Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 7 sizeStates = 1 sizeConstants = 19 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_constants[0] = "L_1 in component contraction (mm)" legend_constants[1] = "L_2 in component contraction (mm)" legend_constants[2] = "L_3 in component contraction (mm)" legend_constants[3] = "L_4 in component contraction (mm)" legend_constants[4] = "f_c in component contraction (newton)" legend_constants[5] = "v_max in component contraction (mm_per_second)" legend_constants[6] = "curv in component contraction (dimensionless)" legend_constants[7] = "k_1 in component contraction (newton)" legend_constants[8] = "k_2 in component contraction (per_mm)" legend_constants[9] = "F_1 in component contraction (newton)" legend_constants[10] = "d_LSEC1 in component contraction (mm)" legend_constants[11] = "k_sh in component contraction (dimensionless)" legend_constants[12] = "L_m in component contraction (mm)" legend_constants[13] = "F_im in component contraction (newton)" legend_constants[14] = "tau in component contraction (second)" legend_algebraic[5] = "v_cc in component contraction (mm_per_second)" legend_algebraic[6] = "f_v in component contraction (dimensionless)" legend_algebraic[1] = "f_L in component contraction (newton)" legend_algebraic[4] = "f_sec in component contraction (newton)" legend_algebraic[0] = "f_pec in component contraction (newton)" legend_algebraic[3] = "delta_L_sec in component contraction (mm)" legend_constants[15] = "delta_L_sec1 in component contraction (mm)" legend_states[0] = "delta_L_pec in component contraction (mm)" legend_constants[16] = "k in component contraction (newton_per_mm)" legend_algebraic[2] = "L_mtc in component contraction (mm)" legend_constants[17] = "A in component contraction (dimensionless)" legend_constants[18] = "L_mslack in component contraction (mm)" legend_rates[0] = "d/dt delta_L_pec in component contraction (mm)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = -23 constants[1] = -14 constants[2] = 2 constants[3] = 19 constants[4] = 0.49 constants[5] = -141 constants[6] = 5.8 constants[7] = 0.012 constants[8] = 0.317 constants[9] = 4.1 constants[10] = 4.1 constants[11] = 3.3 constants[12] = 0.3 constants[13] = 18.1 constants[14] = 0.006 constants[15] = 4.1 states[0] = 0.2 constants[16] = 3.5 constants[17] = 1 constants[18] = 0.3 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[1] = custom_piecewise([greater_equal(states[0] , constants[0]) & less_equal(states[0] , constants[1]), (constants[4]/(constants[1]-constants[0]))*(states[0]-constants[0]) , greater(states[0] , constants[1]) & less_equal(states[0] , 0.00000), ((1.00000-constants[4])/-constants[1])*(states[0]-constants[1]) , greater(states[0] , 0.00000) & less_equal(states[0] , constants[2]), 1.00000 , greater(states[0] , constants[2]) & less_equal(states[0] , constants[3]), (-1.00000/(constants[3]-constants[2]))*(states[0]-constants[2]) , True, float('nan')]) algebraic[2] = custom_piecewise([less_equal(voi , 1.00000), 0.290000 , greater(voi , 1.00000) & less(voi , 5.00000), 0.220000 , True, 0.190000]) algebraic[3] = (algebraic[2]-states[0])-constants[18] algebraic[4] = custom_piecewise([greater(algebraic[3] , 0.00000) & less(algebraic[3] , constants[15]), (constants[9]/(exp(constants[11])-1.00000))*(exp((constants[11]*algebraic[3])/constants[15])-1.00000) , less_equal(algebraic[3] , constants[15]), constants[9]+constants[16]*(algebraic[3]-constants[15]) , True, float('nan')]) algebraic[0] = custom_piecewise([greater(states[0] , 0.00000), constants[7]*(exp(constants[8]*states[0])-1.00000) , less_equal(states[0] , 0.00000), 0.00000 , True, float('nan')]) rootfind_0(voi, constants, rates, states, algebraic) rates[0] = algebraic[5] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[1] = custom_piecewise([greater_equal(states[0] , constants[0]) & less_equal(states[0] , constants[1]), (constants[4]/(constants[1]-constants[0]))*(states[0]-constants[0]) , greater(states[0] , constants[1]) & less_equal(states[0] , 0.00000), ((1.00000-constants[4])/-constants[1])*(states[0]-constants[1]) , greater(states[0] , 0.00000) & less_equal(states[0] , constants[2]), 1.00000 , greater(states[0] , constants[2]) & less_equal(states[0] , constants[3]), (-1.00000/(constants[3]-constants[2]))*(states[0]-constants[2]) , True, float('nan')]) algebraic[2] = custom_piecewise([less_equal(voi , 1.00000), 0.290000 , greater(voi , 1.00000) & less(voi , 5.00000), 0.220000 , True, 0.190000]) algebraic[3] = (algebraic[2]-states[0])-constants[18] algebraic[4] = custom_piecewise([greater(algebraic[3] , 0.00000) & less(algebraic[3] , constants[15]), (constants[9]/(exp(constants[11])-1.00000))*(exp((constants[11]*algebraic[3])/constants[15])-1.00000) , less_equal(algebraic[3] , constants[15]), constants[9]+constants[16]*(algebraic[3]-constants[15]) , True, float('nan')]) algebraic[0] = custom_piecewise([greater(states[0] , 0.00000), constants[7]*(exp(constants[8]*states[0])-1.00000) , less_equal(states[0] , 0.00000), 0.00000 , True, float('nan')]) return algebraic initialGuess0 = None def rootfind_0(voi, constants, rates, states, algebraic): """Calculate values of algebraic variables for DAE""" from scipy.optimize import fsolve global initialGuess0 if initialGuess0 is None: initialGuess0 = ones(2)*0.1 if not iterable(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic, voi, constants, rates, states), xtol=1E-6) initialGuess0 = soln algebraic[5] = soln[0] algebraic[6] = soln[1] else: for (i,t) in enumerate(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6) initialGuess0 = soln algebraic[5][i] = soln[0] algebraic[6][i] = soln[1] def residualSN_0(algebraicCandidate, algebraic, voi, constants, rates, states): resid = array([0.0] * 2) algebraic[5] = algebraicCandidate[0] algebraic[6] = algebraicCandidate[1] resid[0] = (algebraic[5]-(1.00000/algebraic[6])*((algebraic[4]-algebraic[0])/(constants[17]*algebraic[1]*constants[13]))) resid[1] = (algebraic[6]-(constants[5]-algebraic[5])/(constants[5]+algebraic[5]*constants[6])) return resid def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)