function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =4; end % There are a total of 2 entries in each of the rate and state variable arrays. % There are a total of 13 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (minute)'); LEGEND_ALGEBRAIC(:,1) = strpad('B in component B (micromolar)'); LEGEND_CONSTANTS(:,1) = strpad('F in component B (micromolar)'); LEGEND_CONSTANTS(:,2) = strpad('n2 in component B (dimensionless)'); LEGEND_CONSTANTS(:,3) = strpad('K2 in component B (per_micromolar)'); LEGEND_STATES(:,1) = strpad('Ca in component Ca (micromolar)'); LEGEND_ALGEBRAIC(:,4) = strpad('R in component R (flux)'); LEGEND_CONSTANTS(:,4) = strpad('Vmax in component R (flux)'); LEGEND_CONSTANTS(:,5) = strpad('Km in component R (micromolar)'); LEGEND_ALGEBRAIC(:,3) = strpad('fu in component R (dimensionless)'); LEGEND_CONSTANTS(:,13) = strpad('ISF in component R (dimensionless)'); LEGEND_CONSTANTS(:,6) = strpad('age in component R (dimensionless)'); LEGEND_STATES(:,2) = strpad('C in component C (micromolar)'); LEGEND_CONSTANTS(:,7) = strpad('Va in component Ca (ml)'); LEGEND_CONSTANTS(:,8) = strpad('Vv in component Ca (ml)'); LEGEND_CONSTANTS(:,9) = strpad('Qc in component model_constants (flow)'); LEGEND_ALGEBRAIC(:,2) = strpad('Cv in component Cv (micromolar)'); LEGEND_CONSTANTS(:,10) = strpad('Q in component model_constants (flow)'); LEGEND_CONSTANTS(:,11) = strpad('P in component model_constants (dimensionless)'); LEGEND_CONSTANTS(:,12) = strpad('V in component C (ml)'); LEGEND_RATES(:,1) = strpad('d/dt Ca in component Ca (micromolar)'); LEGEND_RATES(:,2) = strpad('d/dt C in component C (micromolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; CONSTANTS(:,1) = 0.48; CONSTANTS(:,2) = 1; CONSTANTS(:,3) = 0.8532; STATES(:,1) = 6.6685; CONSTANTS(:,4) = 9.433e-3; CONSTANTS(:,5) = 198; CONSTANTS(:,6) = 5; STATES(:,2) = 0; CONSTANTS(:,7) = 2148; CONSTANTS(:,8) = 3431; CONSTANTS(:,9) = 6445.65; CONSTANTS(:,10) = 1221.34; CONSTANTS(:,11) = 15.61; CONSTANTS(:,12) = 1454; CONSTANTS(:,13) = - 8.32120+ 2.04010.*CONSTANTS(:,6)+ 4.19620.*arbitrary_log( CONSTANTS(:,6).*365.000, 10); if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = (( CONSTANTS(:,10).*STATES(:,2))./CONSTANTS(:,11))./CONSTANTS(:,9); RATES(:,1) = ( CONSTANTS(:,9).*(ALGEBRAIC(:,2) - STATES(:,1)))./(CONSTANTS(:,7)+CONSTANTS(:,8)); ALGEBRAIC(:,1) = ( CONSTANTS(:,1).*CONSTANTS(:,2).*CONSTANTS(:,3).*STATES(:,1))./(1.00000+ CONSTANTS(:,3).*CONSTANTS(:,1)); ALGEBRAIC(:,3) = CONSTANTS(:,1)./(CONSTANTS(:,1)+ALGEBRAIC(:,1)); ALGEBRAIC(:,4) = ( CONSTANTS(:,13).*CONSTANTS(:,4).*ALGEBRAIC(:,3).*STATES(:,2))./(CONSTANTS(:,5)+ ALGEBRAIC(:,3).*STATES(:,2)); RATES(:,2) = ( CONSTANTS(:,10).*(STATES(:,1) - STATES(:,2)./CONSTANTS(:,11)) - ALGEBRAIC(:,4).*1.00000)./CONSTANTS(:,12); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = (( CONSTANTS(:,10).*STATES(:,2))./CONSTANTS(:,11))./CONSTANTS(:,9); ALGEBRAIC(:,1) = ( CONSTANTS(:,1).*CONSTANTS(:,2).*CONSTANTS(:,3).*STATES(:,1))./(1.00000+ CONSTANTS(:,3).*CONSTANTS(:,1)); ALGEBRAIC(:,3) = CONSTANTS(:,1)./(CONSTANTS(:,1)+ALGEBRAIC(:,1)); ALGEBRAIC(:,4) = ( CONSTANTS(:,13).*CONSTANTS(:,4).*ALGEBRAIC(:,3).*STATES(:,2))./(CONSTANTS(:,5)+ ALGEBRAIC(:,3).*STATES(:,2)); end % Compute a logarithm to any base" + function x = arbitrary_log(a, base) x = log(a) ./ log(base); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end