Generated Code

The following is python code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

# Size of variable arrays:
sizeAlgebraic = 3
sizeStates = 2
sizeConstants = 15
from math import *
from numpy import *

def createLegends():
    legend_states = [""] * sizeStates
    legend_rates = [""] * sizeStates
    legend_algebraic = [""] * sizeAlgebraic
    legend_voi = ""
    legend_constants = [""] * sizeConstants
    legend_voi = "time in component environment (hour)"
    legend_constants[0] = "T_a in component model_parameters (celsius)"
    legend_constants[1] = "T_b in component model_parameters (celsius)"
    legend_constants[2] = "delta_T in component model_parameters (celsius)"
    legend_constants[3] = "kinc in component model_parameters (W_per_kg_C2)"
    legend_algebraic[2] = "M_c in component M_c (W_per_kg)"
    legend_constants[4] = "t_day in component M_c (hour)"
    legend_constants[5] = "t_night in component M_c (hour)"
    legend_algebraic[0] = "tprime in component M_c (second)"
    legend_constants[6] = "day_length in component M_c (second)"
    legend_constants[13] = "M_day in component M_day (W_per_kg)"
    legend_constants[14] = "M_night in component M_night (W_per_kg)"
    legend_states[0] = "M in component M (W_per_kg)"
    legend_constants[7] = "km in component M (per_hour)"
    legend_states[1] = "T in component T (celsius)"
    legend_constants[8] = "c in component T (kJ_per_kg_C)"
    legend_algebraic[1] = "k in component k (W_per_kg_C)"
    legend_constants[12] = "kb in component kb (W_per_kg_C)"
    legend_constants[10] = "T_day in component T_day (celsius)"
    legend_constants[11] = "T_night in component T_night (celsius)"
    legend_constants[9] = "M_b in component kb (W_per_kg)"
    legend_rates[0] = "d/dt M in component M (W_per_kg)"
    legend_rates[1] = "d/dt T in component T (celsius)"
    return (legend_states, legend_algebraic, legend_voi, legend_constants)

def initConsts():
    constants = [0.0] * sizeConstants; states = [0.0] * sizeStates;
    constants[0] = 21.0
    constants[1] = 38.0
    constants[2] = 1.57
    constants[3] = 0.0258
    constants[4] = 17.5
    constants[5] = 6.73
    constants[6] = 86400
    states[0] = 3.5
    constants[7] = 1.1375
    states[1] = 38.785
    constants[8] = 3.47
    constants[9] = 3.0
    constants[10] = constants[1]+constants[2]/2.00000
    constants[11] = constants[1]-constants[2]/2.00000
    constants[12] = constants[9]/(constants[1]-constants[0])
    constants[13] = (constants[12]+constants[3]*(constants[10]-constants[1]))*(constants[10]-constants[0])
    constants[14] = (constants[12]+constants[3]*(constants[11]-constants[1]))*(constants[11]-constants[0])
    return (states, constants)

def computeRates(voi, states, constants):
    rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic
    algebraic[1] = constants[12]+constants[3]*(states[1]-constants[1])
    rates[1] = (power(constants[8], -1.00000))*(states[0]-algebraic[1]*(states[1]-constants[0]))
    algebraic[0] =  voi*3600.00*1.00000 % constants[6]
    algebraic[2] = custom_piecewise([greater_equal(algebraic[0]/3600.00 , constants[5]) & less(algebraic[0]/3600.00 , constants[4]), constants[14] , True, constants[13]])
    rates[0] = -constants[7]*(states[0]-algebraic[2])
    return(rates)

def computeAlgebraic(constants, states, voi):
    algebraic = array([[0.0] * len(voi)] * sizeAlgebraic)
    states = array(states)
    voi = array(voi)
    algebraic[1] = constants[12]+constants[3]*(states[1]-constants[1])
    algebraic[0] =  voi*3600.00*1.00000 % constants[6]
    algebraic[2] = custom_piecewise([greater_equal(algebraic[0]/3600.00 , constants[5]) & less(algebraic[0]/3600.00 , constants[4]), constants[14] , True, constants[13]])
    return algebraic

def custom_piecewise(cases):
    """Compute result of a piecewise function"""
    return select(cases[0::2],cases[1::2])

def solve_model():
    """Solve model with ODE solver"""
    from scipy.integrate import ode
    # Initialise constants and state variables
    (init_states, constants) = initConsts()

    # Set timespan to solve over
    voi = linspace(0, 10, 500)

    # Construct ODE object to solve
    r = ode(computeRates)
    r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1)
    r.set_initial_value(init_states, voi[0])
    r.set_f_params(constants)

    # Solve model
    states = array([[0.0] * len(voi)] * sizeStates)
    states[:,0] = init_states
    for (i,t) in enumerate(voi[1:]):
        if r.successful():
            r.integrate(t)
            states[:,i+1] = r.y
        else:
            break

    # Compute algebraic variables
    algebraic = computeAlgebraic(constants, states, voi)
    return (voi, states, algebraic)

def plot_model(voi, states, algebraic):
    """Plot variables against variable of integration"""
    import pylab
    (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends()
    pylab.figure(1)
    pylab.plot(voi,vstack((states,algebraic)).T)
    pylab.xlabel(legend_voi)
    pylab.legend(legend_states + legend_algebraic, loc='best')
    pylab.show()

if __name__ == "__main__":
    (voi, states, algebraic) = solve_model()
    plot_model(voi, states, algebraic)