Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 32 entries in the algebraic variable array.
   There are a total of 15 entries in each of the rate and state variable arrays.
   There are a total of 38 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is V_T in component membrane (millivolt).
 * CONSTANTS[1] is V_S in component membrane (millivolt).
 * CONSTANTS[2] is C_m in component membrane (mF_per_cm_squared).
 * CONSTANTS[3] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[4] is R in component membrane (joule_per_mole_per_kelvin).
 * CONSTANTS[5] is T in component membrane (kelvin).
 * ALGEBRAIC[2] is I_leak in component I_leak (milliampere_per_cm_squared).
 * ALGEBRAIC[3] is I_Na in component I_Na (milliampere_per_cm_squared).
 * ALGEBRAIC[12] is I_KD in component I_KD (milliampere_per_cm_squared).
 * ALGEBRAIC[17] is I_KM in component I_KM (milliampere_per_cm_squared).
 * ALGEBRAIC[30] is I_CaL in component I_CaL (milliampere_per_cm_squared).
 * STATES[7] is I_h in component I_h (milliampere_per_cm_squared).
 * ALGEBRAIC[1] is I_app in component stimulus_protocol (milliampere_per_cm_squared).
 * CONSTANTS[6] is i_stimStart in component stimulus_protocol (second).
 * CONSTANTS[7] is i_stimEnd in component stimulus_protocol (second).
 * CONSTANTS[8] is i_stimAmplitude in component stimulus_protocol (milliampere_per_cm_squared).
 * ALGEBRAIC[0] is tau in component stimulus_protocol (second).
 * CONSTANTS[9] is period in component stimulus_protocol (second).
 * CONSTANTS[10] is g_leak in component I_leak (millisiemens_per_cm_squared).
 * CONSTANTS[11] is E_leak in component I_leak (millivolt).
 * CONSTANTS[12] is g_Na in component I_Na (millisiemens_per_cm_squared).
 * CONSTANTS[13] is E_Na in component I_Na (millivolt).
 * STATES[1] is m in component Na_m_gate (dimensionless).
 * STATES[2] is h in component Na_h_gate (dimensionless).
 * ALGEBRAIC[4] is alpha in component Na_m_gate (per_second).
 * ALGEBRAIC[5] is beta in component Na_m_gate (per_second).
 * ALGEBRAIC[6] is tau_m in component Na_m_gate (second).
 * ALGEBRAIC[7] is m_inf in component Na_m_gate (dimensionless).
 * ALGEBRAIC[8] is alpha_h in component Na_h_gate (per_second).
 * ALGEBRAIC[9] is beta_h in component Na_h_gate (per_second).
 * ALGEBRAIC[11] is h_inf in component Na_h_gate (dimensionless).
 * ALGEBRAIC[10] is tau_h in component Na_h_gate (second).
 * CONSTANTS[14] is g_KD in component I_KD (millisiemens_per_cm_squared).
 * CONSTANTS[15] is E_K in component I_KD (millivolt).
 * STATES[3] is n in component KD_n_gate (dimensionless).
 * ALGEBRAIC[13] is alpha_n in component KD_n_gate (per_second).
 * ALGEBRAIC[14] is beta_n in component KD_n_gate (per_second).
 * ALGEBRAIC[15] is tau_n in component KD_n_gate (second).
 * ALGEBRAIC[16] is n_inf in component KD_n_gate (dimensionless).
 * CONSTANTS[16] is g_KM in component I_KM (millisiemens_per_cm_squared).
 * STATES[4] is p in component KM_p_gate (dimensionless).
 * ALGEBRAIC[18] is p_inf in component KM_p_gate (dimensionless).
 * ALGEBRAIC[19] is tau_p in component KM_p_gate (second).
 * CONSTANTS[17] is tau_max in component KM_p_gate (second).
 * CONSTANTS[18] is P_Ca in component I_CaL (cm_per_second).
 * ALGEBRAIC[24] is G in component G_nonlin (coulomb_per_cm_cubed).
 * STATES[5] is q in component CaL_q_gate (dimensionless).
 * ALGEBRAIC[20] is alpha_q in component CaL_q_gate (per_second).
 * ALGEBRAIC[21] is beta_q in component CaL_q_gate (per_second).
 * ALGEBRAIC[22] is tau_q in component CaL_q_gate (second).
 * ALGEBRAIC[23] is q_inf in component CaL_q_gate (dimensionless).
 * CONSTANTS[19] is Z in component G_nonlin (dimensionless).
 * CONSTANTS[20] is Ca_o in component G_nonlin (mM).
 * STATES[6] is Ca_i in component dCa_i_dt (mM).
 * CONSTANTS[21] is Ca_inf in component dCa_i_dt (mM).
 * CONSTANTS[22] is tau_r in component dCa_i_dt (second).
 * CONSTANTS[23] is d in component dCa_i_dt (centimeter).
 * ALGEBRAIC[31] is drive_channel in component dCa_i_dt (mM_per_second).
 * CONSTANTS[24] is k in component dCa_i_dt (fixer).
 * STATES[8] is m in component I_h (dimensionless).
 * CONSTANTS[25] is E_h in component I_h (millivolt).
 * CONSTANTS[26] is g_hbar in component I_h (millisiemens_per_cm_squared).
 * CONSTANTS[27] is cac in component I_h (mM).
 * CONSTANTS[28] is V_S in component I_h (millivolt).
 * STATES[9] is o_1 in component kinetic (dimensionless).
 * STATES[10] is o_2 in component kinetic (dimensionless).
 * CONSTANTS[29] is g_inc in component I_h (dimensionless).
 * STATES[11] is p_0 in component kinetic (dimensionless).
 * STATES[12] is p_1 in component kinetic (dimensionless).
 * STATES[13] is c_1 in component kinetic (dimensionless).
 * ALGEBRAIC[27] is alpha in component rate_constants (dimensionless).
 * ALGEBRAIC[28] is beta in component rate_constants (dimensionless).
 * ALGEBRAIC[29] is k_1Ca in component rate_constants (per_second).
 * CONSTANTS[30] is k_2 in component rate_constants (per_second).
 * STATES[14] is k_3p in component rate_constants (per_second).
 * CONSTANTS[31] is k_4 in component rate_constants (per_second).
 * ALGEBRAIC[25] is h_inf in component rate_constants (second).
 * ALGEBRAIC[26] is tau_s in component rate_constants (second).
 * CONSTANTS[32] is P_c in component rate_constants (dimensionless).
 * CONSTANTS[33] is n_Ca in component rate_constants (dimensionless).
 * CONSTANTS[34] is n_exp in component rate_constants (dimensionless).
 * CONSTANTS[35] is p_C in component rate_constants (dimensionless).
 * CONSTANTS[36] is Ca_c in component rate_constants (mM).
 * CONSTANTS[37] is tau_m in component rate_constants (second).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[1] is d/dt m in component Na_m_gate (dimensionless).
 * RATES[2] is d/dt h in component Na_h_gate (dimensionless).
 * RATES[3] is d/dt n in component KD_n_gate (dimensionless).
 * RATES[4] is d/dt p in component KM_p_gate (dimensionless).
 * RATES[5] is d/dt q in component CaL_q_gate (dimensionless).
 * RATES[6] is d/dt Ca_i in component dCa_i_dt (mM).
 * There are a total of 12 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -70;
CONSTANTS[0] = -55;
CONSTANTS[1] = 0;
CONSTANTS[2] = 1e-3;
CONSTANTS[3] = 96489;
CONSTANTS[4] = 8.314;
CONSTANTS[5] = 296.65;
CONSTANTS[6] = 5;
CONSTANTS[7] = 9;
CONSTANTS[8] = -0.3;
CONSTANTS[9] = 9;
CONSTANTS[10] = 1;
CONSTANTS[11] = -70;
CONSTANTS[12] = 70;
CONSTANTS[13] = 50;
STATES[1] = 0;
STATES[2] = 0;
CONSTANTS[14] = 7;
CONSTANTS[15] = -95;
STATES[3] = 0;
CONSTANTS[16] = 0.004;
STATES[4] = 0;
CONSTANTS[17] = 4;
CONSTANTS[18] = 2.76e-4;
STATES[5] = 0.00247262;
CONSTANTS[19] = 2;
CONSTANTS[20] = 2;
STATES[6] = 100e-6;
CONSTANTS[21] = 100e-6;
CONSTANTS[22] = 17e-3;
CONSTANTS[23] = 1e-4;
CONSTANTS[24] = 0.1;
CONSTANTS[25] = -20;
CONSTANTS[26] = 0.02;
CONSTANTS[27] = 0.006;
CONSTANTS[28] = 0;
CONSTANTS[29] = 2;
CONSTANTS[30] = 0.1;
CONSTANTS[31] = 1;
CONSTANTS[32] = 0.01;
CONSTANTS[33] = 4;
CONSTANTS[34] = 1;
CONSTANTS[35] = 0.01;
CONSTANTS[36] = 0.006;
CONSTANTS[37] = 20e-3;
STATES[7] = 0.1001;
STATES[8] = 0.1001;
STATES[9] = 0.1001;
STATES[10] = 0.1001;
STATES[11] = 0.1001;
STATES[12] = 0.1001;
STATES[13] = 0.1001;
STATES[14] = 0.1001;
RATES[0] = 0.1001;
RATES[1] = 0.1001;
RATES[2] = 0.1001;
RATES[3] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] - ( 0.00100000*((((((ALGEBRAIC[1]+- ALGEBRAIC[2]) - ALGEBRAIC[3]) - ALGEBRAIC[12]) - ALGEBRAIC[17]) - ALGEBRAIC[30]) - STATES[7]))/CONSTANTS[2];
resid[1] = RATES[1] - (ALGEBRAIC[7] - STATES[1])/ALGEBRAIC[6];
resid[2] = RATES[2] - (ALGEBRAIC[11] - STATES[2])/ALGEBRAIC[10];
resid[3] = RATES[3] - (ALGEBRAIC[16] - STATES[3])/ALGEBRAIC[15];
resid[4] = RATES[4] - (ALGEBRAIC[18] - STATES[4])/ALGEBRAIC[19];
resid[5] = RATES[5] - (ALGEBRAIC[23] - STATES[5])/ALGEBRAIC[22];
resid[6] = RATES[6] - (CONDVAR[11]<=0.00000 ? (CONSTANTS[21] - STATES[6])/CONSTANTS[22] : ALGEBRAIC[31]+(CONSTANTS[21] - STATES[6])/CONSTANTS[22]);
resid[7] = STATES[8] - STATES[9]+CONSTANTS[29]+STATES[10];
resid[8] = STATES[7] -  1000.00*CONSTANTS[26]*STATES[8]*(STATES[0] - CONSTANTS[25]);
resid[9] = STATES[11] - ( STATES[12]*CONSTANTS[30])/ALGEBRAIC[29];
resid[10] = STATES[12] - 1.00000 - STATES[11];
resid[11] = STATES[13] -  (ALGEBRAIC[28]/ALGEBRAIC[27])*STATES[9];
resid[12] = STATES[9] -  (CONSTANTS[31]/STATES[14])*STATES[10];
resid[13] = STATES[10] - (1.00000 - STATES[13]) - STATES[9];
resid[14] = STATES[14] -  CONSTANTS[31]*pow(STATES[12]/CONSTANTS[35], CONSTANTS[34]);
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = VOI -  CONSTANTS[9]*floor(VOI/CONSTANTS[9]);
ALGEBRAIC[1] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[2] =  1000.00*CONSTANTS[10]*(STATES[0] - CONSTANTS[11]);
ALGEBRAIC[3] =  1000.00*CONSTANTS[12]*pow(STATES[1], 3.00000)*STATES[2]*(STATES[0] - CONSTANTS[13]);
ALGEBRAIC[4] = (CONDVAR[2]<0.00000 ?  0.320000*4.00000*(1.00000 - ((13.0000+CONSTANTS[0]) - STATES[0])/( 2.00000*4.00000)) : ( 0.320000*((13.0000+CONSTANTS[0]) - STATES[0]))/(exp(((13.0000+CONSTANTS[0]) - STATES[0])/4.00000) - 1.00000));
ALGEBRAIC[5] = (CONDVAR[3]<0.00000 ?  - 0.280000*5.00000*(1.00000 - - ((STATES[0] - CONSTANTS[0]) - 40.0000)/( 2.00000*5.00000)) : ( - 0.280000*((STATES[0] - CONSTANTS[0]) - 40.0000))/(exp(- ((STATES[0] - CONSTANTS[0]) - 40.0000)/5.00000) - 1.00000));
ALGEBRAIC[6] = 1.00000/(ALGEBRAIC[4]+ALGEBRAIC[5]);
ALGEBRAIC[7] = ALGEBRAIC[4]/(ALGEBRAIC[4]+ALGEBRAIC[5]);
ALGEBRAIC[8] =  0.128000*exp(((17.0000+CONSTANTS[0]+CONSTANTS[1]) - STATES[0])/18.0000);
ALGEBRAIC[9] = 4.00000/(1.00000+exp(((40.0000+CONSTANTS[1]+CONSTANTS[0]) - STATES[0])/5.00000));
ALGEBRAIC[10] = 1.00000/(ALGEBRAIC[8]+ALGEBRAIC[9]);
ALGEBRAIC[11] = ALGEBRAIC[8]/(ALGEBRAIC[8]+ALGEBRAIC[9]);
ALGEBRAIC[12] =  1000.00*CONSTANTS[14]*pow(STATES[3], 4.00000)*(STATES[0] - CONSTANTS[15]);
ALGEBRAIC[13] = (CONDVAR[4]<0.00000 ?  - 0.0320000*5.00000*(1.00000 - ((STATES[0] - CONSTANTS[0]) - 15.0000)/( 2.00000*5.00000)) : ( - 0.0320000*((STATES[0] - CONSTANTS[0]) - 15.0000))/(exp(((STATES[0] - CONSTANTS[0]) - 15.0000)/5.00000) - 1.00000));
ALGEBRAIC[14] = (CONDVAR[5]<0.00000 ?  0.500000*40.0000*(1.00000+((STATES[0] - CONSTANTS[0]) - 10.0000)/( 2.00000*40.0000)) : ( 0.500000*- ((STATES[0] - CONSTANTS[0]) - 10.0000))/(exp(- ((STATES[0] - CONSTANTS[0]) - 10.0000)/40.0000) - 1.00000));
ALGEBRAIC[15] = 1.00000/(ALGEBRAIC[13]+ALGEBRAIC[14]);
ALGEBRAIC[16] = ALGEBRAIC[13]/(ALGEBRAIC[13]+ALGEBRAIC[14]);
ALGEBRAIC[17] =  1000.00*CONSTANTS[16]*STATES[4]*(STATES[0] - CONSTANTS[15]);
ALGEBRAIC[18] = (CONDVAR[6]<0.00000&&CONDVAR[7]>0.00000 ? 1.00000/(1.00000+exp(- (STATES[0]+35.0000)/10.0000)) : 1.00000);
ALGEBRAIC[19] = (CONDVAR[8]<0.00000&&CONDVAR[9]>0.00000 ? CONSTANTS[17]/( 3.30000*exp((STATES[0]+35.0000)/20.0000)+exp(- (STATES[0]+35.0000)/20.0000)) : 1.00000);
ALGEBRAIC[20] = 6.32000/(1.00000+exp(- (STATES[0] - 5.00000)/13.8900));
ALGEBRAIC[21] = (CONDVAR[10]<0.00000 ?  0.0200000*(5.36000+(1.31000 - STATES[0])/2.00000) : ( 0.0200000*(1.31000 - STATES[0]))/(1.00000 - exp((STATES[0] - 1.31000)/5.36000)));
ALGEBRAIC[22] = 1.00000/(ALGEBRAIC[20]+ALGEBRAIC[21]);
ALGEBRAIC[23] = 1.00000/(1.00000+exp((STATES[0]+10.0000)/- 10.0000));
ALGEBRAIC[25] = 1.00000/(1.00000+exp(((STATES[0]+75.0000) - CONSTANTS[28])/5.50000));
ALGEBRAIC[26] = CONSTANTS[37]+1000.00/(exp(((STATES[0]+71.5500) - CONSTANTS[28])/14.2000)+exp(- ((STATES[0]+89.0000) - CONSTANTS[28])/11.6000));
ALGEBRAIC[27] = ALGEBRAIC[25]/ALGEBRAIC[26];
ALGEBRAIC[28] = (1.00000 - ALGEBRAIC[25])/ALGEBRAIC[26];
ALGEBRAIC[29] =  CONSTANTS[30]*pow(STATES[6]/CONSTANTS[36], CONSTANTS[33]);
ALGEBRAIC[24] = ( (( pow(CONSTANTS[19], 2.00000)*pow(CONSTANTS[3], 2.00000)*0.00100000*STATES[0])/( CONSTANTS[4]*CONSTANTS[5]))*1.00000e-06*(STATES[6] -  CONSTANTS[20]*exp(( CONSTANTS[19]*CONSTANTS[3]*0.00100000*STATES[0])/( CONSTANTS[4]*CONSTANTS[5]))))/(1.00000 - exp(( 0.00100000*CONSTANTS[19]*CONSTANTS[3]*STATES[0])/( CONSTANTS[4]*CONSTANTS[5])));
ALGEBRAIC[30] =  1000.00*CONSTANTS[18]*pow(STATES[5], 2.00000)*ALGEBRAIC[24];
ALGEBRAIC[31] = ( CONSTANTS[24]*ALGEBRAIC[30])/( 2.00000*CONSTANTS[3]*CONSTANTS[23]);
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[7] = 0.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[8] = 0.0;
SI[9] = 0.0;
SI[10] = 0.0;
SI[11] = 0.0;
SI[12] = 0.0;
SI[13] = 0.0;
SI[14] = 0.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = ALGEBRAIC[0] - CONSTANTS[6];
CONDVAR[1] = ALGEBRAIC[0] - CONSTANTS[7];
CONDVAR[2] = fabs(((13.0000+CONSTANTS[0]) - STATES[0])/4.00000) - 1.00000e-06;
CONDVAR[3] = fabs(- ((STATES[0] - CONSTANTS[0]) - 40.0000)/5.00000) - 1.00000e-06;
CONDVAR[4] = fabs(((STATES[0] - CONSTANTS[0]) - 15.0000)/5.00000) - 1.00000e-06;
CONDVAR[5] = fabs(- ((STATES[0] - CONSTANTS[0]) - 10.0000)/40.0000) - 1.00000e-06;
CONDVAR[6] = - (STATES[0]+35.0000)/10.0000 - 25.0000;
CONDVAR[7] = - (STATES[0]+35.0000)/10.0000 - - 25.0000;
CONDVAR[8] = (STATES[0]+35.0000)/20.0000 - 25.0000;
CONDVAR[9] = (STATES[0]+35.0000)/20.0000 - - 25.0000;
CONDVAR[10] = fabs((1.31000 - STATES[0])/5.36000) - 1.00000e-06;
CONDVAR[11] = ALGEBRAIC[31] - 0.00000;
}