Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 52 entries in the algebraic variable array. There are a total of 21 entries in each of the rate and state variable arrays. There are a total of 70 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is R in component membrane (millijoule_per_mole_kelvin). * CONSTANTS[1] is T in component membrane (kelvin). * CONSTANTS[2] is F in component membrane (coulomb_per_mole). * CONSTANTS[3] is Cm in component membrane (microF). * ALGEBRAIC[5] is i_K1 in component time_independent_potassium_current (nanoA). * ALGEBRAIC[33] is i_to in component transient_outward_current (nanoA). * ALGEBRAIC[7] is i_K in component time_dependent_potassium_current (nanoA). * ALGEBRAIC[20] is i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA). * ALGEBRAIC[23] is i_Ca_L_K_ds in component L_type_Ca_channel (nanoA). * ALGEBRAIC[36] is i_NaK in component sodium_potassium_pump (nanoA). * ALGEBRAIC[11] is i_Na in component fast_sodium_current (nanoA). * ALGEBRAIC[17] is i_b_Na in component sodium_background_current (nanoA). * ALGEBRAIC[21] is i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA). * ALGEBRAIC[24] is i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA). * ALGEBRAIC[37] is i_NaCa_cyt in component sodium_calcium_exchanger (nanoA). * ALGEBRAIC[38] is i_NaCa_ds in component sodium_calcium_exchanger (nanoA). * ALGEBRAIC[19] is i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA). * ALGEBRAIC[22] is i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA). * ALGEBRAIC[32] is i_b_Ca in component calcium_background_current (nanoA). * ALGEBRAIC[18] is i_b_K in component potassium_background_current (nanoA). * ALGEBRAIC[0] is i_Stim in component membrane (nanoA). * CONSTANTS[4] is stim_start in component membrane (second). * CONSTANTS[5] is stim_end in component membrane (second). * CONSTANTS[6] is stim_period in component membrane (second). * CONSTANTS[7] is stim_duration in component membrane (second). * CONSTANTS[8] is stim_amplitude in component membrane (nanoA). * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt). * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt). * ALGEBRAIC[3] is E_Ca in component reversal_potentials (millivolt). * ALGEBRAIC[4] is E_mh in component reversal_potentials (millivolt). * STATES[1] is K_o in component extracellular_potassium_concentration (millimolar). * CONSTANTS[9] is Na_o in component extracellular_sodium_concentration (millimolar). * STATES[2] is K_i in component intracellular_potassium_concentration (millimolar). * STATES[3] is Na_i in component intracellular_sodium_concentration (millimolar). * CONSTANTS[10] is Ca_o in component extracellular_calcium_concentration (millimolar). * STATES[4] is Ca_i in component intracellular_calcium_concentration (millimolar). * CONSTANTS[11] is K_mk1 in component time_independent_potassium_current (millimolar). * CONSTANTS[12] is g_K1 in component time_independent_potassium_current (microS). * ALGEBRAIC[6] is I_K in component time_dependent_potassium_current (nanoA). * CONSTANTS[13] is i_K_max in component time_dependent_potassium_current (nanoA). * STATES[5] is x in component time_dependent_potassium_current_x_gate (dimensionless). * ALGEBRAIC[9] is alpha_x in component time_dependent_potassium_current_x_gate (per_second). * ALGEBRAIC[10] is beta_x in component time_dependent_potassium_current_x_gate (per_second). * CONSTANTS[14] is delta_x in component time_dependent_potassium_current_x_gate (millivolt). * ALGEBRAIC[8] is E0_x in component time_dependent_potassium_current_x_gate (millivolt). * CONSTANTS[15] is g_Na in component fast_sodium_current (microS). * STATES[6] is m in component fast_sodium_current_m_gate (dimensionless). * STATES[7] is h in component fast_sodium_current_h_gate (dimensionless). * ALGEBRAIC[13] is alpha_m in component fast_sodium_current_m_gate (per_second). * ALGEBRAIC[14] is beta_m in component fast_sodium_current_m_gate (per_second). * CONSTANTS[16] is delta_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[12] is E0_m in component fast_sodium_current_m_gate (millivolt). * ALGEBRAIC[15] is alpha_h in component fast_sodium_current_h_gate (per_second). * ALGEBRAIC[16] is beta_h in component fast_sodium_current_h_gate (per_second). * CONSTANTS[17] is shift_h in component fast_sodium_current_h_gate (millivolt). * CONSTANTS[18] is g_bna in component sodium_background_current (microS). * CONSTANTS[19] is g_bk in component potassium_background_current (microS). * ALGEBRAIC[25] is i_Ca_L in component L_type_Ca_channel (nanoA). * CONSTANTS[20] is P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar). * CONSTANTS[21] is P_CaK in component L_type_Ca_channel (dimensionless). * CONSTANTS[22] is P_CaNa in component L_type_Ca_channel (dimensionless). * STATES[8] is Ca_ds in component intracellular_calcium_concentration (millimolar). * STATES[9] is d in component L_type_Ca_channel_d_gate (dimensionless). * STATES[10] is f in component L_type_Ca_channel_f_gate (dimensionless). * STATES[11] is f2 in component L_type_Ca_channel_f2_gate (dimensionless). * STATES[12] is f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless). * CONSTANTS[23] is Km_f2 in component L_type_Ca_channel (millimolar). * CONSTANTS[24] is Km_f2ds in component L_type_Ca_channel (millimolar). * CONSTANTS[25] is R_decay in component L_type_Ca_channel (per_second). * CONSTANTS[26] is FrICa in component L_type_Ca_channel (dimensionless). * ALGEBRAIC[27] is alpha_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[28] is beta_d in component L_type_Ca_channel_d_gate (per_second). * ALGEBRAIC[26] is E0_d in component L_type_Ca_channel_d_gate (millivolt). * CONSTANTS[27] is speed_d in component L_type_Ca_channel_d_gate (dimensionless). * ALGEBRAIC[30] is alpha_f in component L_type_Ca_channel_f_gate (per_second). * ALGEBRAIC[31] is beta_f in component L_type_Ca_channel_f_gate (per_second). * CONSTANTS[28] is speed_f in component L_type_Ca_channel_f_gate (dimensionless). * CONSTANTS[29] is delta_f in component L_type_Ca_channel_f_gate (millivolt). * ALGEBRAIC[29] is E0_f in component L_type_Ca_channel_f_gate (millivolt). * CONSTANTS[30] is g_bca in component calcium_background_current (microS). * CONSTANTS[31] is g_to in component transient_outward_current (microS). * CONSTANTS[32] is g_tos in component transient_outward_current (dimensionless). * STATES[13] is s in component transient_outward_current_s_gate (dimensionless). * STATES[14] is r in component transient_outward_current_r_gate (dimensionless). * ALGEBRAIC[34] is alpha_s in component transient_outward_current_s_gate (per_second). * ALGEBRAIC[35] is beta_s in component transient_outward_current_s_gate (per_second). * CONSTANTS[33] is i_NaK_max in component sodium_potassium_pump (nanoA). * CONSTANTS[34] is K_mK in component sodium_potassium_pump (millimolar). * CONSTANTS[35] is K_mNa in component sodium_potassium_pump (millimolar). * ALGEBRAIC[39] is i_NaCa in component sodium_calcium_exchanger (nanoA). * CONSTANTS[36] is k_NaCa in component sodium_calcium_exchanger (nanoA). * CONSTANTS[37] is n_NaCa in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[38] is d_NaCa in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[39] is gamma in component sodium_calcium_exchanger (dimensionless). * CONSTANTS[40] is FRiNaCa in component sodium_calcium_exchanger (dimensionless). * ALGEBRAIC[41] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * CONSTANTS[66] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless). * ALGEBRAIC[40] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[41] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[42] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless). * CONSTANTS[43] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar). * CONSTANTS[44] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * CONSTANTS[45] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second). * STATES[15] is Ca_up in component intracellular_calcium_concentration (millimolar). * ALGEBRAIC[42] is i_trans in component calcium_translocation (millimolar_per_second). * STATES[16] is Ca_rel in component intracellular_calcium_concentration (millimolar). * ALGEBRAIC[51] is i_rel in component calcium_release (millimolar_per_second). * ALGEBRAIC[43] is VoltDep in component calcium_release (dimensionless). * ALGEBRAIC[46] is RegBindSite in component calcium_release (dimensionless). * ALGEBRAIC[44] is CaiReg in component calcium_release (dimensionless). * ALGEBRAIC[45] is CadsReg in component calcium_release (dimensionless). * ALGEBRAIC[47] is ActRate in component calcium_release (per_second). * ALGEBRAIC[48] is InactRate in component calcium_release (per_second). * CONSTANTS[46] is K_leak_rate in component calcium_release (per_second). * CONSTANTS[47] is K_m_rel in component calcium_release (per_second). * CONSTANTS[48] is K_m_Ca_cyt in component calcium_release (millimolar). * CONSTANTS[49] is K_m_Ca_ds in component calcium_release (millimolar). * ALGEBRAIC[50] is PrecFrac in component calcium_release (dimensionless). * STATES[17] is ActFrac in component calcium_release (dimensionless). * STATES[18] is ProdFrac in component calcium_release (dimensionless). * ALGEBRAIC[49] is SpeedRel in component calcium_release (dimensionless). * CONSTANTS[69] is V_i in component intracellular_calcium_concentration (micrometre3). * CONSTANTS[50] is K_b in component extracellular_potassium_concentration (millimolar). * CONSTANTS[51] is pf in component extracellular_potassium_concentration (per_second). * CONSTANTS[68] is V_e in component intracellular_calcium_concentration (micrometre3). * STATES[19] is Ca_Calmod in component intracellular_calcium_concentration (millimolar). * STATES[20] is Ca_Trop in component intracellular_calcium_concentration (millimolar). * CONSTANTS[52] is Calmod in component intracellular_calcium_concentration (millimolar). * CONSTANTS[53] is Trop in component intracellular_calcium_concentration (millimolar). * CONSTANTS[54] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second). * CONSTANTS[55] is beta_Calmod in component intracellular_calcium_concentration (per_second). * CONSTANTS[56] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second). * CONSTANTS[57] is beta_Trop in component intracellular_calcium_concentration (per_second). * CONSTANTS[58] is radius in component intracellular_calcium_concentration (micrometre). * CONSTANTS[59] is length in component intracellular_calcium_concentration (micrometre). * CONSTANTS[65] is V_Cell in component intracellular_calcium_concentration (micrometre3). * CONSTANTS[67] is V_i_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[60] is V_ds_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[61] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[62] is V_e_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[63] is V_up_ratio in component intracellular_calcium_concentration (dimensionless). * CONSTANTS[64] is Kdecay in component intracellular_calcium_concentration (per_second). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[5] is d/dt x in component time_dependent_potassium_current_x_gate (dimensionless). * RATES[6] is d/dt m in component fast_sodium_current_m_gate (dimensionless). * RATES[7] is d/dt h in component fast_sodium_current_h_gate (dimensionless). * RATES[9] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless). * RATES[10] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless). * RATES[11] is d/dt f2 in component L_type_Ca_channel_f2_gate (dimensionless). * RATES[12] is d/dt f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless). * RATES[13] is d/dt s in component transient_outward_current_s_gate (dimensionless). * RATES[14] is d/dt r in component transient_outward_current_r_gate (dimensionless). * RATES[17] is d/dt ActFrac in component calcium_release (dimensionless). * RATES[18] is d/dt ProdFrac in component calcium_release (dimensionless). * RATES[3] is d/dt Na_i in component intracellular_sodium_concentration (millimolar). * RATES[1] is d/dt K_o in component extracellular_potassium_concentration (millimolar). * RATES[2] is d/dt K_i in component intracellular_potassium_concentration (millimolar). * RATES[4] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar). * RATES[19] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar). * RATES[20] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar). * RATES[8] is d/dt Ca_ds in component intracellular_calcium_concentration (millimolar). * RATES[15] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar). * RATES[16] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar). * There are a total of 10 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -85.35765; CONSTANTS[0] = 8314.472; CONSTANTS[1] = 310; CONSTANTS[2] = 96485.3415; CONSTANTS[3] = 9.5e-5; CONSTANTS[4] = 0.02; CONSTANTS[5] = 9; CONSTANTS[6] = 0.5; CONSTANTS[7] = 0.002; CONSTANTS[8] = -1.8; STATES[1] = 5.3367; CONSTANTS[9] = 148.5; STATES[2] = 140.096; STATES[3] = 6.9366; CONSTANTS[10] = 2.5; STATES[4] = 3.792e-5; CONSTANTS[11] = 10; CONSTANTS[12] = 0.12; CONSTANTS[13] = 1.5; STATES[5] = 3.5095e-6; CONSTANTS[14] = 0.0001; CONSTANTS[15] = 0.6; STATES[6] = 0.00448; STATES[7] = 0.9704; CONSTANTS[16] = 1e-5; CONSTANTS[17] = 0; CONSTANTS[18] = 0.0001; CONSTANTS[19] = 0.004; CONSTANTS[20] = 0.045; CONSTANTS[21] = 0.003; CONSTANTS[22] = 0.01; STATES[8] = 0.00077; STATES[9] = 4.171e-12; STATES[10] = 0.999997; STATES[11] = 0.99279; STATES[12] = 0.459; CONSTANTS[23] = 100000; CONSTANTS[24] = 0.001; CONSTANTS[25] = 20; CONSTANTS[26] = 1; CONSTANTS[27] = 10; CONSTANTS[28] = 2; CONSTANTS[29] = 0.0001; CONSTANTS[30] = 0.00025; CONSTANTS[31] = 0.048; CONSTANTS[32] = 0.15; STATES[13] = 0.9379; STATES[14] = 2.6578e-5; CONSTANTS[33] = 0.7; CONSTANTS[34] = 1; CONSTANTS[35] = 40; CONSTANTS[36] = 0.0002; CONSTANTS[37] = 3; CONSTANTS[38] = 0.001; CONSTANTS[39] = 0.5; CONSTANTS[40] = 0.001; CONSTANTS[41] = 0.0003; CONSTANTS[42] = 0.4; CONSTANTS[43] = 0.5; CONSTANTS[44] = 0.4; CONSTANTS[45] = 0.03; STATES[15] = 0.3342; STATES[16] = 0.31007; CONSTANTS[46] = 0.05; CONSTANTS[47] = 250; CONSTANTS[48] = 0.0005; CONSTANTS[49] = 0.01; STATES[17] = 0.0112; STATES[18] = 0.9059; CONSTANTS[50] = 5.4; CONSTANTS[51] = 0.7; STATES[19] = 0.001419; STATES[20] = 0.000932; CONSTANTS[52] = 0.02; CONSTANTS[53] = 0.05; CONSTANTS[54] = 100000; CONSTANTS[55] = 50; CONSTANTS[56] = 100000; CONSTANTS[57] = 200; CONSTANTS[58] = 12; CONSTANTS[59] = 74; CONSTANTS[60] = 0.1; CONSTANTS[61] = 0.1; CONSTANTS[62] = 0.4; CONSTANTS[63] = 0.01; CONSTANTS[64] = 10; CONSTANTS[65] = ( 3.14159*pow(CONSTANTS[58]/1000.00, 2.00000)*CONSTANTS[59])/1000.00; CONSTANTS[66] = ( CONSTANTS[41]*CONSTANTS[42])/CONSTANTS[43]; CONSTANTS[67] = ((1.00000 - CONSTANTS[62]) - CONSTANTS[63]) - CONSTANTS[61]; CONSTANTS[68] = CONSTANTS[65]*CONSTANTS[62]; CONSTANTS[69] = CONSTANTS[65]*CONSTANTS[67]; RATES[0] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; RATES[7] = 0.1001; RATES[9] = 0.1001; RATES[10] = 0.1001; RATES[11] = 0.1001; RATES[12] = 0.1001; RATES[13] = 0.1001; RATES[14] = 0.1001; RATES[17] = 0.1001; RATES[18] = 0.1001; RATES[3] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; RATES[4] = 0.1001; RATES[19] = 0.1001; RATES[20] = 0.1001; RATES[8] = 0.1001; RATES[15] = 0.1001; RATES[16] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[5]+ALGEBRAIC[33]+ALGEBRAIC[7]+ALGEBRAIC[36]+ALGEBRAIC[11]+ALGEBRAIC[17]+ALGEBRAIC[21]+ALGEBRAIC[24]+ALGEBRAIC[37]+ALGEBRAIC[38]+ALGEBRAIC[19]+ALGEBRAIC[22]+ALGEBRAIC[20]+ALGEBRAIC[23]+ALGEBRAIC[32]+ALGEBRAIC[18]); resid[1] = RATES[5] - ALGEBRAIC[9]*(1.00000 - STATES[5]) - ALGEBRAIC[10]*STATES[5]; resid[2] = RATES[6] - ALGEBRAIC[13]*(1.00000 - STATES[6]) - ALGEBRAIC[14]*STATES[6]; resid[3] = RATES[7] - ALGEBRAIC[15]*(1.00000 - STATES[7]) - ALGEBRAIC[16]*STATES[7]; resid[4] = RATES[9] - CONSTANTS[27]*( ALGEBRAIC[27]*(1.00000 - STATES[9]) - ALGEBRAIC[28]*STATES[9]); resid[5] = RATES[10] - CONSTANTS[28]*( ALGEBRAIC[30]*(1.00000 - STATES[10]) - ALGEBRAIC[31]*STATES[10]); resid[6] = RATES[11] - 1.00000 - 1.00000*(STATES[4]/(CONSTANTS[23]+STATES[4])+STATES[11]); resid[7] = RATES[12] - CONSTANTS[25]*(1.00000 - (STATES[8]/(CONSTANTS[24]+STATES[8])+STATES[12])); resid[8] = RATES[13] - ALGEBRAIC[34]*(1.00000 - STATES[13]) - ALGEBRAIC[35]*STATES[13]; resid[9] = RATES[14] - 333.000*(1.00000/(1.00000+exp(- ((STATES[0]+4.00000) - 24.0000)/10.0000)) - STATES[14]); resid[10] = RATES[17] - ALGEBRAIC[50]*ALGEBRAIC[49]*ALGEBRAIC[47] - STATES[17]*ALGEBRAIC[49]*ALGEBRAIC[48]; resid[11] = RATES[18] - STATES[17]*ALGEBRAIC[49]*ALGEBRAIC[48] - ALGEBRAIC[49]*1.00000*STATES[18]; resid[12] = RATES[3] - (- 1.00000/( 1.00000*CONSTANTS[69]*CONSTANTS[2]))*(ALGEBRAIC[11]+ALGEBRAIC[17]+ 3.00000*ALGEBRAIC[36]+ 3.00000*ALGEBRAIC[37]+ALGEBRAIC[21]+ALGEBRAIC[24]); resid[13] = RATES[1] - ( 1.00000*(ALGEBRAIC[5]+ALGEBRAIC[33]+ALGEBRAIC[20]+ALGEBRAIC[23]+ - 2.00000*ALGEBRAIC[36]+ALGEBRAIC[7]+ALGEBRAIC[18]))/( 1.00000*CONSTANTS[68]*CONSTANTS[2]) - CONSTANTS[51]*(STATES[1] - CONSTANTS[50]); resid[14] = RATES[2] - (- 1.00000/( 1.00000*CONSTANTS[69]*CONSTANTS[2]))*((ALGEBRAIC[5]+ALGEBRAIC[7]+ALGEBRAIC[20]+ALGEBRAIC[23]+ALGEBRAIC[33]+ALGEBRAIC[18]) - 2.00000*ALGEBRAIC[36]); resid[15] = RATES[4] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[69]*CONSTANTS[2]))*((ALGEBRAIC[19]+ALGEBRAIC[32]) - 2.00000*ALGEBRAIC[37])+ STATES[8]*CONSTANTS[60]*CONSTANTS[64]+( ALGEBRAIC[51]*CONSTANTS[61])/CONSTANTS[67]) - RATES[19]) - RATES[20]) - ALGEBRAIC[41]; resid[16] = RATES[8] - ( - 1.00000*ALGEBRAIC[22])/( 2.00000*CONSTANTS[60]*1.00000*CONSTANTS[69]*CONSTANTS[2]) - STATES[8]*CONSTANTS[64]; resid[17] = RATES[15] - (CONSTANTS[67]/CONSTANTS[63])*ALGEBRAIC[41] - ALGEBRAIC[42]; resid[18] = RATES[16] - (CONSTANTS[63]/CONSTANTS[61])*ALGEBRAIC[42] - ALGEBRAIC[51]; resid[19] = RATES[19] - CONSTANTS[54]*STATES[4]*(CONSTANTS[52] - STATES[19]) - CONSTANTS[55]*STATES[19]; resid[20] = RATES[20] - CONSTANTS[56]*STATES[4]*(CONSTANTS[53] - STATES[20]) - CONSTANTS[57]*STATES[20]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[25] = ALGEBRAIC[19]+ALGEBRAIC[20]+ALGEBRAIC[21]+ALGEBRAIC[22]+ALGEBRAIC[23]+ALGEBRAIC[24]; ALGEBRAIC[39] = ALGEBRAIC[37]+ALGEBRAIC[38]; } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[2] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(STATES[1]/STATES[2]); ALGEBRAIC[5] = ( (( CONSTANTS[12]*STATES[1])/(STATES[1]+CONSTANTS[11]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[2])+10.0000)*CONSTANTS[2]*1.67000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[6] = ( CONSTANTS[13]*(STATES[2] - STATES[1]*exp(( - STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))/140.000; ALGEBRAIC[7] = STATES[5]*ALGEBRAIC[6]; ALGEBRAIC[8] = (STATES[0]+22.0000) - 40.0000; ALGEBRAIC[9] = (CONDVAR[3]<0.00000 ? 2.50000 : ( 3.00000*0.500000*ALGEBRAIC[8])/(1.00000 - exp(- ALGEBRAIC[8]/5.00000))); ALGEBRAIC[10] = (CONDVAR[4]<0.00000 ? 2.50000 : ( 3.00000*0.178000*ALGEBRAIC[8])/(exp(ALGEBRAIC[8]/15.0000) - 1.00000)); ALGEBRAIC[4] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[9]+ 0.120000*STATES[1])/(STATES[3]+ 0.120000*STATES[2])); ALGEBRAIC[11] = CONSTANTS[15]*pow(STATES[6], 3.00000)*STATES[7]*(STATES[0] - ALGEBRAIC[4]); ALGEBRAIC[12] = STATES[0]+41.0000; ALGEBRAIC[13] = (CONDVAR[5]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[12])/(1.00000 - exp( - 0.100000*ALGEBRAIC[12]))); ALGEBRAIC[14] = 8000.00*exp( - 0.0560000*(STATES[0]+66.0000)); ALGEBRAIC[15] = 20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[17])); ALGEBRAIC[16] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[17]))); ALGEBRAIC[1] = (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[9]/STATES[3]); ALGEBRAIC[17] = CONSTANTS[18]*(STATES[0] - ALGEBRAIC[1]); ALGEBRAIC[18] = CONSTANTS[19]*(STATES[0] - ALGEBRAIC[2]); ALGEBRAIC[19] = ((( (1.00000 - CONSTANTS[26])*4.00000*CONSTANTS[20]*STATES[9]*STATES[10]*STATES[11]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[4]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[20] = ((( (1.00000 - CONSTANTS[26])*CONSTANTS[21]*CONSTANTS[20]*STATES[9]*STATES[10]*STATES[11]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - STATES[1]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[21] = ((( (1.00000 - CONSTANTS[26])*CONSTANTS[22]*CONSTANTS[20]*STATES[9]*STATES[10]*STATES[11]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[9]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[22] = ((( CONSTANTS[26]*4.00000*CONSTANTS[20]*STATES[9]*STATES[10]*STATES[12]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[4]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[23] = ((( CONSTANTS[26]*CONSTANTS[21]*CONSTANTS[20]*STATES[9]*STATES[10]*STATES[12]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - STATES[1]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[24] = ((( CONSTANTS[26]*CONSTANTS[22]*CONSTANTS[20]*STATES[9]*STATES[10]*STATES[12]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) - CONSTANTS[9]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))); ALGEBRAIC[26] = (STATES[0]+24.0000) - 20.0000; ALGEBRAIC[27] = (CONDVAR[6]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[26])/(1.00000 - exp(- ALGEBRAIC[26]/3.00000))); ALGEBRAIC[28] = (CONDVAR[7]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[26])/(exp(ALGEBRAIC[26]/7.50000) - 1.00000)); ALGEBRAIC[29] = (STATES[0]+34.0000) - 10.0000; ALGEBRAIC[30] = (CONDVAR[8]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[29])/(exp(ALGEBRAIC[29]/5.50000) - 1.00000)); ALGEBRAIC[31] = 12.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/5.50000)); ALGEBRAIC[3] = (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[4]); ALGEBRAIC[32] = CONSTANTS[30]*(STATES[0] - ALGEBRAIC[3]); ALGEBRAIC[33] = CONSTANTS[31]*(CONSTANTS[32]+ STATES[13]*(1.00000 - CONSTANTS[32]))*STATES[14]*(STATES[0] - ALGEBRAIC[2]); ALGEBRAIC[34] = 0.260000*0.0330000*exp(- STATES[0]/14.8750); ALGEBRAIC[35] = ( 0.260000*33.0000)/(1.00000+exp(- (STATES[0]+10.0000)/7.00000)); ALGEBRAIC[36] = ( (( CONSTANTS[33]*STATES[1])/(CONSTANTS[34]+STATES[1]))*STATES[3])/(CONSTANTS[35]+STATES[3]); ALGEBRAIC[37] = ( (1.00000 - CONSTANTS[40])*CONSTANTS[36]*( exp(( CONSTANTS[39]*(CONSTANTS[37] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[3], CONSTANTS[37])*CONSTANTS[10] - exp(( (CONSTANTS[39] - 1.00000)*(CONSTANTS[37] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[9], CONSTANTS[37])*STATES[4]))/( (1.00000+ CONSTANTS[38]*( STATES[4]*pow(CONSTANTS[9], CONSTANTS[37])+ CONSTANTS[10]*pow(STATES[3], CONSTANTS[37])))*(1.00000+STATES[4]/0.00690000)); ALGEBRAIC[38] = ( CONSTANTS[40]*CONSTANTS[36]*( exp(( CONSTANTS[39]*(CONSTANTS[37] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[3], CONSTANTS[37])*CONSTANTS[10] - exp(( (CONSTANTS[39] - 1.00000)*(CONSTANTS[37] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[9], CONSTANTS[37])*STATES[8]))/( (1.00000+ CONSTANTS[38]*( STATES[8]*pow(CONSTANTS[9], CONSTANTS[37])+ CONSTANTS[10]*pow(STATES[3], CONSTANTS[37])))*(1.00000+STATES[8]/0.00690000)); ALGEBRAIC[40] = STATES[4]+ STATES[15]*CONSTANTS[66]+ CONSTANTS[41]*CONSTANTS[42]+CONSTANTS[41]; ALGEBRAIC[41] = (STATES[4]/ALGEBRAIC[40])*CONSTANTS[44] - (( STATES[15]*CONSTANTS[66])/ALGEBRAIC[40])*CONSTANTS[45]; ALGEBRAIC[42] = 50.0000*(STATES[15] - STATES[16]); ALGEBRAIC[43] = exp( 0.0800000*(STATES[0] - 40.0000)); ALGEBRAIC[44] = STATES[4]/(STATES[4]+CONSTANTS[48]); ALGEBRAIC[45] = STATES[8]/(STATES[8]+CONSTANTS[49]); ALGEBRAIC[46] = ALGEBRAIC[44]+ (1.00000 - ALGEBRAIC[44])*ALGEBRAIC[45]; ALGEBRAIC[47] = 0.00000*ALGEBRAIC[43]+ 500.000*pow(ALGEBRAIC[46], 2.00000); ALGEBRAIC[48] = 60.0000+ 500.000*pow(ALGEBRAIC[46], 2.00000); ALGEBRAIC[49] = (CONDVAR[9]<0.00000 ? 5.00000 : 1.00000); ALGEBRAIC[50] = (1.00000 - STATES[17]) - STATES[18]; ALGEBRAIC[51] = ( pow(STATES[17]/(STATES[17]+0.250000), 2.00000)*CONSTANTS[47]+CONSTANTS[46])*STATES[16]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; SI[19] = 1.0; SI[20] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = VOI - CONSTANTS[4]; CONDVAR[1] = VOI - CONSTANTS[5]; CONDVAR[2] = ((VOI - CONSTANTS[4]) - floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7]; CONDVAR[3] = fabs(ALGEBRAIC[8]) - CONSTANTS[14]; CONDVAR[4] = fabs(ALGEBRAIC[8]) - CONSTANTS[14]; CONDVAR[5] = fabs(ALGEBRAIC[12]) - CONSTANTS[16]; CONDVAR[6] = fabs(ALGEBRAIC[26]) - 0.000100000; CONDVAR[7] = fabs(ALGEBRAIC[26]) - 0.000100000; CONDVAR[8] = fabs(ALGEBRAIC[29]) - CONSTANTS[29]; CONDVAR[9] = STATES[0] - - 50.0000; }