function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =52; end % There are a total of 21 entries in each of the rate and state variable arrays. % There are a total of 70 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (second)'); LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)'); LEGEND_CONSTANTS(:,1) = strpad('R in component membrane (millijoule_per_mole_kelvin)'); LEGEND_CONSTANTS(:,2) = strpad('T in component membrane (kelvin)'); LEGEND_CONSTANTS(:,3) = strpad('F in component membrane (coulomb_per_mole)'); LEGEND_CONSTANTS(:,4) = strpad('Cm in component membrane (microF)'); LEGEND_ALGEBRAIC(:,27) = strpad('i_K1 in component time_independent_potassium_current (nanoA)'); LEGEND_ALGEBRAIC(:,44) = strpad('i_to in component transient_outward_current (nanoA)'); LEGEND_ALGEBRAIC(:,31) = strpad('i_K in component time_dependent_potassium_current (nanoA)'); LEGEND_ALGEBRAIC(:,37) = strpad('i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,40) = strpad('i_Ca_L_K_ds in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,45) = strpad('i_NaK in component sodium_potassium_pump (nanoA)'); LEGEND_ALGEBRAIC(:,33) = strpad('i_Na in component fast_sodium_current (nanoA)'); LEGEND_ALGEBRAIC(:,34) = strpad('i_b_Na in component sodium_background_current (nanoA)'); LEGEND_ALGEBRAIC(:,38) = strpad('i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,41) = strpad('i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,46) = strpad('i_NaCa_cyt in component sodium_calcium_exchanger (nanoA)'); LEGEND_ALGEBRAIC(:,47) = strpad('i_NaCa_ds in component sodium_calcium_exchanger (nanoA)'); LEGEND_ALGEBRAIC(:,36) = strpad('i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,39) = strpad('i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA)'); LEGEND_ALGEBRAIC(:,43) = strpad('i_b_Ca in component calcium_background_current (nanoA)'); LEGEND_ALGEBRAIC(:,35) = strpad('i_b_K in component potassium_background_current (nanoA)'); LEGEND_ALGEBRAIC(:,7) = strpad('i_Stim in component membrane (nanoA)'); LEGEND_CONSTANTS(:,5) = strpad('stim_start in component membrane (second)'); LEGEND_CONSTANTS(:,6) = strpad('stim_end in component membrane (second)'); LEGEND_CONSTANTS(:,7) = strpad('stim_period in component membrane (second)'); LEGEND_CONSTANTS(:,8) = strpad('stim_duration in component membrane (second)'); LEGEND_CONSTANTS(:,9) = strpad('stim_amplitude in component membrane (nanoA)'); LEGEND_ALGEBRAIC(:,15) = strpad('E_Na in component reversal_potentials (millivolt)'); LEGEND_ALGEBRAIC(:,21) = strpad('E_K in component reversal_potentials (millivolt)'); LEGEND_ALGEBRAIC(:,23) = strpad('E_Ca in component reversal_potentials (millivolt)'); LEGEND_ALGEBRAIC(:,25) = strpad('E_mh in component reversal_potentials (millivolt)'); LEGEND_STATES(:,2) = strpad('K_o in component extracellular_potassium_concentration (millimolar)'); LEGEND_CONSTANTS(:,10) = strpad('Na_o in component extracellular_sodium_concentration (millimolar)'); LEGEND_STATES(:,3) = strpad('K_i in component intracellular_potassium_concentration (millimolar)'); LEGEND_STATES(:,4) = strpad('Na_i in component intracellular_sodium_concentration (millimolar)'); LEGEND_CONSTANTS(:,11) = strpad('Ca_o in component extracellular_calcium_concentration (millimolar)'); LEGEND_STATES(:,5) = strpad('Ca_i in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,12) = strpad('K_mk1 in component time_independent_potassium_current (millimolar)'); LEGEND_CONSTANTS(:,13) = strpad('g_K1 in component time_independent_potassium_current (microS)'); LEGEND_ALGEBRAIC(:,29) = strpad('I_K in component time_dependent_potassium_current (nanoA)'); LEGEND_CONSTANTS(:,14) = strpad('i_K_max in component time_dependent_potassium_current (nanoA)'); LEGEND_STATES(:,6) = strpad('x in component time_dependent_potassium_current_x_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,9) = strpad('alpha_x in component time_dependent_potassium_current_x_gate (per_second)'); LEGEND_ALGEBRAIC(:,17) = strpad('beta_x in component time_dependent_potassium_current_x_gate (per_second)'); LEGEND_CONSTANTS(:,15) = strpad('delta_x in component time_dependent_potassium_current_x_gate (millivolt)'); LEGEND_ALGEBRAIC(:,1) = strpad('E0_x in component time_dependent_potassium_current_x_gate (millivolt)'); LEGEND_CONSTANTS(:,16) = strpad('g_Na in component fast_sodium_current (microS)'); LEGEND_STATES(:,7) = strpad('m in component fast_sodium_current_m_gate (dimensionless)'); LEGEND_STATES(:,8) = strpad('h in component fast_sodium_current_h_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,10) = strpad('alpha_m in component fast_sodium_current_m_gate (per_second)'); LEGEND_ALGEBRAIC(:,18) = strpad('beta_m in component fast_sodium_current_m_gate (per_second)'); LEGEND_CONSTANTS(:,17) = strpad('delta_m in component fast_sodium_current_m_gate (millivolt)'); LEGEND_ALGEBRAIC(:,2) = strpad('E0_m in component fast_sodium_current_m_gate (millivolt)'); LEGEND_ALGEBRAIC(:,3) = strpad('alpha_h in component fast_sodium_current_h_gate (per_second)'); LEGEND_ALGEBRAIC(:,11) = strpad('beta_h in component fast_sodium_current_h_gate (per_second)'); LEGEND_CONSTANTS(:,18) = strpad('shift_h in component fast_sodium_current_h_gate (millivolt)'); LEGEND_CONSTANTS(:,19) = strpad('g_bna in component sodium_background_current (microS)'); LEGEND_CONSTANTS(:,20) = strpad('g_bk in component potassium_background_current (microS)'); LEGEND_ALGEBRAIC(:,42) = strpad('i_Ca_L in component L_type_Ca_channel (nanoA)'); LEGEND_CONSTANTS(:,21) = strpad('P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar)'); LEGEND_CONSTANTS(:,22) = strpad('P_CaK in component L_type_Ca_channel (dimensionless)'); LEGEND_CONSTANTS(:,23) = strpad('P_CaNa in component L_type_Ca_channel (dimensionless)'); LEGEND_STATES(:,9) = strpad('Ca_ds in component intracellular_calcium_concentration (millimolar)'); LEGEND_STATES(:,10) = strpad('d in component L_type_Ca_channel_d_gate (dimensionless)'); LEGEND_STATES(:,11) = strpad('f in component L_type_Ca_channel_f_gate (dimensionless)'); LEGEND_STATES(:,12) = strpad('f2 in component L_type_Ca_channel_f2_gate (dimensionless)'); LEGEND_STATES(:,13) = strpad('f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless)'); LEGEND_CONSTANTS(:,24) = strpad('Km_f2 in component L_type_Ca_channel (millimolar)'); LEGEND_CONSTANTS(:,25) = strpad('Km_f2ds in component L_type_Ca_channel (millimolar)'); LEGEND_CONSTANTS(:,26) = strpad('R_decay in component L_type_Ca_channel (per_second)'); LEGEND_CONSTANTS(:,27) = strpad('FrICa in component L_type_Ca_channel (dimensionless)'); LEGEND_ALGEBRAIC(:,12) = strpad('alpha_d in component L_type_Ca_channel_d_gate (per_second)'); LEGEND_ALGEBRAIC(:,19) = strpad('beta_d in component L_type_Ca_channel_d_gate (per_second)'); LEGEND_ALGEBRAIC(:,4) = strpad('E0_d in component L_type_Ca_channel_d_gate (millivolt)'); LEGEND_CONSTANTS(:,28) = strpad('speed_d in component L_type_Ca_channel_d_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,13) = strpad('alpha_f in component L_type_Ca_channel_f_gate (per_second)'); LEGEND_ALGEBRAIC(:,20) = strpad('beta_f in component L_type_Ca_channel_f_gate (per_second)'); LEGEND_CONSTANTS(:,29) = strpad('speed_f in component L_type_Ca_channel_f_gate (dimensionless)'); LEGEND_CONSTANTS(:,30) = strpad('delta_f in component L_type_Ca_channel_f_gate (millivolt)'); LEGEND_ALGEBRAIC(:,5) = strpad('E0_f in component L_type_Ca_channel_f_gate (millivolt)'); LEGEND_CONSTANTS(:,31) = strpad('g_bca in component calcium_background_current (microS)'); LEGEND_CONSTANTS(:,32) = strpad('g_to in component transient_outward_current (microS)'); LEGEND_CONSTANTS(:,33) = strpad('g_tos in component transient_outward_current (dimensionless)'); LEGEND_STATES(:,14) = strpad('s in component transient_outward_current_s_gate (dimensionless)'); LEGEND_STATES(:,15) = strpad('r in component transient_outward_current_r_gate (dimensionless)'); LEGEND_ALGEBRAIC(:,6) = strpad('alpha_s in component transient_outward_current_s_gate (per_second)'); LEGEND_ALGEBRAIC(:,14) = strpad('beta_s in component transient_outward_current_s_gate (per_second)'); LEGEND_CONSTANTS(:,34) = strpad('i_NaK_max in component sodium_potassium_pump (nanoA)'); LEGEND_CONSTANTS(:,35) = strpad('K_mK in component sodium_potassium_pump (millimolar)'); LEGEND_CONSTANTS(:,36) = strpad('K_mNa in component sodium_potassium_pump (millimolar)'); LEGEND_ALGEBRAIC(:,49) = strpad('i_NaCa in component sodium_calcium_exchanger (nanoA)'); LEGEND_CONSTANTS(:,37) = strpad('k_NaCa in component sodium_calcium_exchanger (nanoA)'); LEGEND_CONSTANTS(:,38) = strpad('n_NaCa in component sodium_calcium_exchanger (dimensionless)'); LEGEND_CONSTANTS(:,39) = strpad('d_NaCa in component sodium_calcium_exchanger (dimensionless)'); LEGEND_CONSTANTS(:,40) = strpad('gamma in component sodium_calcium_exchanger (dimensionless)'); LEGEND_CONSTANTS(:,41) = strpad('FRiNaCa in component sodium_calcium_exchanger (dimensionless)'); LEGEND_ALGEBRAIC(:,50) = strpad('i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)'); LEGEND_CONSTANTS(:,67) = strpad('K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless)'); LEGEND_ALGEBRAIC(:,48) = strpad('K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar)'); LEGEND_CONSTANTS(:,42) = strpad('K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar)'); LEGEND_CONSTANTS(:,43) = strpad('K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless)'); LEGEND_CONSTANTS(:,44) = strpad('K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar)'); LEGEND_CONSTANTS(:,45) = strpad('alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)'); LEGEND_CONSTANTS(:,46) = strpad('beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second)'); LEGEND_STATES(:,16) = strpad('Ca_up in component intracellular_calcium_concentration (millimolar)'); LEGEND_ALGEBRAIC(:,51) = strpad('i_trans in component calcium_translocation (millimolar_per_second)'); LEGEND_STATES(:,17) = strpad('Ca_rel in component intracellular_calcium_concentration (millimolar)'); LEGEND_ALGEBRAIC(:,52) = strpad('i_rel in component calcium_release (millimolar_per_second)'); LEGEND_ALGEBRAIC(:,8) = strpad('VoltDep in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,24) = strpad('RegBindSite in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,16) = strpad('CaiReg in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,22) = strpad('CadsReg in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,26) = strpad('ActRate in component calcium_release (per_second)'); LEGEND_ALGEBRAIC(:,28) = strpad('InactRate in component calcium_release (per_second)'); LEGEND_CONSTANTS(:,47) = strpad('K_leak_rate in component calcium_release (per_second)'); LEGEND_CONSTANTS(:,48) = strpad('K_m_rel in component calcium_release (per_second)'); LEGEND_CONSTANTS(:,49) = strpad('K_m_Ca_cyt in component calcium_release (millimolar)'); LEGEND_CONSTANTS(:,50) = strpad('K_m_Ca_ds in component calcium_release (millimolar)'); LEGEND_ALGEBRAIC(:,32) = strpad('PrecFrac in component calcium_release (dimensionless)'); LEGEND_STATES(:,18) = strpad('ActFrac in component calcium_release (dimensionless)'); LEGEND_STATES(:,19) = strpad('ProdFrac in component calcium_release (dimensionless)'); LEGEND_ALGEBRAIC(:,30) = strpad('SpeedRel in component calcium_release (dimensionless)'); LEGEND_CONSTANTS(:,70) = strpad('V_i in component intracellular_calcium_concentration (micrometre3)'); LEGEND_CONSTANTS(:,51) = strpad('K_b in component extracellular_potassium_concentration (millimolar)'); LEGEND_CONSTANTS(:,52) = strpad('pf in component extracellular_potassium_concentration (per_second)'); LEGEND_CONSTANTS(:,69) = strpad('V_e in component intracellular_calcium_concentration (micrometre3)'); LEGEND_STATES(:,20) = strpad('Ca_Calmod in component intracellular_calcium_concentration (millimolar)'); LEGEND_STATES(:,21) = strpad('Ca_Trop in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,53) = strpad('Calmod in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,54) = strpad('Trop in component intracellular_calcium_concentration (millimolar)'); LEGEND_CONSTANTS(:,55) = strpad('alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second)'); LEGEND_CONSTANTS(:,56) = strpad('beta_Calmod in component intracellular_calcium_concentration (per_second)'); LEGEND_CONSTANTS(:,57) = strpad('alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second)'); LEGEND_CONSTANTS(:,58) = strpad('beta_Trop in component intracellular_calcium_concentration (per_second)'); LEGEND_CONSTANTS(:,59) = strpad('radius in component intracellular_calcium_concentration (micrometre)'); LEGEND_CONSTANTS(:,60) = strpad('length in component intracellular_calcium_concentration (micrometre)'); LEGEND_CONSTANTS(:,66) = strpad('V_Cell in component intracellular_calcium_concentration (micrometre3)'); LEGEND_CONSTANTS(:,68) = strpad('V_i_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,61) = strpad('V_ds_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,62) = strpad('V_rel_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,63) = strpad('V_e_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,64) = strpad('V_up_ratio in component intracellular_calcium_concentration (dimensionless)'); LEGEND_CONSTANTS(:,65) = strpad('Kdecay in component intracellular_calcium_concentration (per_second)'); LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)'); LEGEND_RATES(:,6) = strpad('d/dt x in component time_dependent_potassium_current_x_gate (dimensionless)'); LEGEND_RATES(:,7) = strpad('d/dt m in component fast_sodium_current_m_gate (dimensionless)'); LEGEND_RATES(:,8) = strpad('d/dt h in component fast_sodium_current_h_gate (dimensionless)'); LEGEND_RATES(:,10) = strpad('d/dt d in component L_type_Ca_channel_d_gate (dimensionless)'); LEGEND_RATES(:,11) = strpad('d/dt f in component L_type_Ca_channel_f_gate (dimensionless)'); LEGEND_RATES(:,12) = strpad('d/dt f2 in component L_type_Ca_channel_f2_gate (dimensionless)'); LEGEND_RATES(:,13) = strpad('d/dt f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless)'); LEGEND_RATES(:,14) = strpad('d/dt s in component transient_outward_current_s_gate (dimensionless)'); LEGEND_RATES(:,15) = strpad('d/dt r in component transient_outward_current_r_gate (dimensionless)'); LEGEND_RATES(:,18) = strpad('d/dt ActFrac in component calcium_release (dimensionless)'); LEGEND_RATES(:,19) = strpad('d/dt ProdFrac in component calcium_release (dimensionless)'); LEGEND_RATES(:,4) = strpad('d/dt Na_i in component intracellular_sodium_concentration (millimolar)'); LEGEND_RATES(:,2) = strpad('d/dt K_o in component extracellular_potassium_concentration (millimolar)'); LEGEND_RATES(:,3) = strpad('d/dt K_i in component intracellular_potassium_concentration (millimolar)'); LEGEND_RATES(:,5) = strpad('d/dt Ca_i in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,20) = strpad('d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,21) = strpad('d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,9) = strpad('d/dt Ca_ds in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,16) = strpad('d/dt Ca_up in component intracellular_calcium_concentration (millimolar)'); LEGEND_RATES(:,17) = strpad('d/dt Ca_rel in component intracellular_calcium_concentration (millimolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = -86.27784; CONSTANTS(:,1) = 8314.472; CONSTANTS(:,2) = 310; CONSTANTS(:,3) = 96485.3415; CONSTANTS(:,4) = 9.5e-5; CONSTANTS(:,5) = 0.02; CONSTANTS(:,6) = 9; CONSTANTS(:,7) = 0.5; CONSTANTS(:,8) = 0.002; CONSTANTS(:,9) = -1.8; STATES(:,2) = 5.3201028; CONSTANTS(:,10) = 148.5; STATES(:,3) = 140.1333; STATES(:,4) = 6.835; CONSTANTS(:,11) = 2.5; STATES(:,5) = 7.07933e-5; CONSTANTS(:,12) = 10; CONSTANTS(:,13) = 0.12; CONSTANTS(:,14) = 1.5; STATES(:,6) = 2.3455e-6; CONSTANTS(:,15) = 0.0001; CONSTANTS(:,16) = 0.6; STATES(:,7) = 0.003956; STATES(:,8) = 0.9759885; CONSTANTS(:,17) = 1e-5; CONSTANTS(:,18) = 0; CONSTANTS(:,19) = 0.0001; CONSTANTS(:,20) = 0.004; CONSTANTS(:,21) = 0.06; CONSTANTS(:,22) = 0.003; CONSTANTS(:,23) = 0.01; STATES(:,9) = 0.0008364; STATES(:,10) = 3.06884e-12; STATES(:,11) = 0.9999977; STATES(:,12) = 0.994096; STATES(:,13) = 0.4387865; CONSTANTS(:,24) = 100000; CONSTANTS(:,25) = 0.001; CONSTANTS(:,26) = 20; CONSTANTS(:,27) = 1; CONSTANTS(:,28) = 10; CONSTANTS(:,29) = 2; CONSTANTS(:,30) = 0.0001; CONSTANTS(:,31) = 0.00025; CONSTANTS(:,32) = 0.08; CONSTANTS(:,33) = 0.15; STATES(:,14) = 0.954689; STATES(:,15) = 2.4223e-5; CONSTANTS(:,34) = 0.7; CONSTANTS(:,35) = 1; CONSTANTS(:,36) = 40; CONSTANTS(:,37) = 0.0002; CONSTANTS(:,38) = 3; CONSTANTS(:,39) = 0.005; CONSTANTS(:,40) = 0.5; CONSTANTS(:,41) = 0.001; CONSTANTS(:,42) = 0.0003; CONSTANTS(:,43) = 0.4; CONSTANTS(:,44) = 0.5; CONSTANTS(:,45) = 0.4; CONSTANTS(:,46) = 0.03; STATES(:,16) = 0.479749; STATES(:,17) = 0.43984; CONSTANTS(:,47) = 0.05; CONSTANTS(:,48) = 250; CONSTANTS(:,49) = 0.0005; CONSTANTS(:,50) = 0.01; STATES(:,18) = 0.0113161; STATES(:,19) = 0.9402563; CONSTANTS(:,51) = 5.4; CONSTANTS(:,52) = 0.7; STATES(:,20) = 0.0024448; STATES(:,21) = 0.0017012; CONSTANTS(:,53) = 0.02; CONSTANTS(:,54) = 0.05; CONSTANTS(:,55) = 100000; CONSTANTS(:,56) = 50; CONSTANTS(:,57) = 100000; CONSTANTS(:,58) = 200; CONSTANTS(:,59) = 12; CONSTANTS(:,60) = 74; CONSTANTS(:,61) = 0.1; CONSTANTS(:,62) = 0.1; CONSTANTS(:,63) = 0.4; CONSTANTS(:,64) = 0.01; CONSTANTS(:,65) = 10; CONSTANTS(:,66) = ( 3.14159.*power(CONSTANTS(:,59)./1000.00, 2.00000).*CONSTANTS(:,60))./1000.00; CONSTANTS(:,67) = ( CONSTANTS(:,42).*CONSTANTS(:,43))./CONSTANTS(:,44); CONSTANTS(:,68) = ((1.00000 - CONSTANTS(:,63)) - CONSTANTS(:,64)) - CONSTANTS(:,62); CONSTANTS(:,69) = CONSTANTS(:,66).*CONSTANTS(:,63); CONSTANTS(:,70) = CONSTANTS(:,66).*CONSTANTS(:,68); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,12) = 1.00000 - 1.00000.*(STATES(:,5)./(CONSTANTS(:,24)+STATES(:,5))+STATES(:,12)); RATES(:,13) = CONSTANTS(:,26).*(1.00000 - (STATES(:,9)./(CONSTANTS(:,25)+STATES(:,9))+STATES(:,13))); RATES(:,15) = 333.000.*(1.00000./(1.00000+exp( - ((STATES(:,1)+4.00000) - 24.0000)./10.0000)) - STATES(:,15)); ALGEBRAIC(:,3) = 20.0000.*exp( - 0.125000.*((STATES(:,1)+75.0000) - CONSTANTS(:,18))); ALGEBRAIC(:,11) = 2000.00./(1.00000+ 320.000.*exp( - 0.100000.*((STATES(:,1)+75.0000) - CONSTANTS(:,18)))); RATES(:,8) = ALGEBRAIC(:,3).*(1.00000 - STATES(:,8)) - ALGEBRAIC(:,11).*STATES(:,8); ALGEBRAIC(:,6) = 0.260000.*0.0330000.*exp( - STATES(:,1)./14.8750); ALGEBRAIC(:,14) = ( 0.260000.*33.0000)./(1.00000+exp( - (STATES(:,1)+10.0000)./7.00000)); RATES(:,14) = ALGEBRAIC(:,6).*(1.00000 - STATES(:,14)) - ALGEBRAIC(:,14).*STATES(:,14); ALGEBRAIC(:,1) = (STATES(:,1)+22.0000) - 40.0000; ALGEBRAIC(:,9) = piecewise({abs(ALGEBRAIC(:,1))=CONSTANTS(:,5)&VOI<=CONSTANTS(:,6)&(VOI - CONSTANTS(:,5)) - floor((VOI - CONSTANTS(:,5))./CONSTANTS(:,7)).*CONSTANTS(:,7)<=CONSTANTS(:,8), CONSTANTS(:,9) }, 0.00000); RATES(:,1) = ( - 1.00000./CONSTANTS(:,4)).*(ALGEBRAIC(:,7)+ALGEBRAIC(:,27)+ALGEBRAIC(:,44)+ALGEBRAIC(:,31)+ALGEBRAIC(:,45)+ALGEBRAIC(:,33)+ALGEBRAIC(:,34)+ALGEBRAIC(:,38)+ALGEBRAIC(:,41)+ALGEBRAIC(:,46)+ALGEBRAIC(:,47)+ALGEBRAIC(:,36)+ALGEBRAIC(:,39)+ALGEBRAIC(:,37)+ALGEBRAIC(:,40)+ALGEBRAIC(:,43)+ALGEBRAIC(:,35)); ALGEBRAIC(:,48) = STATES(:,5)+ STATES(:,16).*CONSTANTS(:,67)+ CONSTANTS(:,42).*CONSTANTS(:,43)+CONSTANTS(:,42); ALGEBRAIC(:,50) = (STATES(:,5)./ALGEBRAIC(:,48)).*CONSTANTS(:,45) - (( STATES(:,16).*CONSTANTS(:,67))./ALGEBRAIC(:,48)).*CONSTANTS(:,46); ALGEBRAIC(:,51) = 50.0000.*(STATES(:,16) - STATES(:,17)); RATES(:,16) = (CONSTANTS(:,68)./CONSTANTS(:,64)).*ALGEBRAIC(:,50) - ALGEBRAIC(:,51); RATES(:,20) = CONSTANTS(:,55).*STATES(:,5).*(CONSTANTS(:,53) - STATES(:,20)) - CONSTANTS(:,56).*STATES(:,20); ALGEBRAIC(:,52) = ( power(STATES(:,18)./(STATES(:,18)+0.250000), 2.00000).*CONSTANTS(:,48)+CONSTANTS(:,47)).*STATES(:,17); RATES(:,17) = (CONSTANTS(:,64)./CONSTANTS(:,62)).*ALGEBRAIC(:,51) - ALGEBRAIC(:,52); RATES(:,21) = CONSTANTS(:,57).*STATES(:,5).*(CONSTANTS(:,54) - STATES(:,21)) - CONSTANTS(:,58).*STATES(:,21); RATES(:,5) = ((( ( - 1.00000./( 2.00000.*1.00000.*CONSTANTS(:,70).*CONSTANTS(:,3))).*((ALGEBRAIC(:,36)+ALGEBRAIC(:,43)) - 2.00000.*ALGEBRAIC(:,46))+ STATES(:,9).*CONSTANTS(:,61).*CONSTANTS(:,65)+( ALGEBRAIC(:,52).*CONSTANTS(:,62))./CONSTANTS(:,68)) - RATES(:,20)) - RATES(:,21)) - ALGEBRAIC(:,50); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,3) = 20.0000.*exp( - 0.125000.*((STATES(:,1)+75.0000) - CONSTANTS(:,18))); ALGEBRAIC(:,11) = 2000.00./(1.00000+ 320.000.*exp( - 0.100000.*((STATES(:,1)+75.0000) - CONSTANTS(:,18)))); ALGEBRAIC(:,6) = 0.260000.*0.0330000.*exp( - STATES(:,1)./14.8750); ALGEBRAIC(:,14) = ( 0.260000.*33.0000)./(1.00000+exp( - (STATES(:,1)+10.0000)./7.00000)); ALGEBRAIC(:,1) = (STATES(:,1)+22.0000) - 40.0000; ALGEBRAIC(:,9) = piecewise({abs(ALGEBRAIC(:,1))=CONSTANTS(:,5)&VOI<=CONSTANTS(:,6)&(VOI - CONSTANTS(:,5)) - floor((VOI - CONSTANTS(:,5))./CONSTANTS(:,7)).*CONSTANTS(:,7)<=CONSTANTS(:,8), CONSTANTS(:,9) }, 0.00000); ALGEBRAIC(:,48) = STATES(:,5)+ STATES(:,16).*CONSTANTS(:,67)+ CONSTANTS(:,42).*CONSTANTS(:,43)+CONSTANTS(:,42); ALGEBRAIC(:,50) = (STATES(:,5)./ALGEBRAIC(:,48)).*CONSTANTS(:,45) - (( STATES(:,16).*CONSTANTS(:,67))./ALGEBRAIC(:,48)).*CONSTANTS(:,46); ALGEBRAIC(:,51) = 50.0000.*(STATES(:,16) - STATES(:,17)); ALGEBRAIC(:,52) = ( power(STATES(:,18)./(STATES(:,18)+0.250000), 2.00000).*CONSTANTS(:,48)+CONSTANTS(:,47)).*STATES(:,17); ALGEBRAIC(:,42) = ALGEBRAIC(:,36)+ALGEBRAIC(:,37)+ALGEBRAIC(:,38)+ALGEBRAIC(:,39)+ALGEBRAIC(:,40)+ALGEBRAIC(:,41); ALGEBRAIC(:,49) = ALGEBRAIC(:,46)+ALGEBRAIC(:,47); end % Compute result of a piecewise function function x = piecewise(cases, default) set = [0]; for i = 1:2:length(cases) if (length(cases{i+1}) == 1) x(cases{i} & ~set,:) = cases{i+1}; else x(cases{i} & ~set,:) = cases{i+1}(cases{i} & ~set); end set = set | cases{i}; if(set), break, end end if (length(default) == 1) x(~set,:) = default; else x(~set,:) = default(~set); end end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end