function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =3; end % There are a total of 2 entries in each of the rate and state variable arrays. % There are a total of 15 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_ALGEBRAIC(:,1) = strpad('time in component environment (second)'); LEGEND_VOI = strpad('tau in component environment (dimensionless)'); LEGEND_CONSTANTS(:,13) = strpad('C_0 in component reaction_constants (per_second)'); LEGEND_ALGEBRAIC(:,2) = strpad('A in component a (molar)'); LEGEND_STATES(:,1) = strpad('a in component a (dimensionless)'); LEGEND_CONSTANTS(:,1) = strpad('alpha in component reaction_constants (dimensionless)'); LEGEND_CONSTANTS(:,2) = strpad('beta in component reaction_constants (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('K in component reaction_constants (dimensionless)'); LEGEND_CONSTANTS(:,14) = strpad('C_1 in component reaction_constants (molar)'); LEGEND_STATES(:,2) = strpad('g in component g (dimensionless)'); LEGEND_ALGEBRAIC(:,3) = strpad('G in component g (molar)'); LEGEND_CONSTANTS(:,4) = strpad('gamma in component reaction_constants (dimensionless)'); LEGEND_CONSTANTS(:,5) = strpad('L in component reaction_constants (dimensionless)'); LEGEND_CONSTANTS(:,15) = strpad('C_2 in component reaction_constants (molar)'); LEGEND_CONSTANTS(:,6) = strpad('k2 in component reaction_constants (per_second)'); LEGEND_CONSTANTS(:,7) = strpad('k3 in component reaction_constants (per_second)'); LEGEND_CONSTANTS(:,8) = strpad('k6 in component reaction_constants (per_second)'); LEGEND_CONSTANTS(:,9) = strpad('k7 in component reaction_constants (per_second)'); LEGEND_CONSTANTS(:,10) = strpad('k0 in component reaction_constants (molar_per_second)'); LEGEND_CONSTANTS(:,11) = strpad('k4 in component reaction_constants (per_molar2_per_second)'); LEGEND_CONSTANTS(:,12) = strpad('km in component reaction_constants (molar_per_second)'); LEGEND_RATES(:,1) = strpad('d/dt a in component a (dimensionless)'); LEGEND_RATES(:,2) = strpad('d/dt g in component g (dimensionless)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = 4.39927; CONSTANTS(:,1) = 0.008; CONSTANTS(:,2) = 1.485; CONSTANTS(:,3) = 30; STATES(:,2) = 1.96477; CONSTANTS(:,4) = 11.385; CONSTANTS(:,5) = 0.1; CONSTANTS(:,6) = 6e-4; CONSTANTS(:,7) = 0.0000048; CONSTANTS(:,8) = 0.000891; CONSTANTS(:,9) = 0.006831; CONSTANTS(:,10) = 8.7831e-11; CONSTANTS(:,11) = 2.1e12; CONSTANTS(:,12) = 6.9001e-14; CONSTANTS(:,13) = CONSTANTS(:,6); CONSTANTS(:,14) = power((CONSTANTS(:,6)./CONSTANTS(:,11)), 1.0 ./ 2); CONSTANTS(:,15) = power((CONSTANTS(:,6)./CONSTANTS(:,11)), 1.0 ./ 2); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end RATES(:,1) = CONSTANTS(:,3) - ( (1.00000+CONSTANTS(:,1)+CONSTANTS(:,2)).*STATES(:,1)+ STATES(:,1).*power(STATES(:,2), 2.00000)); RATES(:,2) = ( (1.00000 - CONSTANTS(:,1)).*STATES(:,1)+ STATES(:,1).*power(STATES(:,2), 2.00000)) - (CONSTANTS(:,5)+ CONSTANTS(:,4).*STATES(:,2)); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,1) = VOI./CONSTANTS(:,13); ALGEBRAIC(:,2) = CONSTANTS(:,14).*STATES(:,1); ALGEBRAIC(:,3) = CONSTANTS(:,15).*STATES(:,2); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end