# Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays: sizeAlgebraic = 3 sizeStates = 2 sizeConstants = 15 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_constants[0] = "T_a in component model_parameters (celsius)" legend_constants[1] = "T_b in component model_parameters (celsius)" legend_constants[2] = "delta_T in component model_parameters (celsius)" legend_constants[3] = "kinc in component model_parameters (W_per_kg_C2)" legend_algebraic[2] = "M_c in component M_c (W_per_kg)" legend_constants[4] = "t_day in component M_c (hour)" legend_constants[5] = "t_night in component M_c (hour)" legend_algebraic[0] = "tprime in component M_c (second)" legend_constants[6] = "day_length in component M_c (second)" legend_constants[13] = "M_day in component M_day (W_per_kg)" legend_constants[14] = "M_night in component M_night (W_per_kg)" legend_states[0] = "M in component M (W_per_kg)" legend_constants[7] = "km in component M (per_hour)" legend_states[1] = "T in component T (celsius)" legend_constants[8] = "c in component T (kJ_per_kg_C)" legend_algebraic[1] = "k in component k (W_per_kg_C)" legend_constants[12] = "kb in component kb (W_per_kg_C)" legend_constants[10] = "T_day in component T_day (celsius)" legend_constants[11] = "T_night in component T_night (celsius)" legend_constants[9] = "M_b in component kb (W_per_kg)" legend_rates[0] = "d/dt M in component M (W_per_kg)" legend_rates[1] = "d/dt T in component T (celsius)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 21.0 constants[1] = 38.0 constants[2] = 1.57 constants[3] = 0.0258 constants[4] = 17.5 constants[5] = 6.73 constants[6] = 86400 states[0] = 3.5 constants[7] = 1.1375 states[1] = 38.785 constants[8] = 3.47 constants[9] = 3.0 constants[10] = constants[1]+constants[2]/2.00000 constants[11] = constants[1]-constants[2]/2.00000 constants[12] = constants[9]/(constants[1]-constants[0]) constants[13] = (constants[12]+constants[3]*(constants[10]-constants[1]))*(constants[10]-constants[0]) constants[14] = (constants[12]+constants[3]*(constants[11]-constants[1]))*(constants[11]-constants[0]) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = constants[12]+constants[3]*(states[1]-constants[1]) rates[1] = (power(constants[8], -1.00000))*(states[0]-algebraic[1]*(states[1]-constants[0])) algebraic[0] = voi*3600.00*1.00000 % constants[6] algebraic[2] = custom_piecewise([greater_equal(algebraic[0]/3600.00 , constants[5]) & less(algebraic[0]/3600.00 , constants[4]), constants[14] , True, constants[13]]) rates[0] = -constants[7]*(states[0]-algebraic[2]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = constants[12]+constants[3]*(states[1]-constants[1]) algebraic[0] = voi*3600.00*1.00000 % constants[6] algebraic[2] = custom_piecewise([greater_equal(algebraic[0]/3600.00 , constants[5]) & less(algebraic[0]/3600.00 , constants[4]), constants[14] , True, constants[13]]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)