/* There are a total of 32 entries in the algebraic variable array. There are a total of 15 entries in each of the rate and state variable arrays. There are a total of 38 entries in the constant variable array. */ /* * VOI is time in component environment (second). * STATES[0] is V in component membrane (millivolt). * CONSTANTS[0] is V_T in component membrane (millivolt). * CONSTANTS[1] is V_S in component membrane (millivolt). * CONSTANTS[2] is C_m in component membrane (mF_per_cm_squared). * CONSTANTS[3] is F in component membrane (coulomb_per_mole). * CONSTANTS[4] is R in component membrane (joule_per_mole_per_kelvin). * CONSTANTS[5] is T in component membrane (kelvin). * ALGEBRAIC[2] is I_leak in component I_leak (milliampere_per_cm_squared). * ALGEBRAIC[3] is I_Na in component I_Na (milliampere_per_cm_squared). * ALGEBRAIC[12] is I_KD in component I_KD (milliampere_per_cm_squared). * ALGEBRAIC[17] is I_KM in component I_KM (milliampere_per_cm_squared). * ALGEBRAIC[30] is I_CaL in component I_CaL (milliampere_per_cm_squared). * STATES[7] is I_h in component I_h (milliampere_per_cm_squared). * ALGEBRAIC[1] is I_app in component stimulus_protocol (milliampere_per_cm_squared). * CONSTANTS[6] is i_stimStart in component stimulus_protocol (second). * CONSTANTS[7] is i_stimEnd in component stimulus_protocol (second). * CONSTANTS[8] is i_stimAmplitude in component stimulus_protocol (milliampere_per_cm_squared). * ALGEBRAIC[0] is tau in component stimulus_protocol (second). * CONSTANTS[9] is period in component stimulus_protocol (second). * CONSTANTS[10] is g_leak in component I_leak (millisiemens_per_cm_squared). * CONSTANTS[11] is E_leak in component I_leak (millivolt). * CONSTANTS[12] is g_Na in component I_Na (millisiemens_per_cm_squared). * CONSTANTS[13] is E_Na in component I_Na (millivolt). * STATES[1] is m in component Na_m_gate (dimensionless). * STATES[2] is h in component Na_h_gate (dimensionless). * ALGEBRAIC[4] is alpha in component Na_m_gate (per_second). * ALGEBRAIC[5] is beta in component Na_m_gate (per_second). * ALGEBRAIC[6] is tau_m in component Na_m_gate (second). * ALGEBRAIC[7] is m_inf in component Na_m_gate (dimensionless). * ALGEBRAIC[8] is alpha_h in component Na_h_gate (per_second). * ALGEBRAIC[9] is beta_h in component Na_h_gate (per_second). * ALGEBRAIC[11] is h_inf in component Na_h_gate (dimensionless). * ALGEBRAIC[10] is tau_h in component Na_h_gate (second). * CONSTANTS[14] is g_KD in component I_KD (millisiemens_per_cm_squared). * CONSTANTS[15] is E_K in component I_KD (millivolt). * STATES[3] is n in component KD_n_gate (dimensionless). * ALGEBRAIC[13] is alpha_n in component KD_n_gate (per_second). * ALGEBRAIC[14] is beta_n in component KD_n_gate (per_second). * ALGEBRAIC[15] is tau_n in component KD_n_gate (second). * ALGEBRAIC[16] is n_inf in component KD_n_gate (dimensionless). * CONSTANTS[16] is g_KM in component I_KM (millisiemens_per_cm_squared). * STATES[4] is p in component KM_p_gate (dimensionless). * ALGEBRAIC[18] is p_inf in component KM_p_gate (dimensionless). * ALGEBRAIC[19] is tau_p in component KM_p_gate (second). * CONSTANTS[17] is tau_max in component KM_p_gate (second). * CONSTANTS[18] is P_Ca in component I_CaL (cm_per_second). * ALGEBRAIC[24] is G in component G_nonlin (coulomb_per_cm_cubed). * STATES[5] is q in component CaL_q_gate (dimensionless). * ALGEBRAIC[20] is alpha_q in component CaL_q_gate (per_second). * ALGEBRAIC[21] is beta_q in component CaL_q_gate (per_second). * ALGEBRAIC[22] is tau_q in component CaL_q_gate (second). * ALGEBRAIC[23] is q_inf in component CaL_q_gate (dimensionless). * CONSTANTS[19] is Z in component G_nonlin (dimensionless). * CONSTANTS[20] is Ca_o in component G_nonlin (mM). * STATES[6] is Ca_i in component dCa_i_dt (mM). * CONSTANTS[21] is Ca_inf in component dCa_i_dt (mM). * CONSTANTS[22] is tau_r in component dCa_i_dt (second). * CONSTANTS[23] is d in component dCa_i_dt (centimeter). * ALGEBRAIC[31] is drive_channel in component dCa_i_dt (mM_per_second). * CONSTANTS[24] is k in component dCa_i_dt (fixer). * STATES[8] is m in component I_h (dimensionless). * CONSTANTS[25] is E_h in component I_h (millivolt). * CONSTANTS[26] is g_hbar in component I_h (millisiemens_per_cm_squared). * CONSTANTS[27] is cac in component I_h (mM). * CONSTANTS[28] is V_S in component I_h (millivolt). * STATES[9] is o_1 in component kinetic (dimensionless). * STATES[10] is o_2 in component kinetic (dimensionless). * CONSTANTS[29] is g_inc in component I_h (dimensionless). * STATES[11] is p_0 in component kinetic (dimensionless). * STATES[12] is p_1 in component kinetic (dimensionless). * STATES[13] is c_1 in component kinetic (dimensionless). * ALGEBRAIC[27] is alpha in component rate_constants (dimensionless). * ALGEBRAIC[28] is beta in component rate_constants (dimensionless). * ALGEBRAIC[29] is k_1Ca in component rate_constants (per_second). * CONSTANTS[30] is k_2 in component rate_constants (per_second). * STATES[14] is k_3p in component rate_constants (per_second). * CONSTANTS[31] is k_4 in component rate_constants (per_second). * ALGEBRAIC[25] is h_inf in component rate_constants (second). * ALGEBRAIC[26] is tau_s in component rate_constants (second). * CONSTANTS[32] is P_c in component rate_constants (dimensionless). * CONSTANTS[33] is n_Ca in component rate_constants (dimensionless). * CONSTANTS[34] is n_exp in component rate_constants (dimensionless). * CONSTANTS[35] is p_C in component rate_constants (dimensionless). * CONSTANTS[36] is Ca_c in component rate_constants (mM). * CONSTANTS[37] is tau_m in component rate_constants (second). * RATES[0] is d/dt V in component membrane (millivolt). * RATES[1] is d/dt m in component Na_m_gate (dimensionless). * RATES[2] is d/dt h in component Na_h_gate (dimensionless). * RATES[3] is d/dt n in component KD_n_gate (dimensionless). * RATES[4] is d/dt p in component KM_p_gate (dimensionless). * RATES[5] is d/dt q in component CaL_q_gate (dimensionless). * RATES[6] is d/dt Ca_i in component dCa_i_dt (mM). * There are a total of 12 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { STATES[0] = -70; CONSTANTS[0] = -55; CONSTANTS[1] = 0; CONSTANTS[2] = 1e-3; CONSTANTS[3] = 96489; CONSTANTS[4] = 8.314; CONSTANTS[5] = 296.65; CONSTANTS[6] = 5; CONSTANTS[7] = 9; CONSTANTS[8] = -0.3; CONSTANTS[9] = 9; CONSTANTS[10] = 1; CONSTANTS[11] = -70; CONSTANTS[12] = 70; CONSTANTS[13] = 50; STATES[1] = 0; STATES[2] = 0; CONSTANTS[14] = 7; CONSTANTS[15] = -95; STATES[3] = 0; CONSTANTS[16] = 0.004; STATES[4] = 0; CONSTANTS[17] = 4; CONSTANTS[18] = 2.76e-4; STATES[5] = 0.00247262; CONSTANTS[19] = 2; CONSTANTS[20] = 2; STATES[6] = 100e-6; CONSTANTS[21] = 100e-6; CONSTANTS[22] = 17e-3; CONSTANTS[23] = 1e-4; CONSTANTS[24] = 0.1; CONSTANTS[25] = -20; CONSTANTS[26] = 0.02; CONSTANTS[27] = 0.006; CONSTANTS[28] = 0; CONSTANTS[29] = 2; CONSTANTS[30] = 0.1; CONSTANTS[31] = 1; CONSTANTS[32] = 0.01; CONSTANTS[33] = 4; CONSTANTS[34] = 1; CONSTANTS[35] = 0.01; CONSTANTS[36] = 0.006; CONSTANTS[37] = 20e-3; STATES[7] = 0.1001; STATES[8] = 0.1001; STATES[9] = 0.1001; STATES[10] = 0.1001; STATES[11] = 0.1001; STATES[12] = 0.1001; STATES[13] = 0.1001; STATES[14] = 0.1001; RATES[0] = 0.1001; RATES[1] = 0.1001; RATES[2] = 0.1001; RATES[3] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[6] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - ( 0.00100000*((((((ALGEBRAIC[1]+- ALGEBRAIC[2]) - ALGEBRAIC[3]) - ALGEBRAIC[12]) - ALGEBRAIC[17]) - ALGEBRAIC[30]) - STATES[7]))/CONSTANTS[2]; resid[1] = RATES[1] - (ALGEBRAIC[7] - STATES[1])/ALGEBRAIC[6]; resid[2] = RATES[2] - (ALGEBRAIC[11] - STATES[2])/ALGEBRAIC[10]; resid[3] = RATES[3] - (ALGEBRAIC[16] - STATES[3])/ALGEBRAIC[15]; resid[4] = RATES[4] - (ALGEBRAIC[18] - STATES[4])/ALGEBRAIC[19]; resid[5] = RATES[5] - (ALGEBRAIC[23] - STATES[5])/ALGEBRAIC[22]; resid[6] = RATES[6] - (CONDVAR[11]<=0.00000 ? (CONSTANTS[21] - STATES[6])/CONSTANTS[22] : ALGEBRAIC[31]+(CONSTANTS[21] - STATES[6])/CONSTANTS[22]); resid[7] = STATES[8] - STATES[9]+CONSTANTS[29]+STATES[10]; resid[8] = STATES[7] - 1000.00*CONSTANTS[26]*STATES[8]*(STATES[0] - CONSTANTS[25]); resid[9] = STATES[11] - ( STATES[12]*CONSTANTS[30])/ALGEBRAIC[29]; resid[10] = STATES[12] - 1.00000 - STATES[11]; resid[11] = STATES[13] - (ALGEBRAIC[28]/ALGEBRAIC[27])*STATES[9]; resid[12] = STATES[9] - (CONSTANTS[31]/STATES[14])*STATES[10]; resid[13] = STATES[10] - (1.00000 - STATES[13]) - STATES[9]; resid[14] = STATES[14] - CONSTANTS[31]*pow(STATES[12]/CONSTANTS[35], CONSTANTS[34]); } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = VOI - CONSTANTS[9]*floor(VOI/CONSTANTS[9]); ALGEBRAIC[1] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000 ? CONSTANTS[8] : 0.00000); ALGEBRAIC[2] = 1000.00*CONSTANTS[10]*(STATES[0] - CONSTANTS[11]); ALGEBRAIC[3] = 1000.00*CONSTANTS[12]*pow(STATES[1], 3.00000)*STATES[2]*(STATES[0] - CONSTANTS[13]); ALGEBRAIC[4] = (CONDVAR[2]<0.00000 ? 0.320000*4.00000*(1.00000 - ((13.0000+CONSTANTS[0]) - STATES[0])/( 2.00000*4.00000)) : ( 0.320000*((13.0000+CONSTANTS[0]) - STATES[0]))/(exp(((13.0000+CONSTANTS[0]) - STATES[0])/4.00000) - 1.00000)); ALGEBRAIC[5] = (CONDVAR[3]<0.00000 ? - 0.280000*5.00000*(1.00000 - - ((STATES[0] - CONSTANTS[0]) - 40.0000)/( 2.00000*5.00000)) : ( - 0.280000*((STATES[0] - CONSTANTS[0]) - 40.0000))/(exp(- ((STATES[0] - CONSTANTS[0]) - 40.0000)/5.00000) - 1.00000)); ALGEBRAIC[6] = 1.00000/(ALGEBRAIC[4]+ALGEBRAIC[5]); ALGEBRAIC[7] = ALGEBRAIC[4]/(ALGEBRAIC[4]+ALGEBRAIC[5]); ALGEBRAIC[8] = 0.128000*exp(((17.0000+CONSTANTS[0]+CONSTANTS[1]) - STATES[0])/18.0000); ALGEBRAIC[9] = 4.00000/(1.00000+exp(((40.0000+CONSTANTS[1]+CONSTANTS[0]) - STATES[0])/5.00000)); ALGEBRAIC[10] = 1.00000/(ALGEBRAIC[8]+ALGEBRAIC[9]); ALGEBRAIC[11] = ALGEBRAIC[8]/(ALGEBRAIC[8]+ALGEBRAIC[9]); ALGEBRAIC[12] = 1000.00*CONSTANTS[14]*pow(STATES[3], 4.00000)*(STATES[0] - CONSTANTS[15]); ALGEBRAIC[13] = (CONDVAR[4]<0.00000 ? - 0.0320000*5.00000*(1.00000 - ((STATES[0] - CONSTANTS[0]) - 15.0000)/( 2.00000*5.00000)) : ( - 0.0320000*((STATES[0] - CONSTANTS[0]) - 15.0000))/(exp(((STATES[0] - CONSTANTS[0]) - 15.0000)/5.00000) - 1.00000)); ALGEBRAIC[14] = (CONDVAR[5]<0.00000 ? 0.500000*40.0000*(1.00000+((STATES[0] - CONSTANTS[0]) - 10.0000)/( 2.00000*40.0000)) : ( 0.500000*- ((STATES[0] - CONSTANTS[0]) - 10.0000))/(exp(- ((STATES[0] - CONSTANTS[0]) - 10.0000)/40.0000) - 1.00000)); ALGEBRAIC[15] = 1.00000/(ALGEBRAIC[13]+ALGEBRAIC[14]); ALGEBRAIC[16] = ALGEBRAIC[13]/(ALGEBRAIC[13]+ALGEBRAIC[14]); ALGEBRAIC[17] = 1000.00*CONSTANTS[16]*STATES[4]*(STATES[0] - CONSTANTS[15]); ALGEBRAIC[18] = (CONDVAR[6]<0.00000&&CONDVAR[7]>0.00000 ? 1.00000/(1.00000+exp(- (STATES[0]+35.0000)/10.0000)) : 1.00000); ALGEBRAIC[19] = (CONDVAR[8]<0.00000&&CONDVAR[9]>0.00000 ? CONSTANTS[17]/( 3.30000*exp((STATES[0]+35.0000)/20.0000)+exp(- (STATES[0]+35.0000)/20.0000)) : 1.00000); ALGEBRAIC[20] = 6.32000/(1.00000+exp(- (STATES[0] - 5.00000)/13.8900)); ALGEBRAIC[21] = (CONDVAR[10]<0.00000 ? 0.0200000*(5.36000+(1.31000 - STATES[0])/2.00000) : ( 0.0200000*(1.31000 - STATES[0]))/(1.00000 - exp((STATES[0] - 1.31000)/5.36000))); ALGEBRAIC[22] = 1.00000/(ALGEBRAIC[20]+ALGEBRAIC[21]); ALGEBRAIC[23] = 1.00000/(1.00000+exp((STATES[0]+10.0000)/- 10.0000)); ALGEBRAIC[25] = 1.00000/(1.00000+exp(((STATES[0]+75.0000) - CONSTANTS[28])/5.50000)); ALGEBRAIC[26] = CONSTANTS[37]+1000.00/(exp(((STATES[0]+71.5500) - CONSTANTS[28])/14.2000)+exp(- ((STATES[0]+89.0000) - CONSTANTS[28])/11.6000)); ALGEBRAIC[27] = ALGEBRAIC[25]/ALGEBRAIC[26]; ALGEBRAIC[28] = (1.00000 - ALGEBRAIC[25])/ALGEBRAIC[26]; ALGEBRAIC[29] = CONSTANTS[30]*pow(STATES[6]/CONSTANTS[36], CONSTANTS[33]); ALGEBRAIC[24] = ( (( pow(CONSTANTS[19], 2.00000)*pow(CONSTANTS[3], 2.00000)*0.00100000*STATES[0])/( CONSTANTS[4]*CONSTANTS[5]))*1.00000e-06*(STATES[6] - CONSTANTS[20]*exp(( CONSTANTS[19]*CONSTANTS[3]*0.00100000*STATES[0])/( CONSTANTS[4]*CONSTANTS[5]))))/(1.00000 - exp(( 0.00100000*CONSTANTS[19]*CONSTANTS[3]*STATES[0])/( CONSTANTS[4]*CONSTANTS[5]))); ALGEBRAIC[30] = 1000.00*CONSTANTS[18]*pow(STATES[5], 2.00000)*ALGEBRAIC[24]; ALGEBRAIC[31] = ( CONSTANTS[24]*ALGEBRAIC[30])/( 2.00000*CONSTANTS[3]*CONSTANTS[23]); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[7] = 0.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[8] = 0.0; SI[9] = 0.0; SI[10] = 0.0; SI[11] = 0.0; SI[12] = 0.0; SI[13] = 0.0; SI[14] = 0.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = ALGEBRAIC[0] - CONSTANTS[6]; CONDVAR[1] = ALGEBRAIC[0] - CONSTANTS[7]; CONDVAR[2] = fabs(((13.0000+CONSTANTS[0]) - STATES[0])/4.00000) - 1.00000e-06; CONDVAR[3] = fabs(- ((STATES[0] - CONSTANTS[0]) - 40.0000)/5.00000) - 1.00000e-06; CONDVAR[4] = fabs(((STATES[0] - CONSTANTS[0]) - 15.0000)/5.00000) - 1.00000e-06; CONDVAR[5] = fabs(- ((STATES[0] - CONSTANTS[0]) - 10.0000)/40.0000) - 1.00000e-06; CONDVAR[6] = - (STATES[0]+35.0000)/10.0000 - 25.0000; CONDVAR[7] = - (STATES[0]+35.0000)/10.0000 - - 25.0000; CONDVAR[8] = (STATES[0]+35.0000)/20.0000 - 25.0000; CONDVAR[9] = (STATES[0]+35.0000)/20.0000 - - 25.0000; CONDVAR[10] = fabs((1.31000 - STATES[0])/5.36000) - 1.00000e-06; CONDVAR[11] = ALGEBRAIC[31] - 0.00000; }