Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 12 sizeStates = 4 sizeConstants = 20 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (day)" legend_algebraic[6] = "rel_LH_E2_P4_RP_LH in component RP_LH (microg_day)" legend_states[0] = "RP_LH in component RP_LH (microg)" legend_algebraic[10] = "syn_LH_E2_P4 in component RP_LH (microg_day)" legend_constants[0] = "V0_LH in component RP_LH (microg_day)" legend_constants[1] = "V1_LH in component RP_LH (microg_day)" legend_constants[2] = "h in component RP_LH (dimensionless)" legend_constants[3] = "Km_LH in component RP_LH (ng_L)" legend_constants[4] = "Ki_LHP in component RP_LH (nmol_L)" legend_constants[5] = "kLH_rel in component RP_LH (first_order_rate_constant)" legend_constants[6] = "CLH_P in component RP_LH (L_nmol)" legend_constants[7] = "CLH_E in component RP_LH (L_ng)" legend_algebraic[3] = "E2 in component E2 (ng_L)" legend_algebraic[4] = "E2_dE in component E2_dE (ng_L)" legend_algebraic[5] = "P4 in component P4 (nmol_L)" legend_algebraic[8] = "P4_dP in component P4_dP (nmol_L)" legend_states[1] = "LH in component LH (microg_l)" legend_constants[8] = "v_dis in component LH (litre)" legend_algebraic[0] = "clear_LH in component LH (microg_l_day)" legend_constants[9] = "kLH_cl in component LH (first_order_rate_constant)" legend_algebraic[7] = "rel_FSH_E2_P4_RP_FSH in component RP_FSH (microg_day)" legend_states[2] = "RP_FSH in component RP_FSH (microg)" legend_algebraic[11] = "syn_FSH_Ih in component RP_FSH (microg_day)" legend_constants[10] = "V_FSH in component RP_FSH (microg_day)" legend_constants[11] = "Ki_FSH_Ih in component RP_FSH (U_L)" legend_constants[12] = "kFSH_rel in component RP_FSH (first_order_rate_constant)" legend_constants[13] = "CFSH_P in component RP_FSH (L_nmol)" legend_constants[14] = "CFSH_E in component RP_FSH (L_ng2)" legend_algebraic[9] = "Ih_dIh in component Ih_dIh (U_L)" legend_states[3] = "FSH in component FSH (microg_l)" legend_constants[15] = "v_dis in component FSH (litre)" legend_algebraic[2] = "clear_FSH in component FSH (microg_l_day)" legend_constants[16] = "kFSH_cl in component FSH (first_order_rate_constant)" legend_constants[17] = "dE in component E2_dE (day)" legend_constants[18] = "dP in component P4_dP (day)" legend_algebraic[1] = "Ih in component Ih (U_L)" legend_constants[19] = "dIh in component Ih_dIh (day)" legend_rates[0] = "d/dt RP_LH in component RP_LH (microg)" legend_rates[1] = "d/dt LH in component LH (microg_l)" legend_rates[2] = "d/dt RP_FSH in component RP_FSH (microg)" legend_rates[3] = "d/dt FSH in component FSH (microg_l)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 467.0 constants[0] = 1400.0 constants[1] = 95900.0 constants[2] = 8.0 constants[3] = 360.0 constants[4] = 26.0 constants[5] = 3.0 constants[6] = 0.024 constants[7] = 0.008 states[1] = 40.0 constants[8] = 2.5 constants[9] = 14.0 states[2] = 0.0 constants[10] = 4400.0 constants[11] = 1176.5 constants[12] = 45.0 constants[13] = 3.0 constants[14] = 0.005 states[3] = 150.0 constants[15] = 2.5 constants[16] = 8.21 constants[17] = 0.42 constants[18] = 2.9 constants[19] = 2.0 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[3] = (300.000-(240.000*(power(voi+1.00000, 2.00000)))/(3.00000+power(voi+1.00000, 2.00000)))+90.0000*exp(-((power(voi-8.00000, 2.00000))/10.0000)) algebraic[5] = 52.0000*exp(-((power(voi-7.00000, 2.00000))/18.0000)) algebraic[6] = (constants[5]*(1.00000+constants[6]*algebraic[5])*states[0])/(1.00000+constants[7]*algebraic[3]) algebraic[0] = constants[9]*states[1] rates[1] = algebraic[6]/constants[8]-algebraic[0] algebraic[7] = (constants[12]*(1.00000+constants[13]*algebraic[5])*states[2])/(1.00000+constants[14]*(power(algebraic[3], 2.00000))) algebraic[2] = constants[16]*states[3] rates[3] = algebraic[7]/constants[15]-algebraic[2] algebraic[4] = (300.000-(240.000*(power((voi+1.00000)-constants[17], 2.00000)))/(3.00000+power((voi+1.00000)-constants[17], 2.00000)))+90.0000*exp(-((power(voi-(constants[17]+8.00000), 2.00000))/10.0000)) algebraic[8] = 52.0000*exp(-((power(voi-(constants[18]+7.00000), 2.00000))/18.0000)) algebraic[10] = (constants[0]+(constants[1]*(power(algebraic[4], constants[2])))/(power(constants[3], constants[2])+power(algebraic[4], constants[2])))/(1.00000+algebraic[8]/constants[4]) rates[0] = algebraic[10]-algebraic[6] algebraic[9] = 300.000+1330.00*exp(-((power(voi-(7.00000+constants[19]), 2.00000))/19.0000)) algebraic[11] = constants[10]/(1.00000+algebraic[9]/constants[11]) rates[2] = algebraic[11]-algebraic[7] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[3] = (300.000-(240.000*(power(voi+1.00000, 2.00000)))/(3.00000+power(voi+1.00000, 2.00000)))+90.0000*exp(-((power(voi-8.00000, 2.00000))/10.0000)) algebraic[5] = 52.0000*exp(-((power(voi-7.00000, 2.00000))/18.0000)) algebraic[6] = (constants[5]*(1.00000+constants[6]*algebraic[5])*states[0])/(1.00000+constants[7]*algebraic[3]) algebraic[0] = constants[9]*states[1] algebraic[7] = (constants[12]*(1.00000+constants[13]*algebraic[5])*states[2])/(1.00000+constants[14]*(power(algebraic[3], 2.00000))) algebraic[2] = constants[16]*states[3] algebraic[4] = (300.000-(240.000*(power((voi+1.00000)-constants[17], 2.00000)))/(3.00000+power((voi+1.00000)-constants[17], 2.00000)))+90.0000*exp(-((power(voi-(constants[17]+8.00000), 2.00000))/10.0000)) algebraic[8] = 52.0000*exp(-((power(voi-(constants[18]+7.00000), 2.00000))/18.0000)) algebraic[10] = (constants[0]+(constants[1]*(power(algebraic[4], constants[2])))/(power(constants[3], constants[2])+power(algebraic[4], constants[2])))/(1.00000+algebraic[8]/constants[4]) algebraic[9] = 300.000+1330.00*exp(-((power(voi-(7.00000+constants[19]), 2.00000))/19.0000)) algebraic[11] = constants[10]/(1.00000+algebraic[9]/constants[11]) algebraic[1] = 300.000+1330.00*exp(-((power(voi-7.00000, 2.00000))/19.0000)) return algebraic def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)