Generated Code
The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
/* There are a total of 34 entries in the algebraic variable array. There are a total of 19 entries in each of the rate and state variable arrays. There are a total of 60 entries in the constant variable array. */ /* * VOI is t in component Environment (second). * CONSTANTS[0] is Mg_tot in component Environment (molar). * CONSTANTS[1] is Pi_e in component Environment (molar). * CONSTANTS[2] is ADP_e in component Environment (molar). * CONSTANTS[3] is RT in component Fixed_parameters (kilojoule_per_mole). * CONSTANTS[4] is F in component Fixed_parameters (kilojoule_per_mole_per_millivolt). * CONSTANTS[5] is n_A in component Fixed_parameters (dimensionless). * CONSTANTS[6] is dG_C1o in component Fixed_parameters (kilojoule_per_mole). * CONSTANTS[7] is dG_C3o in component Fixed_parameters (kilojoule_per_mole). * CONSTANTS[8] is dG_C4o in component Fixed_parameters (kilojoule_per_mole). * CONSTANTS[9] is dG_F1o in component Fixed_parameters (kilojoule_per_mole). * CONSTANTS[10] is pH_e in component Fixed_parameters (dimensionless). * CONSTANTS[47] is H_e in component Fixed_parameters (molar). * CONSTANTS[11] is K_e in component Fixed_parameters (molar). * CONSTANTS[12] is ATP_e in component Fixed_parameters (molar). * CONSTANTS[13] is AMP_e in component Fixed_parameters (molar). * CONSTANTS[48] is k_dHPi in component Fixed_parameters (molar). * CONSTANTS[49] is k_dHatp in component Fixed_parameters (molar). * CONSTANTS[50] is k_dHadp in component Fixed_parameters (molar). * CONSTANTS[14] is K_DT in component Fixed_parameters (molar). * CONSTANTS[15] is K_DD in component Fixed_parameters (molar). * CONSTANTS[16] is K_AK in component Fixed_parameters (dimensionless). * CONSTANTS[17] is W_m in component Fixed_parameters (l_water_per_l_mito). * CONSTANTS[52] is W_x in component Fixed_parameters (l_water_per_l_mito). * CONSTANTS[55] is W_i in component Fixed_parameters (l_water_per_l_mito). * CONSTANTS[18] is gamma in component Fixed_parameters (per_micron). * CONSTANTS[19] is Ctot in component Fixed_parameters (molar). * CONSTANTS[20] is Qtot in component Fixed_parameters (molar). * CONSTANTS[21] is NADtot in component Fixed_parameters (molar). * CONSTANTS[54] is H_i in component Fixed_parameters (molar). * CONSTANTS[51] is K_i in component Fixed_parameters (molar). * CONSTANTS[22] is k_Pi1 in component Adjustable_parameters (molar). * CONSTANTS[23] is k_Pi2 in component Adjustable_parameters (molar). * CONSTANTS[24] is k_Pi3 in component Adjustable_parameters (molar). * CONSTANTS[25] is k_Pi4 in component Adjustable_parameters (molar). * CONSTANTS[26] is k_PiH in component Adjustable_parameters (molar). * CONSTANTS[27] is r in component Adjustable_parameters (dimensionless). * CONSTANTS[28] is x_DH in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar). * CONSTANTS[29] is x_C1 in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar). * CONSTANTS[30] is x_C3 in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar). * CONSTANTS[31] is x_C4 in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar). * CONSTANTS[32] is x_F1 in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar_per_molar). * CONSTANTS[33] is x_ANT in component Adjustable_parameters (mole_per_second_per_l_mito). * CONSTANTS[34] is x_Pi1 in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar). * CONSTANTS[35] is x_KH in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar_per_molar). * CONSTANTS[36] is x_Hle in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar_per_millivolt). * CONSTANTS[37] is x_K in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar_per_millivolt). * CONSTANTS[38] is k_mADP in component Adjustable_parameters (molar). * CONSTANTS[39] is x_AK in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar_per_molar). * CONSTANTS[40] is p_A in component Adjustable_parameters (micron_per_second). * CONSTANTS[41] is k_O2 in component Adjustable_parameters (molar). * CONSTANTS[42] is x_buff in component Adjustable_parameters (per_molar). * CONSTANTS[43] is x_MgA in component Adjustable_parameters (mole_per_second_per_l_mito_per_molar_per_molar). * CONSTANTS[44] is x_Pi2 in component Adjustable_parameters (micron_per_second). * ALGEBRAIC[0] is dG_H in component Proton_motive_force (kilojoule_per_mole). * STATES[0] is dPsi in component dPsi_dt (millivolt). * STATES[1] is H_x in component dH_x_dt (molar). * ALGEBRAIC[27] is J_DH in component Dehydrogenase_flux (mole_per_second_per_l_mito). * ALGEBRAIC[24] is NAD_x in component NAD_x_concentration (molar). * STATES[2] is NADH_x in component dNADH_x_dt (molar). * STATES[3] is Pi_x in component dPi_x_dt (molar). * ALGEBRAIC[29] is J_C1 in component Electron_flux_complex_I (mole_per_second_per_l_mito). * ALGEBRAIC[28] is dG_C1op in component Electron_flux_complex_I (kilojoule_per_mole). * ALGEBRAIC[25] is Q in component Q_concentration (molar). * STATES[4] is QH2 in component dQH2_dt (molar). * ALGEBRAIC[31] is J_C3 in component Electron_flux_complex_III (mole_per_second_per_l_mito). * ALGEBRAIC[30] is dG_C3op in component Electron_flux_complex_III (kilojoule_per_mole). * ALGEBRAIC[26] is Cox in component Cox_concentration (molar). * STATES[5] is Cred in component dCred_dt (molar). * ALGEBRAIC[32] is J_C4 in component Electron_flux_complex_IV (mole_per_second_per_l_mito). * ALGEBRAIC[1] is dG_C4op in component Electron_flux_complex_IV (kilojoule_per_mole). * STATES[6] is O2 in component dO2_dt (molar). * ALGEBRAIC[2] is J_F1 in component ATP_synthesis_flux (mole_per_second_per_l_mito). * STATES[7] is ADP_mx in component dADP_mx_dt (molar). * STATES[8] is ATP_mx in component dATP_mx_dt (molar). * ALGEBRAIC[33] is J_ANT in component ANT_flux (mole_per_second_per_l_mito). * ALGEBRAIC[3] is Psi_x in component ANT_flux (millivolt). * ALGEBRAIC[4] is Psi_i in component ANT_flux (millivolt). * ALGEBRAIC[11] is ADP_fi in component MgADPi_binding_flux (molar). * ALGEBRAIC[9] is ATP_fi in component MgATPi_binding_flux (molar). * ALGEBRAIC[7] is ADP_fx in component MgADPx_binding_flux (molar). * ALGEBRAIC[5] is ATP_fx in component MgATPx_binding_flux (molar). * CONSTANTS[45] is mincond in component ANT_flux (molar). * ALGEBRAIC[6] is J_MgATPx in component MgATPx_binding_flux (mole_per_second_per_l_mito). * STATES[9] is ATP_x in component dATP_x_dt (molar). * STATES[10] is Mg_x in component dMg_x_dt (molar). * ALGEBRAIC[8] is J_MgADPx in component MgADPx_binding_flux (mole_per_second_per_l_mito). * STATES[11] is ADP_x in component dADP_x_dt (molar). * ALGEBRAIC[10] is J_MgATPi in component MgATPi_binding_flux (mole_per_second_per_l_mito). * STATES[12] is ATP_i in component dATP_i_dt (molar). * STATES[13] is ATP_mi in component dATP_mi_dt (molar). * CONSTANTS[58] is Mg_i in component Mg_binding (molar). * ALGEBRAIC[12] is J_MgADPi in component MgADPi_binding_flux (mole_per_second_per_l_mito). * STATES[14] is ADP_i in component dADP_i_dt (molar). * STATES[15] is ADP_mi in component dADP_mi_dt (molar). * ALGEBRAIC[13] is J_ATP in component ATP_substrate_flux (mole_per_second_per_l_mito). * ALGEBRAIC[14] is J_ADP in component ADP_substrate_flux (mole_per_second_per_l_mito). * ALGEBRAIC[15] is J_AMP in component AMP_substrate_flux (mole_per_second_per_l_mito). * STATES[16] is AMP_i in component dAMP_i_dt (molar). * ALGEBRAIC[16] is J_Pi2 in component Pi_substrate_flux (mole_per_second_per_l_mito). * STATES[17] is Pi_i in component dPi_i_dt (molar). * ALGEBRAIC[19] is J_Pi1 in component Phosphate_hydrogen_cotransporter_flux (mole_per_second_per_l_mito). * ALGEBRAIC[17] is H2PIi in component Phosphate_hydrogen_cotransporter_flux (molar). * ALGEBRAIC[18] is H2PIx in component Phosphate_hydrogen_cotransporter_flux (molar). * ALGEBRAIC[20] is J_AKi in component Adenylate_kinase_flux (mole_per_second_per_l_mito). * ALGEBRAIC[21] is J_Hle in component Hydrogen_leak_flux (mole_per_second_per_l_mito). * ALGEBRAIC[22] is J_K in component Passive_potassium_flux (mole_per_second_per_l_mito). * STATES[18] is K_x in component dK_x_dt (molar). * ALGEBRAIC[23] is J_KH in component Potassium_hydrogen_flux (mole_per_second_per_l_mito). * CONSTANTS[53] is ADP_me in component ADP_binding (molar). * CONSTANTS[56] is ADP_fe in component ADP_binding (molar). * CONSTANTS[57] is Mg_e in component Mg_binding (molar). * CONSTANTS[46] is C_im in component dPsi_dt (mole_per_l_mito_per_millivolt). * RATES[1] is d/dt H_x in component dH_x_dt (molar). * RATES[18] is d/dt K_x in component dK_x_dt (molar). * RATES[10] is d/dt Mg_x in component dMg_x_dt (molar). * RATES[2] is d/dt NADH_x in component dNADH_x_dt (molar). * RATES[4] is d/dt QH2 in component dQH2_dt (molar). * RATES[5] is d/dt Cred in component dCred_dt (molar). * RATES[9] is d/dt ATP_x in component dATP_x_dt (molar). * RATES[11] is d/dt ADP_x in component dADP_x_dt (molar). * RATES[8] is d/dt ATP_mx in component dATP_mx_dt (molar). * RATES[7] is d/dt ADP_mx in component dADP_mx_dt (molar). * RATES[3] is d/dt Pi_x in component dPi_x_dt (molar). * RATES[12] is d/dt ATP_i in component dATP_i_dt (molar). * RATES[14] is d/dt ADP_i in component dADP_i_dt (molar). * RATES[16] is d/dt AMP_i in component dAMP_i_dt (molar). * RATES[13] is d/dt ATP_mi in component dATP_mi_dt (molar). * RATES[15] is d/dt ADP_mi in component dADP_mi_dt (molar). * RATES[17] is d/dt Pi_i in component dPi_i_dt (molar). * RATES[0] is d/dt dPsi in component dPsi_dt (millivolt). * RATES[6] is d/dt O2 in component dO2_dt (molar). * There are a total of 2 condition variables. */ void initConsts(double* CONSTANTS, double* RATES, double *STATES) { CONSTANTS[0] = 0.005; CONSTANTS[1] = 0.000125; CONSTANTS[2] = 0; CONSTANTS[3] = 2.4734; CONSTANTS[4] = 0.096484; CONSTANTS[5] = 3; CONSTANTS[6] = -69.37; CONSTANTS[7] = -32.53; CONSTANTS[8] = -122.94; CONSTANTS[9] = 36.03; CONSTANTS[10] = 7.1; CONSTANTS[11] = 0.15; CONSTANTS[12] = 0; CONSTANTS[13] = 0; CONSTANTS[14] = 2.4e-5; CONSTANTS[15] = 3.47e-4; CONSTANTS[16] = 0.4331; CONSTANTS[17] = 0.72376; CONSTANTS[18] = 5.99; CONSTANTS[19] = 0.0027; CONSTANTS[20] = 0.00135; CONSTANTS[21] = 0.00297; CONSTANTS[22] = 1.3413e-4; CONSTANTS[23] = 6.7668e-4; CONSTANTS[24] = 1.9172e-4; CONSTANTS[25] = 0.02531; CONSTANTS[26] = 4.5082e-4; CONSTANTS[27] = 4.5807; CONSTANTS[28] = 0.09183; CONSTANTS[29] = 0.36923; CONSTANTS[30] = 0.091737; CONSTANTS[31] = 3.2562e-5; CONSTANTS[32] = 150.93; CONSTANTS[33] = 0.0079204; CONSTANTS[34] = 339430; CONSTANTS[35] = 2.9802e7; CONSTANTS[36] = 250; CONSTANTS[37] = 0; CONSTANTS[38] = 3.5e-6; CONSTANTS[39] = 0; CONSTANTS[40] = 85; CONSTANTS[41] = 1.2e-4; CONSTANTS[42] = 100; CONSTANTS[43] = 1000000; CONSTANTS[44] = 327; STATES[0] = 160; STATES[1] = 6.30957344480193e-8; STATES[2] = 0.0015; STATES[3] = 0.001; STATES[4] = 8e-4; STATES[5] = 0.001; STATES[6] = 2.6e-5; STATES[7] = 0; STATES[8] = 0; CONSTANTS[45] = 1e-12; STATES[9] = 0; STATES[10] = 0.005; STATES[11] = 0.01; STATES[12] = 0; STATES[13] = 0; STATES[14] = 0; STATES[15] = 0; STATES[16] = 0; STATES[17] = 0.001; STATES[18] = 0.14; CONSTANTS[46] = 6.756756756756757e-6; CONSTANTS[47] = 1.00000*pow(10.0000, - CONSTANTS[10]); CONSTANTS[48] = 1.00000*pow(10.0000, - 6.75000); CONSTANTS[49] = 1.00000*pow(10.0000, - 6.48000); CONSTANTS[50] = 1.00000*pow(10.0000, - 6.29000); CONSTANTS[51] = CONSTANTS[11]; CONSTANTS[52] = 0.900000*CONSTANTS[17]; CONSTANTS[53] = ((CONSTANTS[15]+CONSTANTS[2]+CONSTANTS[0]) - pow((pow(CONSTANTS[15]+CONSTANTS[2]+CONSTANTS[0], 2.00000) - 4.00000*CONSTANTS[0]*CONSTANTS[2]), 1.0 / 2))/2.00000; CONSTANTS[59] = 0.00000; CONSTANTS[54] = CONSTANTS[47]; CONSTANTS[55] = 0.100000*CONSTANTS[17]; CONSTANTS[56] = CONSTANTS[2] - CONSTANTS[53]; CONSTANTS[57] = CONSTANTS[0] - CONSTANTS[53]; CONSTANTS[58] = CONSTANTS[57]; RATES[1] = 0.1001; RATES[18] = 0.1001; RATES[10] = 0.1001; RATES[2] = 0.1001; RATES[4] = 0.1001; RATES[5] = 0.1001; RATES[9] = 0.1001; RATES[11] = 0.1001; RATES[8] = 0.1001; RATES[7] = 0.1001; RATES[3] = 0.1001; RATES[12] = 0.1001; RATES[14] = 0.1001; RATES[16] = 0.1001; RATES[13] = 0.1001; RATES[15] = 0.1001; RATES[17] = 0.1001; RATES[0] = 0.1001; } void computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { resid[0] = RATES[1] - ( CONSTANTS[42]*STATES[1]*(((((ALGEBRAIC[27] - 5.00000*ALGEBRAIC[29]) - 2.00000*ALGEBRAIC[31]) - 4.00000*ALGEBRAIC[32])+ (CONSTANTS[5] - 1.00000)*ALGEBRAIC[2]+ 2.00000*ALGEBRAIC[19]+ALGEBRAIC[21]) - ALGEBRAIC[23]))/CONSTANTS[52]; resid[1] = RATES[18] - (ALGEBRAIC[23]+ALGEBRAIC[22])/CONSTANTS[52]; resid[2] = RATES[10] - (- ALGEBRAIC[6] - ALGEBRAIC[8])/CONSTANTS[52]; resid[3] = RATES[2] - (ALGEBRAIC[27] - ALGEBRAIC[29])/CONSTANTS[52]; resid[4] = RATES[4] - (ALGEBRAIC[29] - ALGEBRAIC[31])/CONSTANTS[52]; resid[5] = RATES[5] - ( 2.00000*ALGEBRAIC[31] - 2.00000*ALGEBRAIC[32])/CONSTANTS[55]; resid[6] = RATES[9] - (ALGEBRAIC[2] - ALGEBRAIC[33])/CONSTANTS[52]; resid[7] = RATES[11] - (- ALGEBRAIC[2]+ALGEBRAIC[33])/CONSTANTS[52]; resid[8] = RATES[8] - ALGEBRAIC[6]/CONSTANTS[52]; resid[9] = RATES[7] - ALGEBRAIC[8]/CONSTANTS[52]; resid[10] = RATES[3] - (- ALGEBRAIC[2]+ALGEBRAIC[19])/CONSTANTS[52]; resid[11] = RATES[12] - (ALGEBRAIC[13]+ALGEBRAIC[33]+ALGEBRAIC[20])/CONSTANTS[55]; resid[12] = RATES[14] - ((ALGEBRAIC[14] - ALGEBRAIC[33]) - 2.00000*ALGEBRAIC[20])/CONSTANTS[55]; resid[13] = RATES[16] - (ALGEBRAIC[15]+ALGEBRAIC[20])/CONSTANTS[55]; resid[14] = RATES[13] - ALGEBRAIC[10]/CONSTANTS[55]; resid[15] = RATES[15] - ALGEBRAIC[12]/CONSTANTS[55]; resid[16] = RATES[17] - (- ALGEBRAIC[19]+ALGEBRAIC[16])/CONSTANTS[55]; resid[17] = RATES[0] - ((((( 4.00000*ALGEBRAIC[29]+ 2.00000*ALGEBRAIC[31]+ 4.00000*ALGEBRAIC[32]) - CONSTANTS[5]*ALGEBRAIC[2]) - ALGEBRAIC[33]) - ALGEBRAIC[21]) - ALGEBRAIC[22])/CONSTANTS[46]; resid[18] = RATES[6] - CONSTANTS[59]; } void computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { } void computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC) { ALGEBRAIC[0] = CONSTANTS[4]*STATES[0]+ CONSTANTS[3]*log(CONSTANTS[54]/STATES[1]); ALGEBRAIC[2] = CONSTANTS[32]*( (( exp(- (CONSTANTS[9] - CONSTANTS[5]*ALGEBRAIC[0])/CONSTANTS[3])*CONSTANTS[15])/CONSTANTS[14])*STATES[7]*STATES[3] - STATES[8]*1.00000); ALGEBRAIC[5] = STATES[9] - STATES[8]; ALGEBRAIC[6] = CONSTANTS[43]*( ALGEBRAIC[5]*STATES[10] - CONSTANTS[14]*STATES[8]); ALGEBRAIC[7] = STATES[11] - STATES[7]; ALGEBRAIC[8] = CONSTANTS[43]*( ALGEBRAIC[7]*STATES[10] - CONSTANTS[15]*STATES[7]); ALGEBRAIC[9] = STATES[12] - STATES[13]; ALGEBRAIC[10] = CONSTANTS[43]*( ALGEBRAIC[9]*CONSTANTS[58] - CONSTANTS[14]*STATES[13]); ALGEBRAIC[11] = STATES[14] - STATES[15]; ALGEBRAIC[12] = CONSTANTS[43]*( ALGEBRAIC[11]*CONSTANTS[58] - CONSTANTS[15]*STATES[15]); ALGEBRAIC[13] = CONSTANTS[18]*CONSTANTS[40]*(CONSTANTS[12] - STATES[12]); ALGEBRAIC[14] = CONSTANTS[18]*CONSTANTS[40]*(CONSTANTS[2] - STATES[14]); ALGEBRAIC[15] = CONSTANTS[18]*CONSTANTS[40]*(CONSTANTS[13] - STATES[16]); ALGEBRAIC[16] = CONSTANTS[18]*CONSTANTS[44]*(CONSTANTS[1] - STATES[17]); ALGEBRAIC[17] = ( STATES[17]*CONSTANTS[54])/(CONSTANTS[54]+CONSTANTS[48]); ALGEBRAIC[18] = ( STATES[3]*STATES[1])/(STATES[1]+CONSTANTS[48]); ALGEBRAIC[19] = ( CONSTANTS[34]*( STATES[1]*ALGEBRAIC[17] - CONSTANTS[54]*ALGEBRAIC[18]))/(ALGEBRAIC[17]+CONSTANTS[26]); ALGEBRAIC[20] = CONSTANTS[39]*( CONSTANTS[16]*STATES[14]*STATES[14] - STATES[16]*STATES[12]); ALGEBRAIC[21] = ( CONSTANTS[36]*STATES[0]*( CONSTANTS[54]*exp(( CONSTANTS[4]*STATES[0])/CONSTANTS[3]) - STATES[1]))/(exp(( CONSTANTS[4]*STATES[0])/CONSTANTS[3]) - 1.00000); ALGEBRAIC[22] = ( CONSTANTS[37]*STATES[0]*( CONSTANTS[51]*exp(( CONSTANTS[4]*STATES[0])/CONSTANTS[3]) - STATES[18]))/(exp(( CONSTANTS[4]*STATES[0])/CONSTANTS[3]) - 1.00000); ALGEBRAIC[23] = CONSTANTS[35]*( CONSTANTS[51]*STATES[1] - STATES[18]*CONSTANTS[54]); ALGEBRAIC[24] = CONSTANTS[21] - STATES[2]; ALGEBRAIC[27] = ( CONSTANTS[28]*( CONSTANTS[27]*ALGEBRAIC[24] - STATES[2])*(1.00000+STATES[3]/CONSTANTS[22]))/(1.00000+STATES[3]/CONSTANTS[23]); ALGEBRAIC[25] = CONSTANTS[20] - STATES[4]; ALGEBRAIC[28] = (CONSTANTS[6] - CONSTANTS[3]*log(STATES[1]/1.00000e-07)) - CONSTANTS[3]*log(ALGEBRAIC[25]/STATES[4]); ALGEBRAIC[29] = CONSTANTS[29]*( exp(- (ALGEBRAIC[28]+ 4.00000*ALGEBRAIC[0])/CONSTANTS[3])*STATES[2] - ALGEBRAIC[24]); ALGEBRAIC[30] = (CONSTANTS[7]+ 2.00000*CONSTANTS[3]*log(STATES[1]/1.00000e-07)) - CONSTANTS[3]*log(STATES[4]/ALGEBRAIC[25]); ALGEBRAIC[26] = CONSTANTS[19] - STATES[5]; ALGEBRAIC[31] = (( CONSTANTS[30]*(1.00000+STATES[3]/CONSTANTS[24]))/(1.00000+STATES[3]/CONSTANTS[25]))*( exp(- ((ALGEBRAIC[30]+ 4.00000*ALGEBRAIC[0]) - 2.00000*CONSTANTS[4]*STATES[0])/( 2.00000*CONSTANTS[3]))*ALGEBRAIC[26] - STATES[5]); ALGEBRAIC[1] = (CONSTANTS[8] - 2.00000*CONSTANTS[3]*log(STATES[1]/1.00000e-07)) - (CONSTANTS[3]/2.00000)*log(STATES[6]/1.00000); ALGEBRAIC[32] = (( (( CONSTANTS[31]*1.00000)/(1.00000+CONSTANTS[41]/STATES[6]))*STATES[5])/CONSTANTS[19])*( exp(- (ALGEBRAIC[1]+ 2.00000*ALGEBRAIC[0])/( 2.00000*CONSTANTS[3]))*STATES[5] - ALGEBRAIC[26]*exp(( CONSTANTS[4]*STATES[0])/CONSTANTS[3])); ALGEBRAIC[3] = - 0.650000*STATES[0]; ALGEBRAIC[4] = 0.350000*STATES[0]; ALGEBRAIC[33] = (CONDVAR[0]>0.00000||CONDVAR[1]>0.00000 ? ( CONSTANTS[33]*(ALGEBRAIC[11]/(ALGEBRAIC[11]+ ALGEBRAIC[9]*exp(( - CONSTANTS[4]*ALGEBRAIC[4])/CONSTANTS[3])) - ALGEBRAIC[7]/(ALGEBRAIC[7]+ ALGEBRAIC[5]*exp(( - CONSTANTS[4]*ALGEBRAIC[3])/CONSTANTS[3])))*ALGEBRAIC[11])/(CONSTANTS[38]+ALGEBRAIC[11]) : 0.00000); } void getStateInformation(double* SI) { SI[0] = 1.0; SI[1] = 1.0; SI[2] = 1.0; SI[3] = 1.0; SI[4] = 1.0; SI[5] = 1.0; SI[6] = 1.0; SI[7] = 1.0; SI[8] = 1.0; SI[9] = 1.0; SI[10] = 1.0; SI[11] = 1.0; SI[12] = 1.0; SI[13] = 1.0; SI[14] = 1.0; SI[15] = 1.0; SI[16] = 1.0; SI[17] = 1.0; SI[18] = 1.0; } void computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES, double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS) { CONDVAR[0] = ALGEBRAIC[11] - CONSTANTS[45]; CONDVAR[1] = ALGEBRAIC[9] - CONSTANTS[45]; }