# Size of variable arrays: sizeAlgebraic = 49 sizeStates = 18 sizeConstants = 46 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_constants[0] = "R in component constants (joule_per_kilomole_kelvin)" legend_constants[1] = "T in component constants (kelvin)" legend_constants[2] = "F in component constants (coulomb_per_mole)" legend_states[0] = "E in component membrane (millivolt)" legend_constants[3] = "C in component membrane (nanoF)" legend_algebraic[47] = "i_tot in component membrane (picoA)" legend_algebraic[18] = "i_CaL in component L_type_calcium_current (picoA)" legend_algebraic[19] = "i_CaT in component T_type_calcium_current (picoA)" legend_algebraic[20] = "i_Na in component fast_sodium_current (picoA)" legend_algebraic[23] = "i_K in component delayed_rectifying_potassium_current (picoA)" legend_algebraic[26] = "i_f in component hyperpolarising_activated_current (picoA)" legend_algebraic[27] = "i_p in component sodium_potassium_pump (picoA)" legend_algebraic[42] = "i_NaCa in component sodium_calcium_exchange_current (picoA)" legend_algebraic[43] = "i_bNa in component background_sodium_current (picoA)" legend_algebraic[45] = "i_bK in component background_potassium_current (picoA)" legend_algebraic[8] = "E_Ca in component reversal_potentials (millivolt)" legend_algebraic[16] = "E_Na in component reversal_potentials (millivolt)" legend_algebraic[17] = "E_K in component reversal_potentials (millivolt)" legend_states[1] = "Cai in component ion_concentrations (millimolar)" legend_states[2] = "Cao in component ion_concentrations (millimolar)" legend_states[3] = "Nai in component ion_concentrations (millimolar)" legend_states[4] = "Nao in component ion_concentrations (millimolar)" legend_states[5] = "Ki in component ion_concentrations (millimolar)" legend_states[6] = "Ko in component ion_concentrations (millimolar)" legend_constants[4] = "g_CaL in component L_type_calcium_current (nanoS)" legend_states[7] = "dL in component L_type_calcium_current_d_gate (dimensionless)" legend_states[8] = "fL in component L_type_calcium_current_f_gate (dimensionless)" legend_states[9] = "fL2 in component L_type_calcium_current_f2_gate (dimensionless)" legend_algebraic[0] = "dL_infinity in component L_type_calcium_current_d_gate (dimensionless)" legend_constants[5] = "tau_dL in component L_type_calcium_current_d_gate (second)" legend_algebraic[1] = "fL_infinity in component L_type_calcium_current_f_gate (dimensionless)" legend_algebraic[9] = "tau_fL in component L_type_calcium_current_f_gate (second)" legend_constants[6] = "alpha_fL2 in component L_type_calcium_current_f2_gate (per_second)" legend_constants[7] = "beta_fL2 in component L_type_calcium_current_f2_gate (per_millimolar_second)" legend_constants[8] = "g_CaT in component T_type_calcium_current (nanoS)" legend_states[10] = "dT in component T_type_calcium_current_d_gate (dimensionless)" legend_states[11] = "fT in component T_type_calcium_current_f_gate (dimensionless)" legend_algebraic[2] = "dT_infinity in component T_type_calcium_current_d_gate (dimensionless)" legend_algebraic[10] = "tau_dT in component T_type_calcium_current_d_gate (second)" legend_algebraic[3] = "fT_infinity in component T_type_calcium_current_f_gate (dimensionless)" legend_algebraic[11] = "tau_fT in component T_type_calcium_current_f_gate (second)" legend_constants[9] = "g_Na in component fast_sodium_current (nanoS)" legend_states[12] = "m in component fast_sodium_current_m_gate (dimensionless)" legend_states[13] = "h in component fast_sodium_current_h_gate (dimensionless)" legend_algebraic[4] = "alpha_m in component fast_sodium_current_m_gate (per_second)" legend_algebraic[12] = "beta_m in component fast_sodium_current_m_gate (per_second)" legend_algebraic[5] = "alpha_h in component fast_sodium_current_h_gate (per_second)" legend_algebraic[13] = "beta_h in component fast_sodium_current_h_gate (per_second)" legend_algebraic[21] = "i_KK in component delayed_rectifying_potassium_current (picoA)" legend_algebraic[22] = "i_KNa in component delayed_rectifying_potassium_current (picoA)" legend_constants[10] = "Kk in component delayed_rectifying_potassium_current (picoA_per_millimolar)" legend_constants[11] = "P_KNa in component delayed_rectifying_potassium_current (dimensionless)" legend_states[14] = "x in component delayed_rectifying_potassium_current_x_gate (dimensionless)" legend_algebraic[6] = "x_infinity in component delayed_rectifying_potassium_current_x_gate (dimensionless)" legend_algebraic[14] = "tau_x in component delayed_rectifying_potassium_current_x_gate (second)" legend_algebraic[24] = "i_fNa in component hyperpolarising_activated_current (picoA)" legend_algebraic[25] = "i_fK in component hyperpolarising_activated_current (picoA)" legend_constants[12] = "Kmf in component hyperpolarising_activated_current (millimolar)" legend_constants[13] = "g_fNa in component hyperpolarising_activated_current (nanoS)" legend_constants[14] = "g_fK in component hyperpolarising_activated_current (nanoS)" legend_states[15] = "y in component hyperpolarising_activated_current_y_gate (dimensionless)" legend_algebraic[7] = "alpha_y in component hyperpolarising_activated_current_y_gate (per_second)" legend_algebraic[15] = "beta_y in component hyperpolarising_activated_current_y_gate (per_second)" legend_constants[15] = "KmNa in component sodium_potassium_pump (millimolar)" legend_constants[16] = "KmK in component sodium_potassium_pump (millimolar)" legend_constants[17] = "i_pmax in component sodium_potassium_pump (picoA)" legend_constants[18] = "kNaCa in component sodium_calcium_exchange_current (picoA)" legend_algebraic[38] = "x1 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[39] = "x2 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[40] = "x3 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[41] = "x4 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[34] = "k41 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[32] = "k34 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[30] = "k23 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[31] = "k21 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[29] = "k32 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[37] = "k43 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[36] = "k12 in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[35] = "k14 in component sodium_calcium_exchange_current (dimensionless)" legend_constants[19] = "Qci in component sodium_calcium_exchange_current (dimensionless)" legend_constants[20] = "Qn in component sodium_calcium_exchange_current (dimensionless)" legend_constants[21] = "Qco in component sodium_calcium_exchange_current (dimensionless)" legend_constants[22] = "K3ni in component sodium_calcium_exchange_current (millimolar)" legend_constants[23] = "Kci in component sodium_calcium_exchange_current (millimolar)" legend_constants[24] = "K1ni in component sodium_calcium_exchange_current (millimolar)" legend_constants[25] = "K2ni in component sodium_calcium_exchange_current (millimolar)" legend_constants[26] = "Kcni in component sodium_calcium_exchange_current (millimolar)" legend_constants[27] = "K3no in component sodium_calcium_exchange_current (millimolar)" legend_constants[28] = "K1no in component sodium_calcium_exchange_current (millimolar)" legend_constants[29] = "K2no in component sodium_calcium_exchange_current (millimolar)" legend_constants[30] = "Kco in component sodium_calcium_exchange_current (millimolar)" legend_algebraic[28] = "do in component sodium_calcium_exchange_current (dimensionless)" legend_algebraic[33] = "di in component sodium_calcium_exchange_current (dimensionless)" legend_constants[31] = "g_Nab in component background_sodium_current (nanoS)" legend_constants[32] = "KbK in component background_potassium_current (picoA_per_millimolar)" legend_algebraic[44] = "i_up in component sarcoplasmic_reticulum_kinetics (picoA)" legend_algebraic[46] = "i_tr in component sarcoplasmic_reticulum_kinetics (picoA)" legend_algebraic[48] = "i_rel in component sarcoplasmic_reticulum_kinetics (picoA)" legend_constants[33] = "V_i in component ion_concentrations (microlitre)" legend_constants[43] = "V_rel in component sarcoplasmic_reticulum_kinetics (microlitre)" legend_constants[45] = "V_up in component sarcoplasmic_reticulum_kinetics (microlitre)" legend_constants[34] = "i_up_max in component sarcoplasmic_reticulum_kinetics (picoA)" legend_constants[35] = "KmCaup in component sarcoplasmic_reticulum_kinetics (millimolar)" legend_constants[36] = "KmCarel in component sarcoplasmic_reticulum_kinetics (millimolar)" legend_constants[37] = "tau_rel in component sarcoplasmic_reticulum_kinetics (second)" legend_constants[38] = "tau_tr in component sarcoplasmic_reticulum_kinetics (second)" legend_states[16] = "Caup in component ion_concentrations (millimolar)" legend_states[17] = "Carel in component ion_concentrations (millimolar)" legend_constants[44] = "V_e in component ion_concentrations (microlitre)" legend_constants[39] = "tau_b in component ion_concentrations (second)" legend_constants[40] = "Nab in component ion_concentrations (millimolar)" legend_constants[41] = "Cab in component ion_concentrations (millimolar)" legend_constants[42] = "Kb in component ion_concentrations (millimolar)" legend_rates[0] = "d/dt E in component membrane (millivolt)" legend_rates[7] = "d/dt dL in component L_type_calcium_current_d_gate (dimensionless)" legend_rates[8] = "d/dt fL in component L_type_calcium_current_f_gate (dimensionless)" legend_rates[9] = "d/dt fL2 in component L_type_calcium_current_f2_gate (dimensionless)" legend_rates[10] = "d/dt dT in component T_type_calcium_current_d_gate (dimensionless)" legend_rates[11] = "d/dt fT in component T_type_calcium_current_f_gate (dimensionless)" legend_rates[12] = "d/dt m in component fast_sodium_current_m_gate (dimensionless)" legend_rates[13] = "d/dt h in component fast_sodium_current_h_gate (dimensionless)" legend_rates[14] = "d/dt x in component delayed_rectifying_potassium_current_x_gate (dimensionless)" legend_rates[15] = "d/dt y in component hyperpolarising_activated_current_y_gate (dimensionless)" legend_rates[3] = "d/dt Nai in component ion_concentrations (millimolar)" legend_rates[4] = "d/dt Nao in component ion_concentrations (millimolar)" legend_rates[5] = "d/dt Ki in component ion_concentrations (millimolar)" legend_rates[6] = "d/dt Ko in component ion_concentrations (millimolar)" legend_rates[1] = "d/dt Cai in component ion_concentrations (millimolar)" legend_rates[2] = "d/dt Cao in component ion_concentrations (millimolar)" legend_rates[16] = "d/dt Caup in component ion_concentrations (millimolar)" legend_rates[17] = "d/dt Carel in component ion_concentrations (millimolar)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 8314.472 constants[1] = 310 constants[2] = 96485.3415 states[0] = -64.9 constants[3] = 3.2e-5 states[1] = 0.000034 states[2] = 2.0004 states[3] = 7.4994 states[4] = 139.9929 states[5] = 140.0073 states[6] = 5.4243 constants[4] = 0.4 states[7] = 0.0001 states[8] = 0.1505 states[9] = 0.219 constants[5] = 0.002 constants[6] = 3 constants[7] = 40000 constants[8] = 0.085 states[10] = 0.001 states[11] = 0.1328 constants[9] = 0.25 states[12] = 0.0139 states[13] = 0.0087 constants[10] = 0.00026 constants[11] = 0.035 states[14] = 0.5682 constants[12] = 10.3 constants[13] = 0.0081 constants[14] = 0.0135 states[15] = 0.0287 constants[15] = 40 constants[16] = 1 constants[17] = 0.226 constants[18] = 4 constants[19] = 0.1369 constants[20] = 0.4315 constants[21] = 0 constants[22] = 26.44 constants[23] = 0.0207 constants[24] = 395.3 constants[25] = 2.289 constants[26] = 26.44 constants[27] = 4.663 constants[28] = 1628 constants[29] = 561.4 constants[30] = 3.663 constants[31] = 0.00024 constants[32] = 0.00007 constants[33] = 2.5e-6 constants[34] = 0.0212 constants[35] = 0.0005 constants[36] = 0.001 constants[37] = 0.005 constants[38] = 0.4 states[16] = 0.5832 states[17] = 0.1101 constants[39] = 0.1 constants[40] = 140 constants[41] = 2 constants[42] = 5.4 constants[43] = 0.00600000*constants[33] constants[44] = 0.200000*constants[33] constants[45] = 0.0140000*constants[33] return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[9] = constants[6]*(1.00000-states[9])-constants[7]*states[1]*states[9] algebraic[0] = 1.00000/(1.00000+exp((states[0]+6.60000)/-6.60000)) rates[7] = (algebraic[0]-states[7])/constants[5] algebraic[1] = 1.00000/(1.00000+exp((states[0]+25.0000)/6.00000)) algebraic[9] = 0.0310000+1.00000/(1.00000+exp((states[0]+37.6000)/8.10000)) rates[8] = (algebraic[1]-states[8])/algebraic[9] algebraic[2] = 1.00000/(1.00000+exp((states[0]+23.0000)/-6.10000)) algebraic[10] = 0.000600000+0.00540000/(1.00000+exp(0.0300000*(states[0]+100.000))) rates[10] = (algebraic[2]-states[10])/algebraic[10] algebraic[3] = 1.00000/(1.00000+exp((states[0]+75.0000)/6.60000)) algebraic[11] = 0.00100000+0.0400000/(1.00000+exp(0.0800000*(states[0]+65.0000))) rates[11] = (algebraic[3]-states[11])/algebraic[11] algebraic[4] = (200.000*(states[0]+34.3000))/(1.00000-exp(-0.0900000*(states[0]+34.3000))) algebraic[12] = 8000.00*exp(-0.150000*(states[0]+56.2000)) rates[12] = algebraic[4]*(1.00000-states[12])-algebraic[12]*states[12] algebraic[5] = 32.4000*exp(-0.140000*(states[0]+93.4000)) algebraic[13] = 709.000/(1.00000+4.20000*exp(-0.0600000*(states[0]+45.4000))) rates[13] = algebraic[5]*(1.00000-states[13])-algebraic[13]*states[13] algebraic[6] = 1.00000/(1.00000+exp((states[0]+25.1000)/-7.40000)) algebraic[14] = 1.00000/(17.0000*exp(0.0398000*states[0])+0.211000*exp(-0.0510000*states[0])) rates[14] = (algebraic[6]-states[14])/algebraic[14] algebraic[7] = (0.360000*(states[0]+137.800))/(exp(0.0660000*(states[0]+137.800))-1.00000) algebraic[15] = (0.100000*(states[0]+76.3000))/(1.00000-exp(-0.210000*(states[0]+76.3000))) rates[15] = algebraic[7]*(1.00000-states[15])-algebraic[15]*states[15] algebraic[8] = ((constants[0]*constants[1])/(2.00000*constants[2]))*log(states[2]/states[1]) algebraic[18] = constants[4]*states[7]*states[8]*states[9]*((states[0]-algebraic[8])+75.0000) algebraic[19] = constants[8]*states[10]*states[11]*((states[0]-algebraic[8])+75.0000) algebraic[34] = exp((-constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])) algebraic[32] = states[4]/(constants[27]+states[4]) algebraic[28] = 1.00000+states[2]/constants[30]+(states[2]/constants[30])*exp((constants[21]*states[0]*constants[2])/(constants[0]*constants[1]))+states[4]/constants[28]+(power(states[4], 2.00000))/(constants[28]*constants[29])+(power(states[4], 3.00000))/(constants[28]*constants[29]*constants[27]) algebraic[30] = (((power(states[4], 2.00000))/(constants[28]*constants[29])+(power(states[4], 3.00000))/(constants[28]*constants[29]*constants[27]))*exp((-constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])))/algebraic[28] algebraic[31] = ((states[2]/constants[30])*exp((-constants[21]*states[0]*constants[2])/(constants[0]*constants[1])))/algebraic[28] algebraic[29] = exp((constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])) algebraic[37] = states[3]/(constants[22]+states[3]) algebraic[38] = algebraic[34]*algebraic[32]*(algebraic[30]+algebraic[31])+algebraic[31]*algebraic[29]*(algebraic[37]+algebraic[34]) algebraic[33] = 1.00000+states[1]/constants[23]+(states[1]/constants[23])*exp((-constants[19]*states[0]*constants[2])/(constants[0]*constants[1]))+(states[1]*states[3])/(constants[23]*constants[26])+states[3]/constants[24]+(power(states[3], 2.00000))/(constants[24]*constants[25])+(power(states[3], 3.00000))/(constants[24]*constants[25]*constants[22]) algebraic[36] = ((states[1]/constants[23])*exp((-constants[19]*states[0]*constants[2])/(constants[0]*constants[1])))/algebraic[33] algebraic[35] = (((power(states[3], 2.00000))/(constants[24]*constants[25])+(power(states[3], 3.00000))/(constants[24]*constants[25]*constants[22]))*exp((constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])))/algebraic[33] algebraic[39] = algebraic[29]*algebraic[37]*(algebraic[35]+algebraic[36])+algebraic[34]*algebraic[36]*(algebraic[32]+algebraic[29]) algebraic[40] = algebraic[35]*algebraic[37]*(algebraic[30]+algebraic[31])+algebraic[36]*algebraic[30]*(algebraic[37]+algebraic[34]) algebraic[41] = algebraic[30]*algebraic[32]*(algebraic[35]+algebraic[36])+algebraic[35]*algebraic[31]*(algebraic[32]+algebraic[29]) algebraic[42] = (constants[18]*(algebraic[39]*algebraic[31]-algebraic[38]*algebraic[36]))/(algebraic[38]+algebraic[39]+algebraic[40]+algebraic[41]) rates[2] = (1.00000*((algebraic[18]+algebraic[19])-2.00000*algebraic[42]))/(2.00000*constants[2]*1.00000*constants[44])+(constants[41]-states[2])/constants[39] algebraic[16] = ((constants[0]*constants[1])/constants[2])*log(states[4]/states[3]) algebraic[20] = constants[9]*(power(states[12], 3.00000))*states[13]*(states[0]-algebraic[16]) algebraic[27] = ((((constants[17]*states[3])/(states[3]+constants[15]))*states[6])/(states[6]+constants[16]))*(1.00000-power((states[0]-40.0000)/211.000, 2.00000)) algebraic[43] = constants[31]*(states[0]-algebraic[16]) algebraic[22] = states[14]*constants[10]*constants[11]*(power(states[6]/1.00000, 0.590000))*(states[3]-states[4]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[24] = ((states[15]*(power(states[6], 1.83000)))/(power(states[6], 1.83000)+power(constants[12], 1.83000)))*constants[13]*(states[0]-algebraic[16]) rates[3] = (-1.00000*(algebraic[43]+algebraic[24]+algebraic[20]+3.00000*algebraic[27]+3.00000*algebraic[42]+algebraic[22]))/(constants[2]*1.00000*constants[33]) rates[4] = (1.00000*(algebraic[43]+algebraic[24]+algebraic[20]+3.00000*algebraic[27]+3.00000*algebraic[42]+algebraic[22]))/(constants[2]*1.00000*constants[44])+(constants[40]-states[4])/constants[39] algebraic[45] = constants[32]*(power(states[6]/1.00000, 0.410000))*(states[5]-states[6]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[21] = states[14]*constants[10]*(power(states[6]/1.00000, 0.590000))*(states[5]-states[6]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[17] = ((constants[0]*constants[1])/constants[2])*log(states[6]/states[5]) algebraic[25] = ((states[15]*(power(states[6], 1.83000)))/(power(states[6], 1.83000)+power(constants[12], 1.83000)))*constants[14]*(states[0]-algebraic[17]) rates[5] = (-1.00000*(((algebraic[21]+algebraic[25])-2.00000*algebraic[27])+algebraic[45]))/(constants[2]*1.00000*constants[33]) rates[6] = (1.00000*(((algebraic[21]+algebraic[25])-2.00000*algebraic[27])+algebraic[45]))/(constants[2]*1.00000*constants[44])+(constants[42]-states[6])/constants[39] algebraic[44] = (constants[34]*(power(states[1], 2.00000)))/(power(states[1], 2.00000)+power(constants[35], 2.00000)) algebraic[46] = ((2.00000*1.00000*constants[43]*constants[2])/(1.00000*constants[38]))*states[16] rates[16] = (1.00000*(algebraic[44]-algebraic[46]))/(2.00000*1.00000*constants[45]*constants[2]) algebraic[23] = algebraic[21]+algebraic[22] algebraic[26] = algebraic[25]+algebraic[24] algebraic[47] = algebraic[18]+algebraic[19]+algebraic[20]+algebraic[23]+algebraic[26]+algebraic[27]+algebraic[42]+algebraic[43]+algebraic[45] rates[0] = -algebraic[47]/constants[3] algebraic[48] = (((2.00000*1.00000*constants[43]*constants[2])/(1.00000*constants[37]))*states[17]*(power(states[1], 2.00000)))/(power(states[1], 2.00000)+power(constants[36], 2.00000)) rates[1] = (-1.00000*(((algebraic[18]+algebraic[19])-2.00000*algebraic[42])+algebraic[44]+-algebraic[48]))/(2.00000*constants[2]*1.00000*constants[33]) rates[17] = (1.00000*(algebraic[46]-algebraic[48]))/(2.00000*1.00000*constants[43]*constants[2]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = 1.00000/(1.00000+exp((states[0]+6.60000)/-6.60000)) algebraic[1] = 1.00000/(1.00000+exp((states[0]+25.0000)/6.00000)) algebraic[9] = 0.0310000+1.00000/(1.00000+exp((states[0]+37.6000)/8.10000)) algebraic[2] = 1.00000/(1.00000+exp((states[0]+23.0000)/-6.10000)) algebraic[10] = 0.000600000+0.00540000/(1.00000+exp(0.0300000*(states[0]+100.000))) algebraic[3] = 1.00000/(1.00000+exp((states[0]+75.0000)/6.60000)) algebraic[11] = 0.00100000+0.0400000/(1.00000+exp(0.0800000*(states[0]+65.0000))) algebraic[4] = (200.000*(states[0]+34.3000))/(1.00000-exp(-0.0900000*(states[0]+34.3000))) algebraic[12] = 8000.00*exp(-0.150000*(states[0]+56.2000)) algebraic[5] = 32.4000*exp(-0.140000*(states[0]+93.4000)) algebraic[13] = 709.000/(1.00000+4.20000*exp(-0.0600000*(states[0]+45.4000))) algebraic[6] = 1.00000/(1.00000+exp((states[0]+25.1000)/-7.40000)) algebraic[14] = 1.00000/(17.0000*exp(0.0398000*states[0])+0.211000*exp(-0.0510000*states[0])) algebraic[7] = (0.360000*(states[0]+137.800))/(exp(0.0660000*(states[0]+137.800))-1.00000) algebraic[15] = (0.100000*(states[0]+76.3000))/(1.00000-exp(-0.210000*(states[0]+76.3000))) algebraic[8] = ((constants[0]*constants[1])/(2.00000*constants[2]))*log(states[2]/states[1]) algebraic[18] = constants[4]*states[7]*states[8]*states[9]*((states[0]-algebraic[8])+75.0000) algebraic[19] = constants[8]*states[10]*states[11]*((states[0]-algebraic[8])+75.0000) algebraic[34] = exp((-constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])) algebraic[32] = states[4]/(constants[27]+states[4]) algebraic[28] = 1.00000+states[2]/constants[30]+(states[2]/constants[30])*exp((constants[21]*states[0]*constants[2])/(constants[0]*constants[1]))+states[4]/constants[28]+(power(states[4], 2.00000))/(constants[28]*constants[29])+(power(states[4], 3.00000))/(constants[28]*constants[29]*constants[27]) algebraic[30] = (((power(states[4], 2.00000))/(constants[28]*constants[29])+(power(states[4], 3.00000))/(constants[28]*constants[29]*constants[27]))*exp((-constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])))/algebraic[28] algebraic[31] = ((states[2]/constants[30])*exp((-constants[21]*states[0]*constants[2])/(constants[0]*constants[1])))/algebraic[28] algebraic[29] = exp((constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])) algebraic[37] = states[3]/(constants[22]+states[3]) algebraic[38] = algebraic[34]*algebraic[32]*(algebraic[30]+algebraic[31])+algebraic[31]*algebraic[29]*(algebraic[37]+algebraic[34]) algebraic[33] = 1.00000+states[1]/constants[23]+(states[1]/constants[23])*exp((-constants[19]*states[0]*constants[2])/(constants[0]*constants[1]))+(states[1]*states[3])/(constants[23]*constants[26])+states[3]/constants[24]+(power(states[3], 2.00000))/(constants[24]*constants[25])+(power(states[3], 3.00000))/(constants[24]*constants[25]*constants[22]) algebraic[36] = ((states[1]/constants[23])*exp((-constants[19]*states[0]*constants[2])/(constants[0]*constants[1])))/algebraic[33] algebraic[35] = (((power(states[3], 2.00000))/(constants[24]*constants[25])+(power(states[3], 3.00000))/(constants[24]*constants[25]*constants[22]))*exp((constants[20]*states[0]*constants[2])/(2.00000*constants[0]*constants[1])))/algebraic[33] algebraic[39] = algebraic[29]*algebraic[37]*(algebraic[35]+algebraic[36])+algebraic[34]*algebraic[36]*(algebraic[32]+algebraic[29]) algebraic[40] = algebraic[35]*algebraic[37]*(algebraic[30]+algebraic[31])+algebraic[36]*algebraic[30]*(algebraic[37]+algebraic[34]) algebraic[41] = algebraic[30]*algebraic[32]*(algebraic[35]+algebraic[36])+algebraic[35]*algebraic[31]*(algebraic[32]+algebraic[29]) algebraic[42] = (constants[18]*(algebraic[39]*algebraic[31]-algebraic[38]*algebraic[36]))/(algebraic[38]+algebraic[39]+algebraic[40]+algebraic[41]) algebraic[16] = ((constants[0]*constants[1])/constants[2])*log(states[4]/states[3]) algebraic[20] = constants[9]*(power(states[12], 3.00000))*states[13]*(states[0]-algebraic[16]) algebraic[27] = ((((constants[17]*states[3])/(states[3]+constants[15]))*states[6])/(states[6]+constants[16]))*(1.00000-power((states[0]-40.0000)/211.000, 2.00000)) algebraic[43] = constants[31]*(states[0]-algebraic[16]) algebraic[22] = states[14]*constants[10]*constants[11]*(power(states[6]/1.00000, 0.590000))*(states[3]-states[4]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[24] = ((states[15]*(power(states[6], 1.83000)))/(power(states[6], 1.83000)+power(constants[12], 1.83000)))*constants[13]*(states[0]-algebraic[16]) algebraic[45] = constants[32]*(power(states[6]/1.00000, 0.410000))*(states[5]-states[6]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[21] = states[14]*constants[10]*(power(states[6]/1.00000, 0.590000))*(states[5]-states[6]*exp((-states[0]*constants[2])/(constants[0]*constants[1]))) algebraic[17] = ((constants[0]*constants[1])/constants[2])*log(states[6]/states[5]) algebraic[25] = ((states[15]*(power(states[6], 1.83000)))/(power(states[6], 1.83000)+power(constants[12], 1.83000)))*constants[14]*(states[0]-algebraic[17]) algebraic[44] = (constants[34]*(power(states[1], 2.00000)))/(power(states[1], 2.00000)+power(constants[35], 2.00000)) algebraic[46] = ((2.00000*1.00000*constants[43]*constants[2])/(1.00000*constants[38]))*states[16] algebraic[23] = algebraic[21]+algebraic[22] algebraic[26] = algebraic[25]+algebraic[24] algebraic[47] = algebraic[18]+algebraic[19]+algebraic[20]+algebraic[23]+algebraic[26]+algebraic[27]+algebraic[42]+algebraic[43]+algebraic[45] algebraic[48] = (((2.00000*1.00000*constants[43]*constants[2])/(1.00000*constants[37]))*states[17]*(power(states[1], 2.00000)))/(power(states[1], 2.00000)+power(constants[36], 2.00000)) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)