Generated Code

The following is c_ida code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 62 entries in the algebraic variable array.
   There are a total of 25 entries in each of the rate and state variable arrays.
   There are a total of 92 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (second).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is R in component membrane (joule_per_kilomole_kelvin).
 * CONSTANTS[1] is T in component membrane (kelvin).
 * CONSTANTS[2] is F in component membrane (coulomb_per_mole).
 * CONSTANTS[3] is Cm in component membrane (microF).
 * ALGEBRAIC[6] is i_K1 in component time_independent_potassium_current (nanoA).
 * ALGEBRAIC[39] is i_to in component transient_outward_current (nanoA).
 * ALGEBRAIC[7] is i_Kr in component rapid_delayed_rectifier_potassium_current (nanoA).
 * ALGEBRAIC[12] is i_Ks in component slow_delayed_rectifier_potassium_current (nanoA).
 * ALGEBRAIC[15] is i_K_ATP in component ATP_dependent_potassium_current (nanoA).
 * ALGEBRAIC[42] is i_K_ACh in component ACh_dependent_potassium_current (nanoA).
 * ALGEBRAIC[26] is i_Ca_L_K_cyt in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[29] is i_Ca_L_K_ds in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[43] is i_NaK in component sodium_potassium_pump (nanoA).
 * ALGEBRAIC[17] is i_Na in component fast_sodium_current (nanoA).
 * ALGEBRAIC[24] is i_b_Na in component sodium_background_current (nanoA).
 * ALGEBRAIC[23] is i_p_Na in component persistent_sodium_current (nanoA).
 * ALGEBRAIC[27] is i_Ca_L_Na_cyt in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[30] is i_Ca_L_Na_ds in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[44] is i_NaCa_cyt in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[45] is i_NaCa_ds in component sodium_calcium_exchanger (nanoA).
 * ALGEBRAIC[25] is i_Ca_L_Ca_cyt in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[28] is i_Ca_L_Ca_ds in component L_type_Ca_channel (nanoA).
 * ALGEBRAIC[38] is i_b_Ca in component calcium_background_current (nanoA).
 * ALGEBRAIC[0] is i_Stim in component membrane (nanoA).
 * CONSTANTS[4] is stim_start in component membrane (second).
 * CONSTANTS[5] is stim_end in component membrane (second).
 * CONSTANTS[6] is stim_period in component membrane (second).
 * CONSTANTS[7] is stim_duration in component membrane (second).
 * CONSTANTS[8] is stim_amplitude in component membrane (nanoA).
 * ALGEBRAIC[1] is E_Na in component reversal_potentials (millivolt).
 * ALGEBRAIC[2] is E_K in component reversal_potentials (millivolt).
 * ALGEBRAIC[3] is E_Ks in component reversal_potentials (millivolt).
 * ALGEBRAIC[4] is E_Ca in component reversal_potentials (millivolt).
 * ALGEBRAIC[5] is E_mh in component reversal_potentials (millivolt).
 * CONSTANTS[9] is P_kna in component reversal_potentials (dimensionless).
 * CONSTANTS[10] is K_o in component extracellular_potassium_concentration (millimolar).
 * CONSTANTS[11] is Na_o in component extracellular_sodium_concentration (millimolar).
 * STATES[1] is K_i in component intracellular_potassium_concentration (millimolar).
 * STATES[2] is Na_i in component intracellular_sodium_concentration (millimolar).
 * CONSTANTS[12] is Ca_o in component extracellular_calcium_concentration (millimolar).
 * STATES[3] is Ca_i in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[13] is K_mk1 in component time_independent_potassium_current (millimolar).
 * CONSTANTS[14] is g_K1 in component time_independent_potassium_current (microS).
 * CONSTANTS[15] is shiftK1 in component time_independent_potassium_current (millivolt).
 * CONSTANTS[16] is steepK1 in component time_independent_potassium_current (dimensionless).
 * CONSTANTS[17] is g_Kr1 in component rapid_delayed_rectifier_potassium_current (microS).
 * CONSTANTS[18] is g_Kr2 in component rapid_delayed_rectifier_potassium_current (microS).
 * STATES[4] is xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (dimensionless).
 * STATES[5] is xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (dimensionless).
 * ALGEBRAIC[8] is alpha_xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (per_second).
 * ALGEBRAIC[9] is beta_xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (per_second).
 * ALGEBRAIC[10] is alpha_xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (per_second).
 * ALGEBRAIC[11] is beta_xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (per_second).
 * CONSTANTS[19] is g_Ks in component slow_delayed_rectifier_potassium_current (microS).
 * STATES[6] is xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless).
 * ALGEBRAIC[13] is alpha_xs in component slow_delayed_rectifier_potassium_current_xs_gate (per_second).
 * ALGEBRAIC[14] is beta_xs in component slow_delayed_rectifier_potassium_current_xs_gate (per_second).
 * CONSTANTS[20] is g_K_ATP in component ATP_dependent_potassium_current (microS).
 * CONSTANTS[21] is K_ATP in component ATP_dependent_potassium_current (millimolar).
 * CONSTANTS[22] is ATP in component ATP_dependent_potassium_current (millimolar).
 * ALGEBRAIC[16] is i_KNa in component sodium_activated_potassium_current (nanoA).
 * CONSTANTS[23] is g_K_Na in component sodium_activated_potassium_current (microS).
 * CONSTANTS[24] is K_kna in component sodium_activated_potassium_current (millimolar).
 * CONSTANTS[25] is g_Na in component fast_sodium_current (microS).
 * STATES[7] is m in component fast_sodium_current_m_gate (dimensionless).
 * STATES[8] is h in component fast_sodium_current_h_gate (dimensionless).
 * ALGEBRAIC[19] is alpha_m in component fast_sodium_current_m_gate (per_second).
 * ALGEBRAIC[20] is beta_m in component fast_sodium_current_m_gate (per_second).
 * CONSTANTS[26] is delta_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[18] is E0_m in component fast_sodium_current_m_gate (millivolt).
 * ALGEBRAIC[21] is alpha_h in component fast_sodium_current_h_gate (per_second).
 * ALGEBRAIC[22] is beta_h in component fast_sodium_current_h_gate (per_second).
 * CONSTANTS[27] is shift_h in component fast_sodium_current_h_gate (millivolt).
 * CONSTANTS[28] is g_pna in component persistent_sodium_current (microS).
 * CONSTANTS[29] is g_bna in component sodium_background_current (microS).
 * ALGEBRAIC[31] is i_Ca_L in component L_type_Ca_channel (nanoA).
 * CONSTANTS[30] is P_Ca_L in component L_type_Ca_channel (nanoA_per_millimolar).
 * CONSTANTS[31] is P_CaK in component L_type_Ca_channel (dimensionless).
 * CONSTANTS[32] is P_CaNa in component L_type_Ca_channel (dimensionless).
 * STATES[9] is Ca_ds in component intracellular_calcium_concentration (millimolar).
 * STATES[10] is d in component L_type_Ca_channel_d_gate (dimensionless).
 * STATES[11] is f in component L_type_Ca_channel_f_gate (dimensionless).
 * STATES[12] is f2 in component L_type_Ca_channel_f2_gate (dimensionless).
 * STATES[13] is f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless).
 * CONSTANTS[33] is Km_f2 in component L_type_Ca_channel (millimolar).
 * CONSTANTS[34] is Km_f2ds in component L_type_Ca_channel (millimolar).
 * CONSTANTS[35] is R_decay in component L_type_Ca_channel (per_second).
 * CONSTANTS[36] is FrICa in component L_type_Ca_channel (dimensionless).
 * ALGEBRAIC[33] is alpha_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[34] is beta_d in component L_type_Ca_channel_d_gate (per_second).
 * ALGEBRAIC[32] is E0_d in component L_type_Ca_channel_d_gate (millivolt).
 * CONSTANTS[37] is speed_d in component L_type_Ca_channel_d_gate (dimensionless).
 * ALGEBRAIC[36] is alpha_f in component L_type_Ca_channel_f_gate (per_second).
 * ALGEBRAIC[37] is beta_f in component L_type_Ca_channel_f_gate (per_second).
 * CONSTANTS[38] is speed_f in component L_type_Ca_channel_f_gate (dimensionless).
 * CONSTANTS[39] is delta_f in component L_type_Ca_channel_f_gate (millivolt).
 * ALGEBRAIC[35] is E0_f in component L_type_Ca_channel_f_gate (millivolt).
 * CONSTANTS[40] is g_bca in component calcium_background_current (microS).
 * CONSTANTS[41] is g_to in component transient_outward_current (microS).
 * CONSTANTS[42] is g_tos in component transient_outward_current (dimensionless).
 * STATES[14] is s in component transient_outward_current_s_gate (dimensionless).
 * STATES[15] is r in component transient_outward_current_r_gate (dimensionless).
 * ALGEBRAIC[40] is alpha_s in component transient_outward_current_s_gate (per_second).
 * ALGEBRAIC[41] is beta_s in component transient_outward_current_s_gate (per_second).
 * CONSTANTS[43] is g_KACh in component ACh_dependent_potassium_current (microS).
 * CONSTANTS[44] is ACh in component ACh_dependent_potassium_current (millimolar).
 * CONSTANTS[45] is K_D in component ACh_dependent_potassium_current (millimolar).
 * STATES[16] is x_ACh in component ACh_dependent_potassium_current_xACh_gate (dimensionless).
 * CONSTANTS[46] is alpha_ACh in component ACh_dependent_potassium_current_xACh_gate (per_second).
 * CONSTANTS[47] is beta_ACh in component ACh_dependent_potassium_current_xACh_gate (per_second).
 * CONSTANTS[48] is i_NaK_max in component sodium_potassium_pump (nanoA).
 * CONSTANTS[49] is K_mK in component sodium_potassium_pump (millimolar).
 * CONSTANTS[50] is K_mNa in component sodium_potassium_pump (millimolar).
 * ALGEBRAIC[46] is i_NaCa in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[51] is k_NaCa in component sodium_calcium_exchanger (nanoA).
 * CONSTANTS[52] is n_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[53] is d_NaCa in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[54] is gamma in component sodium_calcium_exchanger (dimensionless).
 * CONSTANTS[55] is FRiNaCa in component sodium_calcium_exchanger (dimensionless).
 * ALGEBRAIC[48] is i_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[85] is K_1 in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * ALGEBRAIC[47] is K_2 in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[56] is K_cyca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[57] is K_xcs in component sarcoplasmic_reticulum_calcium_pump (dimensionless).
 * CONSTANTS[58] is K_srca in component sarcoplasmic_reticulum_calcium_pump (millimolar).
 * CONSTANTS[59] is alpha_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * CONSTANTS[60] is beta_up in component sarcoplasmic_reticulum_calcium_pump (millimolar_per_second).
 * STATES[17] is Ca_up in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[49] is i_trans in component calcium_translocation (millimolar_per_second).
 * STATES[18] is Ca_rel in component intracellular_calcium_concentration (millimolar).
 * ALGEBRAIC[58] is i_rel in component calcium_release (millimolar_per_second).
 * ALGEBRAIC[50] is VoltDep in component calcium_release (dimensionless).
 * ALGEBRAIC[53] is RegBindSite in component calcium_release (dimensionless).
 * ALGEBRAIC[51] is CaiReg in component calcium_release (dimensionless).
 * ALGEBRAIC[52] is CadsReg in component calcium_release (dimensionless).
 * ALGEBRAIC[54] is ActRate in component calcium_release (per_second).
 * ALGEBRAIC[55] is InactRate in component calcium_release (per_second).
 * CONSTANTS[61] is K_leak_rate in component calcium_release (per_second).
 * CONSTANTS[62] is K_m_rel in component calcium_release (per_second).
 * CONSTANTS[63] is K_m_Ca_cyt in component calcium_release (millimolar).
 * CONSTANTS[64] is K_m_Ca_ds in component calcium_release (millimolar).
 * ALGEBRAIC[57] is PrecFrac in component calcium_release (dimensionless).
 * STATES[19] is ActFrac in component calcium_release (dimensionless).
 * STATES[20] is ProdFrac in component calcium_release (dimensionless).
 * ALGEBRAIC[56] is SpeedRel in component calcium_release (dimensionless).
 * CONSTANTS[90] is V_i in component intracellular_calcium_concentration (micrometre3).
 * STATES[21] is Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * STATES[22] is Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[65] is Calmod in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[66] is Trop in component intracellular_calcium_concentration (millimolar).
 * CONSTANTS[67] is alpha_Calmod in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[68] is beta_Calmod in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[69] is alpha_Trop in component intracellular_calcium_concentration (per_millimolar_second).
 * CONSTANTS[70] is beta_Trop in component intracellular_calcium_concentration (per_second).
 * CONSTANTS[71] is radius in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[72] is length in component intracellular_calcium_concentration (micrometre).
 * CONSTANTS[84] is V_Cell in component intracellular_calcium_concentration (micrometre3).
 * CONSTANTS[88] is V_i_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[73] is V_ds_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[74] is V_rel_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[75] is V_e_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[76] is V_up_ratio in component intracellular_calcium_concentration (dimensionless).
 * CONSTANTS[77] is Kdecay in component intracellular_calcium_concentration (per_second).
 * STATES[23] is light_chain in component contraction (dimensionless).
 * STATES[24] is cross_bridge in component contraction (dimensionless).
 * CONSTANTS[78] is KCont1 in component contraction (per_second).
 * ALGEBRAIC[59] is XCont2 in component contraction (dimensionless).
 * ALGEBRAIC[60] is XCont1 in component contraction (dimensionless).
 * CONSTANTS[79] is KCont2 in component contraction (per_second).
 * CONSTANTS[80] is KCont3 in component contraction (per_second).
 * CONSTANTS[81] is KCont4 in component contraction (per_second).
 * CONSTANTS[82] is sarcomere_length in component contraction (micrometre).
 * CONSTANTS[83] is cross_bridge_density in component contraction (per_micrometre).
 * CONSTANTS[86] is tension_rest in component contraction (dimensionless).
 * CONSTANTS[87] is tension_active in component contraction (dimensionless).
 * CONSTANTS[89] is overlap in component contraction (micrometre).
 * CONSTANTS[91] is cross_bridge_availability in component contraction (dimensionless).
 * ALGEBRAIC[61] is isometric_tension in component contraction (dimensionless).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[4] is d/dt xr1 in component rapid_delayed_rectifier_potassium_current_xr1_gate (dimensionless).
 * RATES[5] is d/dt xr2 in component rapid_delayed_rectifier_potassium_current_xr2_gate (dimensionless).
 * RATES[6] is d/dt xs in component slow_delayed_rectifier_potassium_current_xs_gate (dimensionless).
 * RATES[7] is d/dt m in component fast_sodium_current_m_gate (dimensionless).
 * RATES[8] is d/dt h in component fast_sodium_current_h_gate (dimensionless).
 * RATES[10] is d/dt d in component L_type_Ca_channel_d_gate (dimensionless).
 * RATES[11] is d/dt f in component L_type_Ca_channel_f_gate (dimensionless).
 * RATES[12] is d/dt f2 in component L_type_Ca_channel_f2_gate (dimensionless).
 * RATES[13] is d/dt f2ds in component L_type_Ca_channel_f2ds_gate (dimensionless).
 * RATES[14] is d/dt s in component transient_outward_current_s_gate (dimensionless).
 * RATES[15] is d/dt r in component transient_outward_current_r_gate (dimensionless).
 * RATES[16] is d/dt x_ACh in component ACh_dependent_potassium_current_xACh_gate (dimensionless).
 * RATES[19] is d/dt ActFrac in component calcium_release (dimensionless).
 * RATES[20] is d/dt ProdFrac in component calcium_release (dimensionless).
 * RATES[2] is d/dt Na_i in component intracellular_sodium_concentration (millimolar).
 * RATES[1] is d/dt K_i in component intracellular_potassium_concentration (millimolar).
 * RATES[3] is d/dt Ca_i in component intracellular_calcium_concentration (millimolar).
 * RATES[21] is d/dt Ca_Calmod in component intracellular_calcium_concentration (millimolar).
 * RATES[22] is d/dt Ca_Trop in component intracellular_calcium_concentration (millimolar).
 * RATES[9] is d/dt Ca_ds in component intracellular_calcium_concentration (millimolar).
 * RATES[17] is d/dt Ca_up in component intracellular_calcium_concentration (millimolar).
 * RATES[18] is d/dt Ca_rel in component intracellular_calcium_concentration (millimolar).
 * RATES[23] is d/dt light_chain in component contraction (dimensionless).
 * RATES[24] is d/dt cross_bridge in component contraction (dimensionless).
 * There are a total of 8 condition variables.
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -92.849333;
CONSTANTS[0] = 8314.472;
CONSTANTS[1] = 310;
CONSTANTS[2] = 96485.3415;
CONSTANTS[3] = 9.5e-5;
CONSTANTS[4] = 0.1;
CONSTANTS[5] = 1000;
CONSTANTS[6] = 0.5;
CONSTANTS[7] = 0.003;
CONSTANTS[8] = -3;
CONSTANTS[9] = 0.03;
CONSTANTS[10] = 4;
CONSTANTS[11] = 140;
STATES[1] = 136.5644281;
STATES[2] = 7.3321223;
CONSTANTS[12] = 2;
STATES[3] = 1.4e-5;
CONSTANTS[13] = 10;
CONSTANTS[14] = 0.5;
CONSTANTS[15] = 10;
CONSTANTS[16] = 1.25;
CONSTANTS[17] = 0.0021;
CONSTANTS[18] = 0.0013;
STATES[4] = 1.03e-5;
STATES[5] = 2e-7;
CONSTANTS[19] = 0.0026;
STATES[6] = 0.001302;
CONSTANTS[20] = 0;
CONSTANTS[21] = 0.1;
CONSTANTS[22] = 0;
CONSTANTS[23] = 0;
CONSTANTS[24] = 20;
CONSTANTS[25] = 2.5;
STATES[7] = 0.0016203;
STATES[8] = 0.9944036;
CONSTANTS[26] = 1e-5;
CONSTANTS[27] = 0;
CONSTANTS[28] = 0.004;
CONSTANTS[29] = 0.0006;
CONSTANTS[30] = 0.1;
CONSTANTS[31] = 0.002;
CONSTANTS[32] = 0.01;
STATES[9] = 1.88e-5;
STATES[10] = 0;
STATES[11] = 1;
STATES[12] = 0.9349197;
STATES[13] = 0.9651958;
CONSTANTS[33] = 100000;
CONSTANTS[34] = 0.001;
CONSTANTS[35] = 20;
CONSTANTS[36] = 1;
CONSTANTS[37] = 3;
CONSTANTS[38] = 0.3;
CONSTANTS[39] = 0.0001;
CONSTANTS[40] = 0.00025;
CONSTANTS[41] = 0.005;
CONSTANTS[42] = 0;
STATES[14] = 0.9948645;
STATES[15] = 0;
CONSTANTS[43] = 0;
CONSTANTS[44] = 5;
CONSTANTS[45] = 0.00013;
STATES[16] = 0;
CONSTANTS[46] = 0.5;
CONSTANTS[47] = 0.5;
CONSTANTS[48] = 0.7;
CONSTANTS[49] = 1;
CONSTANTS[50] = 40;
CONSTANTS[51] = 0.0005;
CONSTANTS[52] = 3;
CONSTANTS[53] = 0;
CONSTANTS[54] = 0.5;
CONSTANTS[55] = 0.001;
CONSTANTS[56] = 0.0003;
CONSTANTS[57] = 0.4;
CONSTANTS[58] = 0.5;
CONSTANTS[59] = 0.4;
CONSTANTS[60] = 0.03;
STATES[17] = 0.4531889;
STATES[18] = 0.4481927;
CONSTANTS[61] = 0.05;
CONSTANTS[62] = 250;
CONSTANTS[63] = 0.0005;
CONSTANTS[64] = 0.01;
STATES[19] = 0.0042614;
STATES[20] = 0.4068154;
STATES[21] = 0.0005555;
STATES[22] = 0.0003542;
CONSTANTS[65] = 0.02;
CONSTANTS[66] = 0.05;
CONSTANTS[67] = 100000;
CONSTANTS[68] = 50;
CONSTANTS[69] = 100000;
CONSTANTS[70] = 200;
CONSTANTS[71] = 12;
CONSTANTS[72] = 74;
CONSTANTS[73] = 0.1;
CONSTANTS[74] = 0.1;
CONSTANTS[75] = 0.4;
CONSTANTS[76] = 0.01;
CONSTANTS[77] = 10;
STATES[23] = 3.32e-5;
STATES[24] = 8.09e-5;
CONSTANTS[78] = 12000;
CONSTANTS[79] = 100;
CONSTANTS[80] = 60;
CONSTANTS[81] = 25;
CONSTANTS[82] = 2;
CONSTANTS[83] = 0.05;
CONSTANTS[84] = ( 3.14159*pow(CONSTANTS[71]/1000.00, 2.00000)*CONSTANTS[72])/1000.00;
CONSTANTS[85] = ( CONSTANTS[56]*CONSTANTS[57])/CONSTANTS[58];
CONSTANTS[86] =  0.000200000*exp( 2.00000*CONSTANTS[82]);
CONSTANTS[87] = (CONSTANTS[82]>1.00000 ? 1.00000 - exp( - 3.00000*(CONSTANTS[82] - 1.00000)) : 0.00000);
CONSTANTS[88] = ((1.00000 - CONSTANTS[75]) - CONSTANTS[76]) - CONSTANTS[74];
CONSTANTS[89] = (CONSTANTS[82]>2.00000 ? 1.00000 -  0.625000*(CONSTANTS[82] - 2.00000) : 1.00000);
CONSTANTS[90] =  CONSTANTS[84]*CONSTANTS[88];
CONSTANTS[91] =  CONSTANTS[87]*CONSTANTS[89]*CONSTANTS[83];
RATES[0] = 0.1001;
RATES[4] = 0.1001;
RATES[5] = 0.1001;
RATES[6] = 0.1001;
RATES[7] = 0.1001;
RATES[8] = 0.1001;
RATES[10] = 0.1001;
RATES[11] = 0.1001;
RATES[12] = 0.1001;
RATES[13] = 0.1001;
RATES[14] = 0.1001;
RATES[15] = 0.1001;
RATES[16] = 0.1001;
RATES[19] = 0.1001;
RATES[20] = 0.1001;
RATES[2] = 0.1001;
RATES[1] = 0.1001;
RATES[3] = 0.1001;
RATES[21] = 0.1001;
RATES[22] = 0.1001;
RATES[9] = 0.1001;
RATES[17] = 0.1001;
RATES[18] = 0.1001;
RATES[23] = 0.1001;
RATES[24] = 0.1001;
}
void
computeResiduals(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
                 double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
resid[0] = RATES[0] -  (- 1.00000/CONSTANTS[3])*(ALGEBRAIC[0]+ALGEBRAIC[6]+ALGEBRAIC[39]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[15]+ALGEBRAIC[42]+ALGEBRAIC[43]+ALGEBRAIC[17]+ALGEBRAIC[24]+ALGEBRAIC[23]+ALGEBRAIC[27]+ALGEBRAIC[30]+ALGEBRAIC[44]+ALGEBRAIC[45]+ALGEBRAIC[25]+ALGEBRAIC[28]+ALGEBRAIC[26]+ALGEBRAIC[29]+ALGEBRAIC[38]);
resid[1] = RATES[4] -  ALGEBRAIC[8]*(1.00000 - STATES[4]) -  ALGEBRAIC[9]*STATES[4];
resid[2] = RATES[5] -  ALGEBRAIC[10]*(1.00000 - STATES[5]) -  ALGEBRAIC[11]*STATES[5];
resid[3] = RATES[6] -  ALGEBRAIC[13]*(1.00000 - STATES[6]) -  ALGEBRAIC[14]*STATES[6];
resid[4] = RATES[7] -  ALGEBRAIC[19]*(1.00000 - STATES[7]) -  ALGEBRAIC[20]*STATES[7];
resid[5] = RATES[8] -  ALGEBRAIC[21]*(1.00000 - STATES[8]) -  ALGEBRAIC[22]*STATES[8];
resid[6] = RATES[10] -  CONSTANTS[37]*( ALGEBRAIC[33]*(1.00000 - STATES[10]) -  ALGEBRAIC[34]*STATES[10]);
resid[7] = RATES[11] -  CONSTANTS[38]*( ALGEBRAIC[36]*(1.00000 - STATES[11]) -  ALGEBRAIC[37]*STATES[11]);
resid[8] = RATES[12] - 1.00000 -  1.00000*(STATES[3]/(CONSTANTS[33]+STATES[3])+STATES[12]);
resid[9] = RATES[13] -  CONSTANTS[35]*(1.00000 - (STATES[9]/(CONSTANTS[34]+STATES[9])+STATES[13]));
resid[10] = RATES[14] -  ALGEBRAIC[40]*(1.00000 - STATES[14]) -  ALGEBRAIC[41]*STATES[14];
resid[11] = RATES[15] -  333.000*(1.00000/(1.00000+exp(- (STATES[0]+4.00000)/5.00000)) - STATES[15]);
resid[12] = RATES[16] -  CONSTANTS[46]*(1.00000 - STATES[16]) -  CONSTANTS[47]*STATES[16];
resid[13] = RATES[19] -  ALGEBRAIC[57]*ALGEBRAIC[56]*ALGEBRAIC[54] -  STATES[19]*ALGEBRAIC[56]*ALGEBRAIC[55];
resid[14] = RATES[20] -  STATES[19]*ALGEBRAIC[56]*ALGEBRAIC[55] -  ALGEBRAIC[56]*1.00000*STATES[20];
resid[15] = RATES[2] -  (- 1.00000/( 1.00000*CONSTANTS[90]*CONSTANTS[2]))*(ALGEBRAIC[17]+ALGEBRAIC[23]+ALGEBRAIC[24]+ 3.00000*ALGEBRAIC[43]+ 3.00000*ALGEBRAIC[44]+ALGEBRAIC[27]+ALGEBRAIC[30]);
resid[16] = RATES[1] -  (- 1.00000/( 1.00000*CONSTANTS[90]*CONSTANTS[2]))*((ALGEBRAIC[6]+ALGEBRAIC[7]+ALGEBRAIC[12]+ALGEBRAIC[26]+ALGEBRAIC[29]+ALGEBRAIC[39]) -  2.00000*ALGEBRAIC[43]);
resid[17] = RATES[3] - ((( (- 1.00000/( 2.00000*1.00000*CONSTANTS[90]*CONSTANTS[2]))*(((ALGEBRAIC[25]+ALGEBRAIC[38]) -  2.00000*ALGEBRAIC[44]) -  2.00000*ALGEBRAIC[45])+ STATES[9]*CONSTANTS[73]*CONSTANTS[77]+( ALGEBRAIC[58]*CONSTANTS[74])/CONSTANTS[88]) - RATES[21]) - RATES[22]) - ALGEBRAIC[48];
resid[18] = RATES[9] - ( - 1.00000*ALGEBRAIC[28])/( 2.00000*1.00000*CONSTANTS[73]*CONSTANTS[90]*CONSTANTS[2]) -  STATES[9]*CONSTANTS[77];
resid[19] = RATES[17] -  (CONSTANTS[88]/CONSTANTS[76])*ALGEBRAIC[48] - ALGEBRAIC[49];
resid[20] = RATES[18] -  (CONSTANTS[76]/CONSTANTS[74])*ALGEBRAIC[49] - ALGEBRAIC[58];
resid[21] = RATES[21] -  CONSTANTS[67]*STATES[3]*(CONSTANTS[65] - STATES[21]) -  CONSTANTS[68]*STATES[21];
resid[22] = RATES[22] -  CONSTANTS[69]*STATES[3]*(CONSTANTS[66] - STATES[22]) -  CONSTANTS[70]*STATES[22];
resid[23] = RATES[23] -  CONSTANTS[78]*pow(ALGEBRAIC[60], 2.00000)*ALGEBRAIC[59]*(1.00000 - STATES[23]) -  CONSTANTS[79]*STATES[23];
resid[24] = RATES[24] -  CONSTANTS[80]*STATES[23]*(1.00000 - STATES[24]) -  CONSTANTS[81]*STATES[24];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[16] =  (( CONSTANTS[23]*STATES[2])/(STATES[2]+CONSTANTS[24]))*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[31] = ALGEBRAIC[25]+ALGEBRAIC[26]+ALGEBRAIC[27]+ALGEBRAIC[28]+ALGEBRAIC[29]+ALGEBRAIC[30];
ALGEBRAIC[46] = ALGEBRAIC[44]+ALGEBRAIC[45];
ALGEBRAIC[61] =  STATES[24]*CONSTANTS[91]+CONSTANTS[86];
}
void
computeEssentialVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[0] = (CONDVAR[0]>=0.00000&&CONDVAR[1]<=0.00000&&CONDVAR[2]<=0.00000 ? CONSTANTS[8] : 0.00000);
ALGEBRAIC[2] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[10]/STATES[1]);
ALGEBRAIC[6] = ( (( CONSTANTS[14]*CONSTANTS[10])/(CONSTANTS[10]+CONSTANTS[13]))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( ((STATES[0] - ALGEBRAIC[2]) - CONSTANTS[15])*CONSTANTS[2]*CONSTANTS[16])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[7] =  (( ( CONSTANTS[17]*STATES[4]+ CONSTANTS[18]*STATES[5])*1.00000)/(1.00000+exp((STATES[0]+9.00000)/22.4000)))*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[8] = 50.0000/(1.00000+exp(- (STATES[0] - 5.00000)/9.00000));
ALGEBRAIC[9] =  0.0500000*exp(- (STATES[0] - 20.0000)/15.0000);
ALGEBRAIC[10] = 50.0000/(1.00000+exp(- (STATES[0] - 5.00000)/9.00000));
ALGEBRAIC[11] =  0.400000*exp(- pow((STATES[0]+30.0000)/30.0000, 3.00000));
ALGEBRAIC[3] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[10]+ CONSTANTS[9]*CONSTANTS[11])/(STATES[1]+ CONSTANTS[9]*STATES[2]));
ALGEBRAIC[12] =  CONSTANTS[19]*pow(STATES[6], 2.00000)*(STATES[0] - ALGEBRAIC[3]);
ALGEBRAIC[13] = 14.0000/(1.00000+exp(- (STATES[0] - 40.0000)/9.00000));
ALGEBRAIC[14] =  1.00000*exp(- STATES[0]/45.0000);
ALGEBRAIC[15] = ( CONSTANTS[20]*(STATES[0]+80.0000))/(1.00000+pow(CONSTANTS[22]/CONSTANTS[21], 2.00000));
ALGEBRAIC[5] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log((CONSTANTS[11]+ 0.120000*CONSTANTS[10])/(STATES[2]+ 0.120000*STATES[1]));
ALGEBRAIC[17] =  CONSTANTS[25]*pow(STATES[7], 3.00000)*STATES[8]*(STATES[0] - ALGEBRAIC[5]);
ALGEBRAIC[18] = STATES[0]+41.0000;
ALGEBRAIC[19] = (CONDVAR[3]<0.00000 ? 2000.00 : ( 200.000*ALGEBRAIC[18])/(1.00000 - exp( - 0.100000*ALGEBRAIC[18])));
ALGEBRAIC[20] =  8000.00*exp( - 0.0560000*(STATES[0]+66.0000));
ALGEBRAIC[21] =  20.0000*exp( - 0.125000*((STATES[0]+75.0000) - CONSTANTS[27]));
ALGEBRAIC[22] = 2000.00/(1.00000+ 320.000*exp( - 0.100000*((STATES[0]+75.0000) - CONSTANTS[27])));
ALGEBRAIC[1] =  (( CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[11]/STATES[2]);
ALGEBRAIC[23] =  (( CONSTANTS[28]*1.00000)/(1.00000+exp(- (STATES[0]+52.0000)/8.00000)))*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[24] =  CONSTANTS[29]*(STATES[0] - ALGEBRAIC[1]);
ALGEBRAIC[25] =  ((( (1.00000 - CONSTANTS[36])*4.00000*CONSTANTS[30]*STATES[10]*STATES[11]*STATES[12]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[12]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[26] =  ((( (1.00000 - CONSTANTS[36])*CONSTANTS[31]*CONSTANTS[30]*STATES[10]*STATES[11]*STATES[12]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[27] =  ((( (1.00000 - CONSTANTS[36])*CONSTANTS[32]*CONSTANTS[30]*STATES[10]*STATES[11]*STATES[12]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[28] =  ((( CONSTANTS[36]*4.00000*CONSTANTS[30]*STATES[10]*STATES[11]*STATES[13]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[3]*exp(( 100.000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[12]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2]*2.00000)/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[29] =  ((( CONSTANTS[36]*CONSTANTS[31]*CONSTANTS[30]*STATES[10]*STATES[11]*STATES[13]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[1]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[10]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[30] =  ((( CONSTANTS[36]*CONSTANTS[32]*CONSTANTS[30]*STATES[10]*STATES[11]*STATES[13]*(STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))/(1.00000 - exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))))*( STATES[2]*exp(( 50.0000*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])) -  CONSTANTS[11]*exp(( - (STATES[0] - 50.0000)*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[32] = (STATES[0]+24.0000) - 5.00000;
ALGEBRAIC[33] = (CONDVAR[4]<0.00000 ? 120.000 : ( 30.0000*ALGEBRAIC[32])/(1.00000 - exp(- ALGEBRAIC[32]/4.00000)));
ALGEBRAIC[34] = (CONDVAR[5]<0.00000 ? 120.000 : ( 12.0000*ALGEBRAIC[32])/(exp(ALGEBRAIC[32]/10.0000) - 1.00000));
ALGEBRAIC[35] = STATES[0]+34.0000;
ALGEBRAIC[36] = (CONDVAR[6]<0.00000 ? 25.0000 : ( 6.25000*ALGEBRAIC[35])/(exp(ALGEBRAIC[35]/4.00000) - 1.00000));
ALGEBRAIC[37] = 12.0000/(1.00000+exp(( - 1.00000*(STATES[0]+34.0000))/4.00000));
ALGEBRAIC[4] =  (( 0.500000*CONSTANTS[0]*CONSTANTS[1])/CONSTANTS[2])*log(CONSTANTS[12]/STATES[3]);
ALGEBRAIC[38] =  CONSTANTS[40]*(STATES[0] - ALGEBRAIC[4]);
ALGEBRAIC[39] =  CONSTANTS[41]*(CONSTANTS[42]+ STATES[14]*(1.00000 - CONSTANTS[42]))*STATES[15]*(STATES[0] - ALGEBRAIC[2]);
ALGEBRAIC[40] =  0.0330000*exp(- STATES[0]/17.0000);
ALGEBRAIC[41] = 33.0000/(1.00000+exp( - 0.125000*(STATES[0]+10.0000)));
ALGEBRAIC[42] = ( CONSTANTS[43]*(CONSTANTS[10]/(CONSTANTS[10]+CONSTANTS[13]))*STATES[16]*(1.00000/(1.00000+pow(CONSTANTS[45]/CONSTANTS[44], 2.00000)))*(STATES[0] - ALGEBRAIC[2]))/(1.00000+exp(( 2.00000*CONSTANTS[2]*(STATES[0] - (ALGEBRAIC[2]+10.0000)))/( CONSTANTS[0]*CONSTANTS[1])));
ALGEBRAIC[43] = ( (( CONSTANTS[48]*CONSTANTS[10])/(CONSTANTS[49]+CONSTANTS[10]))*STATES[2])/(CONSTANTS[50]+STATES[2]);
ALGEBRAIC[44] = ( (1.00000 - CONSTANTS[55])*CONSTANTS[51]*( exp(( CONSTANTS[54]*(CONSTANTS[52] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[52])*CONSTANTS[12] -  exp(( (CONSTANTS[54] - 1.00000)*(CONSTANTS[52] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], CONSTANTS[52])*STATES[3]))/( (1.00000+ CONSTANTS[53]*( STATES[3]*pow(CONSTANTS[11], CONSTANTS[52])+ CONSTANTS[12]*pow(STATES[2], CONSTANTS[52])))*(1.00000+STATES[3]/0.00690000));
ALGEBRAIC[45] = ( CONSTANTS[55]*CONSTANTS[51]*( exp(( CONSTANTS[54]*(CONSTANTS[52] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(STATES[2], CONSTANTS[52])*CONSTANTS[12] -  exp(( (CONSTANTS[54] - 1.00000)*(CONSTANTS[52] - 2.00000)*STATES[0]*CONSTANTS[2])/( CONSTANTS[0]*CONSTANTS[1]))*pow(CONSTANTS[11], CONSTANTS[52])*STATES[9]))/( (1.00000+ CONSTANTS[53]*( STATES[9]*pow(CONSTANTS[11], CONSTANTS[52])+ CONSTANTS[12]*pow(STATES[2], CONSTANTS[52])))*(1.00000+STATES[9]/0.00690000));
ALGEBRAIC[47] = STATES[3]+ STATES[17]*CONSTANTS[85]+ CONSTANTS[56]*CONSTANTS[57]+CONSTANTS[56];
ALGEBRAIC[48] =  (STATES[3]/ALGEBRAIC[47])*CONSTANTS[59] -  (( STATES[17]*CONSTANTS[85])/ALGEBRAIC[47])*CONSTANTS[60];
ALGEBRAIC[49] =  50.0000*(STATES[17] - STATES[18]);
ALGEBRAIC[50] = exp( 0.0800000*(STATES[0] - 40.0000));
ALGEBRAIC[51] = STATES[3]/(STATES[3]+CONSTANTS[63]);
ALGEBRAIC[52] = STATES[9]/(STATES[9]+CONSTANTS[64]);
ALGEBRAIC[53] = ALGEBRAIC[51]+ (1.00000 - ALGEBRAIC[51])*ALGEBRAIC[52];
ALGEBRAIC[54] =  0.00000*ALGEBRAIC[50]+ 500.000*pow(ALGEBRAIC[53], 2.00000);
ALGEBRAIC[55] = 60.0000+ 500.000*pow(ALGEBRAIC[53], 2.00000);
ALGEBRAIC[56] = (CONDVAR[7]<0.00000 ? 5.00000 : 1.00000);
ALGEBRAIC[57] = (1.00000 - STATES[19]) - STATES[20];
ALGEBRAIC[58] =  ( pow(STATES[19]/(STATES[19]+0.250000), 2.00000)*CONSTANTS[62]+CONSTANTS[61])*STATES[18];
ALGEBRAIC[59] = STATES[21]/CONSTANTS[65];
ALGEBRAIC[60] = STATES[22]/CONSTANTS[66];
}
void
getStateInformation(double* SI)
{
SI[0] = 1.0;
SI[1] = 1.0;
SI[2] = 1.0;
SI[3] = 1.0;
SI[4] = 1.0;
SI[5] = 1.0;
SI[6] = 1.0;
SI[7] = 1.0;
SI[8] = 1.0;
SI[9] = 1.0;
SI[10] = 1.0;
SI[11] = 1.0;
SI[12] = 1.0;
SI[13] = 1.0;
SI[14] = 1.0;
SI[15] = 1.0;
SI[16] = 1.0;
SI[17] = 1.0;
SI[18] = 1.0;
SI[19] = 1.0;
SI[20] = 1.0;
SI[21] = 1.0;
SI[22] = 1.0;
SI[23] = 1.0;
SI[24] = 1.0;
}
void
computeRoots(double VOI, double* CONSTANTS, double* RATES, double* OLDRATES, double* STATES,
             double* OLDSTATES, double* ALGEBRAIC, double* CONDVARS)
{
CONDVAR[0] = VOI - CONSTANTS[4];
CONDVAR[1] = VOI - CONSTANTS[5];
CONDVAR[2] = ((VOI - CONSTANTS[4]) -  floor((VOI - CONSTANTS[4])/CONSTANTS[6])*CONSTANTS[6]) - CONSTANTS[7];
CONDVAR[3] = fabs(ALGEBRAIC[18]) - CONSTANTS[26];
CONDVAR[4] = fabs(ALGEBRAIC[32]) - 0.000100000;
CONDVAR[5] = fabs(ALGEBRAIC[32]) - 0.000100000;
CONDVAR[6] = fabs(ALGEBRAIC[35]) - CONSTANTS[39];
CONDVAR[7] = STATES[0] - - 50.0000;
}