CONSTANTS[263])/( CONSTANTS[125]*CONSTANTS[279])+( STATES[1]*CONSTANTS[270])/( CONSTANTS[128]*CONSTANTS[280])+( STATES[1]*CONSTANTS[269])/( CONSTANTS[131]*CONSTANTS[281])+( STATES[1]*CONSTANTS[264])/( CONSTANTS[373]*ALGEBRAIC[38]))+ALGEBRAIC[200];
ALGEBRAIC[205] = - (( STATES[2]*CONSTANTS[292])/( CONSTANTS[135]*CONSTANTS[282])+( STATES[2]*ALGEBRAIC[182])/( CONSTANTS[311]*ALGEBRAIC[0])+( STATES[2]*ALGEBRAIC[183])/( CONSTANTS[336]*ALGEBRAIC[4])+( STATES[2]*CONSTANTS[262])/( CONSTANTS[347]*ALGEBRAIC[8])+( STATES[2]*ALGEBRAIC[116])/( CONSTANTS[311]*ALGEBRAIC[11])+( STATES[2]*ALGEBRAIC[117])/( CONSTANTS[336]*ALGEBRAIC[14])+( STATES[2]*ALGEBRAIC[184])/( CONSTANTS[353]*ALGEBRAIC[17])+( STATES[2]*ALGEBRAIC[185])/( CONSTANTS[111]*CONSTANTS[277])+( STATES[2]*ALGEBRAIC[202])/( CONSTANTS[108]*CONSTANTS[276])+( STATES[2]*ALGEBRAIC[186])/( CONSTANTS[114]*CONSTANTS[304])+( STATES[2]*ALGEBRAIC[203])/( CONSTANTS[117]*CONSTANTS[320])+( STATES[2]*ALGEBRAIC[187])/( CONSTANTS[374]*ALGEBRAIC[40])+( STATES[2]*ALGEBRAIC[197])/( CONSTANTS[359]*ALGEBRAIC[22])+( STATES[2]*ALGEBRAIC[188])/( CONSTANTS[120]*CONSTANTS[278])+( STATES[2]*ALGEBRAIC[189])/( CONSTANTS[361]*ALGEBRAIC[24])+( STATES[2]*ALGEBRAIC[190])/( CONSTANTS[364]*ALGEBRAIC[28])+( STATES[2]*ALGEBRAIC[191])/( CONSTANTS[123]*CONSTANTS[306])+( STATES[2]*ALGEBRAIC[192])/( CONSTANTS[92]*ALGEBRAIC[30])+( STATES[2]*ALGEBRAIC[193])/( CONSTANTS[87]*ALGEBRAIC[20])+( STATES[2]*ALGEBRAIC[194])/( CONSTANTS[367]*ALGEBRAIC[32])+( STATES[2]*ALGEBRAIC[195])/( CONSTANTS[94]*ALGEBRAIC[34])+( STATES[2]*ALGEBRAIC[196])/( CONSTANTS[371]*ALGEBRAIC[36])+( STATES[2]*ALGEBRAIC[198])/( CONSTANTS[377]*ALGEBRAIC[44])+( STATES[2]*ALGEBRAIC[199])/( CONSTANTS[379]*ALGEBRAIC[46])+( STATES[2]*CONSTANTS[294])/( CONSTANTS[141]*CONSTANTS[284])+( STATES[2]*CONSTANTS[293])/( CONSTANTS[138]*CONSTANTS[283])+( STATES[2]*CONSTANTS[263])/( CONSTANTS[126]*CONSTANTS[279])+( STATES[2]*CONSTANTS[270])/( CONSTANTS[129]*CONSTANTS[280])+( STATES[2]*CONSTANTS[269])/( CONSTANTS[132]*CONSTANTS[281])+( STATES[2]*CONSTANTS[264])/( CONSTANTS[96]*ALGEBRAIC[38]))+CONSTANTS[295];
ALGEBRAIC[201] = ALGEBRAIC[179]/CONSTANTS[3];
ALGEBRAIC[206] = - (( STATES[3]*CONSTANTS[292])/( CONSTANTS[136]*CONSTANTS[282])+( STATES[3]*ALGEBRAIC[182])/( CONSTANTS[325]*ALGEBRAIC[0])+( STATES[3]*ALGEBRAIC[183])/( CONSTANTS[340]*ALGEBRAIC[4])+( STATES[3]*CONSTANTS[262])/( CONSTANTS[349]*ALGEBRAIC[8])+( STATES[3]*ALGEBRAIC[116])/( CONSTANTS[325]*ALGEBRAIC[11])+( STATES[3]*ALGEBRAIC[117])/( CONSTANTS[340]*ALGEBRAIC[14])+( STATES[3]*ALGEBRAIC[184])/( CONSTANTS[355]*ALGEBRAIC[17])+( STATES[3]*ALGEBRAIC[185])/( CONSTANTS[112]*CONSTANTS[277])+( STATES[3]*ALGEBRAIC[202])/( CONSTANTS[109]*CONSTANTS[276])+( STATES[3]*ALGEBRAIC[186])/( CONSTANTS[115]*CONSTANTS[304])+( STATES[3]*ALGEBRAIC[203])/( CONSTANTS[118]*CONSTANTS[320])+( STATES[3]*ALGEBRAIC[187])/( CONSTANTS[99]*ALGEBRAIC[40])+( STATES[3]*ALGEBRAIC[197])/( CONSTANTS[90]*ALGEBRAIC[22])+( STATES[3]*ALGEBRAIC[188])/( CONSTANTS[121]*CONSTANTS[278])+( STATES[3]*ALGEBRAIC[189])/( CONSTANTS[362]*ALGEBRAIC[24])+( STATES[3]*ALGEBRAIC[190])/( CONSTANTS[91]*ALGEBRAIC[28])+( STATES[3]*ALGEBRAIC[191])/( CONSTANTS[124]*CONSTANTS[306])+( STATES[3]*ALGEBRAIC[192])/( CONSTANTS[93]*ALGEBRAIC[30])+( STATES[3]*ALGEBRAIC[193])/( CONSTANTS[88]*ALGEBRAIC[20])+( STATES[3]*ALGEBRAIC[194])/( CONSTANTS[368]*ALGEBRAIC[32])+( STATES[3]*ALGEBRAIC[195])/( CONSTANTS[95]*ALGEBRAIC[34])+( STATES[3]*ALGEBRAIC[196])/( CONSTANTS[372]*ALGEBRAIC[36])+( STATES[3]*ALGEBRAIC[198])/( CONSTANTS[102]*ALGEBRAIC[44])+( STATES[3]*ALGEBRAIC[199])/( CONSTANTS[103]*ALGEBRAIC[46])+( STATES[3]*CONSTANTS[294])/( CONSTANTS[142]*CONSTANTS[284])+( STATES[3]*CONSTANTS[293])/( CONSTANTS[139]*CONSTANTS[283])+( STATES[3]*CONSTANTS[263])/( CONSTANTS[127]*CONSTANTS[279])+( STATES[3]*CONSTANTS[270])/( CONSTANTS[130]*CONSTANTS[280])+( STATES[3]*CONSTANTS[269])/( CONSTANTS[133]*CONSTANTS[281])+( STATES[3]*CONSTANTS[264])/( CONSTANTS[97]*ALGEBRAIC[38]))+ALGEBRAIC[201];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[20] = 1.0;
SI[21] = 1.0;
SI[22] = 1.0;
SI[23] = 1.0;
SI[24] = 1.0;
SI[25] = 1.0;
SI[26] = 1.0;
SI[27] = 1.0;
SI[28] = 1.0;
SI[29] = 1.0;
SI[30] = 1.0;
SI[31] = 1.0;
SI[32] = 1.0;
SI[33] = 1.0;
SI[34] = 1.0;
SI[35] = 1.0;
SI[36] = 1.0;
SI[37] = 1.0;
SI[38] = 1.0;
SI[39] = 1.0;
SI[40] = 1.0;
SI[41] = 1.0;
SI[42] = 1.0;
SI[43] = 1.0;
SI[44] = 1.0;
SI[45] = 1.0;
SI[46] = 1.0;
SI[47] = 1.0;
SI[48] = 1.0;
SI[49] = 1.0;
SI[50] = 1.0;
SI[51] = 1.0;
SI[52] = 1.0;
SI[53] = 1.0;
SI[54] = 1.0;
SI[55] = 1.0;
SI[56] = 1.0;
SI[57] = 1.0;
SI[58] = 1.0;
SI[59] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = STATES[17] - CONSTANTS[148];
CONDVAR[1] = STATES[18] - CONSTANTS[148];
CONDVAR[2] = ALGEBRAIC[113] - CONSTANTS[148];
CONDVAR[3] = ALGEBRAIC[113] - CONSTANTS[167];
CONDVAR[4] = STATES[24] - CONSTANTS[167];
CONDVAR[5] = STATES[25] - CONSTANTS[176];
CONDVAR[6] = STATES[18] - CONSTANTS[176];
CONDVAR[7] = ALGEBRAIC[113] - CONSTANTS[176];
CONDVAR[8] = STATES[11] - CONSTANTS[225];
CONDVAR[9] = STATES[8] - CONSTANTS[225];
CONDVAR[10] = STATES[12] - CONSTANTS[225];
CONDVAR[11] = STATES[0] - CONSTANTS[225];
CONDVAR[12] = STATES[30] - CONSTANTS[235];
CONDVAR[13] = STATES[25] - CONSTANTS[235];
CONDVAR[14] = STATES[22] - CONSTANTS[235];
CONDVAR[15] = STATES[31] - CONSTANTS[235];
CONDVAR[16] = STATES[27] - CONSTANTS[247];
CONDVAR[17] = ALGEBRAIC[114] - CONSTANTS[247];
CONDVAR[18] = STATES[56] - CONSTANTS[248];
CONDVAR[19] = STATES[50] - CONSTANTS[249];
CONDVAR[20] = STATES[0] - CONSTANTS[249];
CONDVAR[21] = fabs(STATES[37]) - CONSTANTS[250];
}