Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 3 sizeStates = 3 sizeConstants = 11 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (hour)" legend_states[0] = "PRL in component PRL (nanog_ml)" legend_constants[0] = "kD in component PRL (nanog_ml)" legend_constants[1] = "kO in component PRL (picog_ml)" legend_constants[2] = "rP in component PRL (nanog_ml_hr)" legend_constants[3] = "qP in component PRL (first_order_rate_constant)" legend_states[1] = "OT in component OT (picog_ml)" legend_states[2] = "DA in component DA (nanog_ml)" legend_algebraic[0] = "vD in component DA (nanog_ml_hr)" legend_constants[4] = "vDbar in component DA (nanog_ml_hr)" legend_constants[5] = "DA_infinity in component DA (nanog_ml)" legend_constants[6] = "qD in component DA (first_order_rate_constant)" legend_constants[7] = "kx in component OT (picog_ml)" legend_algebraic[1] = "vO in component OT (picog_ml_hr)" legend_constants[8] = "vObar in component OT (picog_ml_hr)" legend_constants[9] = "rO in component OT (picog_ml_hr)" legend_constants[10] = "qO in component OT (first_order_rate_constant)" legend_algebraic[2] = "x in component x (picog_ml)" legend_rates[0] = "d/dt PRL in component PRL (nanog_ml)" legend_rates[2] = "d/dt DA in component DA (nanog_ml)" legend_rates[1] = "d/dt OT in component OT (picog_ml)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; states[0] = 20.0 constants[0] = 300.0 constants[1] = 9.0 constants[2] = 300000.0 constants[3] = 0.5 states[1] = 25.0 states[2] = 20000.0 constants[4] = 10000.0 constants[5] = 20000.0 constants[6] = 0.2 constants[7] = 50.0 constants[8] = 500.0 constants[9] = 1100.0 constants[10] = 1.0 return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic rates[0] = constants[2]*(1.00000/(constants[0]+states[2]))*(power(states[1]/(constants[1]+states[1]), 2.00000))-constants[3]*states[0] algebraic[0] = custom_piecewise([greater_equal(voi , 2.00000) & less_equal(voi , 4.00000), constants[4] , True, 0.00000]) rates[2] = constants[6]*(constants[5]-states[2])-algebraic[0] algebraic[1] = custom_piecewise([greater_equal(voi , 2.00000) & less_equal(voi , 4.00000), constants[8] , True, 0.00000]) algebraic[2] = custom_piecewise([greater_equal(voi , 2.00000) & less_equal(voi , 4.00000), 51.0000 , greater_equal(voi , 16.0000) & less_equal(voi , 18.0000), 51.0000 , True, 1.00000]) rates[1] = constants[9]*(algebraic[2]/(constants[7]+algebraic[2]))-(constants[10]*states[1]+algebraic[1]) return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = custom_piecewise([greater_equal(voi , 2.00000) & less_equal(voi , 4.00000), constants[4] , True, 0.00000]) algebraic[1] = custom_piecewise([greater_equal(voi , 2.00000) & less_equal(voi , 4.00000), constants[8] , True, 0.00000]) algebraic[2] = custom_piecewise([greater_equal(voi , 2.00000) & less_equal(voi , 4.00000), 51.0000 , greater_equal(voi , 16.0000) & less_equal(voi , 18.0000), 51.0000 , True, 1.00000]) return algebraic def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)