/* There are a total of 30 entries in the algebraic variable array. There are a total of 9 entries in each of the rate and state variable arrays. There are a total of 27 entries in the constant variable array. */ /* * VOI is time in component environment (second). * CONSTANTS[0] is C_m_Imp in component imported_variables (mmol_per_cm3). * CONSTANTS[1] is C_c_Imp in component imported_variables (mmol_per_cm3). * CONSTANTS[2] is psi_m in component imported_variables (millivolt). * CONSTANTS[3] is psi_c in component imported_variables (millivolt). * STATES[0] is C_m_Na in component solute_concentrations (mmol_per_cm3). * STATES[1] is C_m_K in component solute_concentrations (mmol_per_cm3). * STATES[2] is C_m_Cl in component solute_concentrations (mmol_per_cm3). * STATES[3] is C_c_Na in component solute_concentrations (mmol_per_cm3). * STATES[4] is C_c_K in component solute_concentrations (mmol_per_cm3). * STATES[5] is C_c_Cl in component solute_concentrations (mmol_per_cm3). * STATES[6] is C_s_Na in component solute_concentrations (mmol_per_cm3). * STATES[7] is C_s_K in component solute_concentrations (mmol_per_cm3). * STATES[8] is C_s_Cl in component solute_concentrations (mmol_per_cm3). * ALGEBRAIC[18] is J_mc_Na in component mc_sodium_flux (flux). * ALGEBRAIC[24] is J_ms_Na in component ms_sodium_flux (flux). * ALGEBRAIC[21] is J_sc_Na in component sc_sodium_flux (flux). * ALGEBRAIC[19] is J_mc_K in component mc_potassium_flux (flux). * ALGEBRAIC[25] is J_ms_K in component ms_potassium_flux (flux). * ALGEBRAIC[22] is J_sc_K in component sc_potassium_flux (flux). * ALGEBRAIC[20] is J_mc_Cl in component mc_chloride_flux (flux). * ALGEBRAIC[26] is J_ms_Cl in component ms_chloride_flux (flux). * ALGEBRAIC[23] is J_sc_Cl in component sc_chloride_flux (flux). * CONSTANTS[4] is RT in component constants (J_per_mmol). * CONSTANTS[5] is F in component constants (C_per_mmol). * CONSTANTS[6] is C_s_Imp in component constants (mmol_per_cm3). * CONSTANTS[7] is psi_s in component constants (millivolt). * ALGEBRAIC[1] is J_mc_NaCl in component mc_sodium_flux (flux). * ALGEBRAIC[0] is G_mc_Na in component mc_sodium_flux (flux). * CONSTANTS[8] is P_mc_Na in component mc_sodium_flux (cm_per_s). * CONSTANTS[9] is J_mc_NaCl_max in component mc_sodium_flux (flux). * CONSTANTS[10] is K_mc_Na_NaCl in component mc_sodium_flux (mmol_per_cm3). * CONSTANTS[11] is K_mc_Cl_NaCl in component mc_sodium_flux (mmol_per_cm3). * ALGEBRAIC[3] is J_mc_KCl in component mc_potassium_flux (flux). * ALGEBRAIC[2] is G_mc_K in component mc_potassium_flux (flux). * CONSTANTS[12] is J_mc_KCl_max in component mc_potassium_flux (flux). * CONSTANTS[13] is K_mc_K_KCl in component mc_potassium_flux (mmol_per_cm3). * CONSTANTS[14] is K_mc_Cl_KCl in component mc_potassium_flux (mmol_per_cm3). * CONSTANTS[15] is P_mc_K in component mc_potassium_flux (cm_per_s). * ALGEBRAIC[4] is G_mc_Cl in component mc_chloride_flux (flux). * CONSTANTS[16] is P_mc_Cl in component mc_chloride_flux (cm_per_s). * ALGEBRAIC[5] is J_a in component sc_sodium_flux (flux). * CONSTANTS[17] is J_a_max in component sc_sodium_flux (flux). * CONSTANTS[18] is K_Na_ATPase in component sc_sodium_flux (mmol_per_cm3). * ALGEBRAIC[6] is G_sc_K in component sc_potassium_flux (flux). * CONSTANTS[19] is P_sc_K in component sc_potassium_flux (cm_per_s). * ALGEBRAIC[7] is G_sc_Cl in component sc_chloride_flux (flux). * CONSTANTS[20] is P_sc_Cl in component sc_chloride_flux (cm_per_s). * ALGEBRAIC[8] is G_ms_Na in component ms_sodium_flux (flux). * CONSTANTS[21] is P_ms_Na in component ms_sodium_flux (cm_per_s). * ALGEBRAIC[9] is G_ms_K in component ms_potassium_flux (flux). * CONSTANTS[22] is P_ms_K in component ms_potassium_flux (cm_per_s). * ALGEBRAIC[10] is G_ms_Cl in component ms_chloride_flux (flux). * CONSTANTS[23] is P_ms_Cl in component ms_chloride_flux (cm_per_s). * ALGEBRAIC[27] is J_Na in component total_transepithelial_sodium_flux (flux). * ALGEBRAIC[28] is J_K in component total_transepithelial_potassium_flux (flux). * ALGEBRAIC[29] is J_Cl in component total_transepithelial_chloride_flux (flux). * ALGEBRAIC[11] is Osm_m in component osmolarities (mmol_per_cm3). * ALGEBRAIC[12] is Osm_c in component osmolarities (mmol_per_cm3). * ALGEBRAIC[13] is Osm_s in component osmolarities (mmol_per_cm3). * ALGEBRAIC[14] is J_mc_v in component mc_transepithelial_volume_flux (cm_per_s). * CONSTANTS[24] is L_mc_v in component mc_transepithelial_volume_flux (cm_per_s_mmHg). * ALGEBRAIC[15] is J_ms_v in component ms_transepithelial_volume_flux (cm_per_s). * CONSTANTS[25] is L_ms_v in component ms_transepithelial_volume_flux (cm_per_s_mmHg). * ALGEBRAIC[16] is J_sc_v in component sc_transepithelial_volume_flux (cm_per_s). * CONSTANTS[26] is L_sc_v in component sc_transepithelial_volume_flux (cm_per_s_mmHg). * ALGEBRAIC[17] is J_v in component total_transepithelial_volume_flux (cm_per_s). * RATES[0] is d/dt C_m_Na in component solute_concentrations (mmol_per_cm3). * RATES[6] is d/dt C_s_Na in component solute_concentrations (mmol_per_cm3). * RATES[3] is d/dt C_c_Na in component solute_concentrations (mmol_per_cm3). * RATES[1] is d/dt C_m_K in component solute_concentrations (mmol_per_cm3). * RATES[7] is d/dt C_s_K in component solute_concentrations (mmol_per_cm3). * RATES[4] is d/dt C_c_K in component solute_concentrations (mmol_per_cm3). * RATES[2] is d/dt C_m_Cl in component solute_concentrations (mmol_per_cm3). * RATES[8] is d/dt C_s_Cl in component solute_concentrations (mmol_per_cm3). * RATES[5] is d/dt C_c_Cl in component solute_concentrations (mmol_per_cm3). * There are a total of 0 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 0.1033; CONSTANTS[1] = 0.1124; CONSTANTS[2] = -28.0; CONSTANTS[3] = -86.4; STATES[0] = 0.05; STATES[1] = 0.002; STATES[2] = 0.03; STATES[3] = 0.0164; STATES[4] = 0.1637; STATES[5] = 0.0203; STATES[6] = 1.438E-1; STATES[7] = 4.25E-3; STATES[8] = 1.12E-1; CONSTANTS[4] = 2.579; CONSTANTS[5] = 96.48; CONSTANTS[6] = 4.525E-2; CONSTANTS[7] = 0.0; CONSTANTS[8] = 3.27E-6; CONSTANTS[9] = 3.21E-5; CONSTANTS[10] = 5.11E-2; CONSTANTS[11] = 1.92E-2; CONSTANTS[12] = 6.31E-8; CONSTANTS[13] = 5.30E-2; CONSTANTS[14] = 2.13E-2; CONSTANTS[15] = 4.90E-7; CONSTANTS[16] = 1.43E-6; CONSTANTS[17] = 2.69E-6; CONSTANTS[18] = 1.20E-2; CONSTANTS[19] = 4.74E-4; CONSTANTS[20] = 9.16E-5; CONSTANTS[21] = 4.80E-6; CONSTANTS[22] = 4.80E-6; CONSTANTS[23] = 2.40E-6; CONSTANTS[24] = 5.22E-9; CONSTANTS[25] = 0.0; CONSTANTS[26] = 5.22E-7; RATES[0] = 0.1001; RATES[6] = 0.1001; RATES[3] = 0.1001; RATES[1] = 0.1001; RATES[7] = 0.1001; RATES[4] = 0.1001; RATES[2] = 0.1001; RATES[8] = 0.1001; RATES[5] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[0] - - (ALGEBRAIC[18]+ALGEBRAIC[24]); resid[1] = RATES[6] - ALGEBRAIC[24] - ALGEBRAIC[21]; resid[2] = RATES[3] - ALGEBRAIC[18]+ALGEBRAIC[21]; resid[3] = RATES[1] - - (ALGEBRAIC[19]+ALGEBRAIC[25]); resid[4] = RATES[7] - ALGEBRAIC[25] - ALGEBRAIC[22]; resid[5] = RATES[4] - ALGEBRAIC[19]+ALGEBRAIC[22]; resid[6] = RATES[2] - - (ALGEBRAIC[20]+ALGEBRAIC[26]); resid[7] = RATES[8] - ALGEBRAIC[26] - ALGEBRAIC[23]; resid[8] = RATES[5] - ALGEBRAIC[20]+ALGEBRAIC[23]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[11] = STATES[0]+STATES[1]+STATES[2]+CONSTANTS[0]; ALGEBRAIC[12] = STATES[3]+STATES[4]+STATES[5]+CONSTANTS[1]; ALGEBRAIC[13] = STATES[6]+STATES[7]+STATES[8]+CONSTANTS[6]; ALGEBRAIC[14] = CONSTANTS[24]*CONSTANTS[4]*(ALGEBRAIC[11] - ALGEBRAIC[12]); ALGEBRAIC[15] = CONSTANTS[25]*CONSTANTS[4]*(ALGEBRAIC[11] - ALGEBRAIC[13]); ALGEBRAIC[16] = CONSTANTS[26]*CONSTANTS[4]*(ALGEBRAIC[13] - ALGEBRAIC[12]); ALGEBRAIC[17] = ALGEBRAIC[14]+ALGEBRAIC[15]; ALGEBRAIC[27] = ALGEBRAIC[18]+ALGEBRAIC[24]; ALGEBRAIC[28] = ALGEBRAIC[19]+ALGEBRAIC[25]; ALGEBRAIC[29] = ALGEBRAIC[20]+ALGEBRAIC[26]; } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[1] = CONSTANTS[9]*(( (STATES[0]/CONSTANTS[10])*(STATES[2]/CONSTANTS[11]) - (STATES[3]/CONSTANTS[10])*(STATES[5]/CONSTANTS[11]))/( (1.00000+ (STATES[0]/CONSTANTS[10])*(STATES[2]/CONSTANTS[11]))*(1.00000+STATES[3]/CONSTANTS[10])*(1.00000+STATES[5]/CONSTANTS[11])+ (1.00000+ (STATES[3]/CONSTANTS[10])*(STATES[5]/CONSTANTS[11]))*(1.00000+STATES[0]/CONSTANTS[10])*(1.00000+STATES[2]/CONSTANTS[11]))); ALGEBRAIC[0] = CONSTANTS[8]*(( CONSTANTS[5]*(CONSTANTS[2] - CONSTANTS[3]))/CONSTANTS[4])*((STATES[0] - STATES[3]*exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[3])))/(1.00000 - exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[3])))); ALGEBRAIC[18] = ALGEBRAIC[1]+ALGEBRAIC[0]; ALGEBRAIC[3] = CONSTANTS[12]*(( (STATES[1]/CONSTANTS[13])*(STATES[2]/CONSTANTS[14]) - (STATES[4]/CONSTANTS[13])*(STATES[5]/CONSTANTS[14]))/( (1.00000+ (STATES[1]/CONSTANTS[13])*(STATES[2]/CONSTANTS[14]))*(1.00000+STATES[4]/CONSTANTS[13])*(1.00000+STATES[5]/CONSTANTS[14])+ (1.00000+ (STATES[4]/CONSTANTS[13])*(STATES[5]/CONSTANTS[14]))*(1.00000+STATES[1]/CONSTANTS[13])*(1.00000+STATES[2]/CONSTANTS[14]))); ALGEBRAIC[2] = CONSTANTS[15]*(( CONSTANTS[5]*(CONSTANTS[2] - CONSTANTS[3]))/CONSTANTS[4])*((STATES[1] - STATES[4]*exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[3])))/(1.00000 - exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[3])))); ALGEBRAIC[19] = ALGEBRAIC[3]+ALGEBRAIC[2]; ALGEBRAIC[4] = CONSTANTS[16]*(( -1.00000*CONSTANTS[5]*(CONSTANTS[2] - CONSTANTS[3]))/CONSTANTS[4])*((STATES[2] - STATES[5]*exp( - (( -1.00000*CONSTANTS[5])/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[3])))/(1.00000 - exp( - (( -1.00000*CONSTANTS[5])/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[3])))); ALGEBRAIC[20] = ALGEBRAIC[1]+ALGEBRAIC[3]+ALGEBRAIC[4]; ALGEBRAIC[5] = CONSTANTS[17]*(1.00000/(1.00000+pow(CONSTANTS[18]/STATES[3], 3.00000))); ALGEBRAIC[21] = -3.00000*ALGEBRAIC[5]; ALGEBRAIC[6] = CONSTANTS[19]*(( CONSTANTS[5]*(CONSTANTS[7] - CONSTANTS[3]))/CONSTANTS[4])*((STATES[7] - STATES[4]*exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[7] - CONSTANTS[3])))/(1.00000 - exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[7] - CONSTANTS[3])))); ALGEBRAIC[22] = 2.00000*ALGEBRAIC[5]+ALGEBRAIC[6]; ALGEBRAIC[7] = CONSTANTS[20]*(( -1.00000*CONSTANTS[5]*(CONSTANTS[7] - CONSTANTS[3]))/CONSTANTS[4])*((STATES[8] - STATES[5]*exp( - (( -1.00000*CONSTANTS[5])/CONSTANTS[4])*(CONSTANTS[7] - CONSTANTS[3])))/(1.00000 - exp( - (( -1.00000*CONSTANTS[5])/CONSTANTS[4])*(CONSTANTS[7] - CONSTANTS[3])))); ALGEBRAIC[23] = ALGEBRAIC[7]; ALGEBRAIC[8] = CONSTANTS[21]*(( CONSTANTS[5]*(CONSTANTS[2] - CONSTANTS[7]))/CONSTANTS[4])*((STATES[0] - STATES[6]*exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[7])))/(1.00000 - exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[7])))); ALGEBRAIC[24] = ALGEBRAIC[8]; ALGEBRAIC[9] = CONSTANTS[22]*(( CONSTANTS[5]*(CONSTANTS[2] - CONSTANTS[7]))/CONSTANTS[4])*((STATES[1] - STATES[7]*exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[7])))/(1.00000 - exp( - (CONSTANTS[5]/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[7])))); ALGEBRAIC[25] = ALGEBRAIC[9]; ALGEBRAIC[10] = CONSTANTS[23]*(( -1.00000*CONSTANTS[5]*(CONSTANTS[2] - CONSTANTS[7]))/CONSTANTS[4])*((STATES[2] - STATES[8]*exp( - (( -1.00000*CONSTANTS[5])/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[7])))/(1.00000 - exp( - (( -1.00000*CONSTANTS[5])/CONSTANTS[4])*(CONSTANTS[2] - CONSTANTS[7])))); ALGEBRAIC[26] = ALGEBRAIC[10]; } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { }