Generated Code

The following is c code generated by the CellML API from this CellML file. (Back to language selection)

The raw code is available.

/*
   There are a total of 8 entries in the algebraic variable array.
   There are a total of 4 entries in each of the rate and state variable arrays.
   There are a total of 28 entries in the constant variable array.
 */
/*
 * VOI is time in component environment (millisecond).
 * STATES[0] is V in component membrane (millivolt).
 * CONSTANTS[0] is Cm in component membrane (femtoF).
 * ALGEBRAIC[4] is i_Ca in component calcium_current (picoA).
 * ALGEBRAIC[0] is i_K in component rapidly_activating_K_current (picoA).
 * ALGEBRAIC[5] is i_K_Ca in component calcium_activated_K_current (picoA).
 * ALGEBRAIC[7] is i_Na_Ca in component Na_Ca_exchanger_current (picoA).
 * CONSTANTS[1] is V_K in component rapidly_activating_K_current (millivolt).
 * CONSTANTS[2] is g_K in component rapidly_activating_K_current (picoS).
 * STATES[1] is n in component rapidly_activating_K_current_n_gate (dimensionless).
 * ALGEBRAIC[1] is n_infinity in component rapidly_activating_K_current_n_gate (dimensionless).
 * CONSTANTS[3] is lamda in component rapidly_activating_K_current_n_gate (dimensionless).
 * ALGEBRAIC[3] is tau_n in component rapidly_activating_K_current_n_gate (millisecond).
 * CONSTANTS[4] is V_n in component rapidly_activating_K_current_n_gate (millivolt).
 * CONSTANTS[5] is S_n in component rapidly_activating_K_current_n_gate (millivolt).
 * CONSTANTS[6] is a in component rapidly_activating_K_current_n_gate (millivolt).
 * CONSTANTS[7] is b in component rapidly_activating_K_current_n_gate (millivolt).
 * CONSTANTS[8] is c in component rapidly_activating_K_current_n_gate (millisecond).
 * CONSTANTS[9] is V_ in component rapidly_activating_K_current_n_gate (millivolt).
 * CONSTANTS[10] is V_Ca in component calcium_current (millivolt).
 * CONSTANTS[11] is g_Ca in component calcium_current (picoS).
 * ALGEBRAIC[2] is m_infinity in component calcium_current_m_gate (dimensionless).
 * CONSTANTS[12] is V_m in component calcium_current_m_gate (millivolt).
 * CONSTANTS[13] is S_m in component calcium_current_m_gate (millivolt).
 * CONSTANTS[14] is g_K_Ca in component calcium_activated_K_current (picoS).
 * CONSTANTS[15] is K_d in component calcium_activated_K_current (micromolar).
 * STATES[2] is Ca_i in component ionic_concentrations (micromolar).
 * CONSTANTS[16] is g_Na_Ca in component Na_Ca_exchanger_current (picoS).
 * CONSTANTS[17] is K_1_2 in component Na_Ca_exchanger_current (micromolar).
 * ALGEBRAIC[6] is V_Na_Ca in component Na_Ca_exchanger_current (millivolt).
 * CONSTANTS[18] is RT_F in component Na_Ca_exchanger_current (millivolt).
 * CONSTANTS[19] is nH in component Na_Ca_exchanger_current (dimensionless).
 * CONSTANTS[20] is Ca_o in component ionic_concentrations (micromolar).
 * CONSTANTS[21] is Na_i in component ionic_concentrations (millimolar).
 * CONSTANTS[22] is Na_o in component ionic_concentrations (millimolar).
 * STATES[3] is Ca_ret in component ionic_concentrations (micromolar).
 * CONSTANTS[23] is f in component ionic_concentrations (dimensionless).
 * CONSTANTS[24] is k_Ca in component ionic_concentrations (per_millisecond).
 * CONSTANTS[25] is k_rel in component ionic_concentrations (per_millisecond).
 * CONSTANTS[26] is k_pump in component ionic_concentrations (per_millisecond).
 * CONSTANTS[27] is alpha in component ionic_concentrations (mole_per_microlitre_coulomb).
 * RATES[0] is d/dt V in component membrane (millivolt).
 * RATES[1] is d/dt n in component rapidly_activating_K_current_n_gate (dimensionless).
 * RATES[2] is d/dt Ca_i in component ionic_concentrations (micromolar).
 * RATES[3] is d/dt Ca_ret in component ionic_concentrations (micromolar).
 */
void
initConsts(double* CONSTANTS, double* RATES, double *STATES)
{
STATES[0] = -76.0;
CONSTANTS[0] = 5310.0;
CONSTANTS[1] = -75.0;
CONSTANTS[2] = 2700.0;
STATES[1] = 0.1;
CONSTANTS[3] = 0.85;
CONSTANTS[4] = -15.0;
CONSTANTS[5] = 5.6;
CONSTANTS[6] = 65.0;
CONSTANTS[7] = 20.0;
CONSTANTS[8] = 6.0;
CONSTANTS[9] = -75.0;
CONSTANTS[10] = 25.0;
CONSTANTS[11] = 1000.0;
CONSTANTS[12] = -20.0;
CONSTANTS[13] = 12.0;
CONSTANTS[14] = 30000.0;
CONSTANTS[15] = 70.0;
STATES[2] = 0.52;
CONSTANTS[16] = 1000.0;
CONSTANTS[17] = 1.5;
CONSTANTS[18] = 26.54;
CONSTANTS[19] = 5.0;
CONSTANTS[20] = 2600.0;
CONSTANTS[21] = 10.0;
CONSTANTS[22] = 140.0;
STATES[3] = 0.7;
CONSTANTS[23] = 0.001;
CONSTANTS[24] = 0.64;
CONSTANTS[25] = 0.0006;
CONSTANTS[26] = 0.2;
CONSTANTS[27] = 0.00006;
}
void
computeRates(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
RATES[3] =  - CONSTANTS[25]*(STATES[3] - STATES[2])+ CONSTANTS[26]*STATES[2];
ALGEBRAIC[1] = 1.00000/(1.00000+exp((CONSTANTS[4] - STATES[0])/CONSTANTS[5]));
ALGEBRAIC[3] = CONSTANTS[8]/(exp((STATES[0] - CONSTANTS[9])/CONSTANTS[6])+exp((CONSTANTS[9] - STATES[0])/CONSTANTS[7]));
RATES[1] =  CONSTANTS[3]*((ALGEBRAIC[1] - STATES[1])/ALGEBRAIC[3]);
ALGEBRAIC[2] = 1.00000/(1.00000+exp((CONSTANTS[12] - STATES[0])/CONSTANTS[13]));
ALGEBRAIC[4] =  CONSTANTS[11]*ALGEBRAIC[2]*(STATES[0] - CONSTANTS[10]);
ALGEBRAIC[0] =  CONSTANTS[2]*STATES[1]*(STATES[0] - CONSTANTS[1]);
ALGEBRAIC[5] =  CONSTANTS[14]*(STATES[2]/(CONSTANTS[15]+STATES[2]))*(STATES[0] - CONSTANTS[1]);
ALGEBRAIC[6] =  CONSTANTS[18]*( 3.00000*log(CONSTANTS[22]/CONSTANTS[21] - log(CONSTANTS[20]/STATES[2])));
ALGEBRAIC[7] =  CONSTANTS[16]*(pow(STATES[2], CONSTANTS[19])/(pow(CONSTANTS[17], CONSTANTS[19])+pow(STATES[2], CONSTANTS[19])))*(STATES[0] - ALGEBRAIC[6]);
RATES[0] = - (ALGEBRAIC[0]+ALGEBRAIC[4]+ALGEBRAIC[5]+ALGEBRAIC[7])/CONSTANTS[0];
RATES[2] = ( CONSTANTS[23]*( - CONSTANTS[27]*(ALGEBRAIC[4] -  2.00000*ALGEBRAIC[7]) -  CONSTANTS[24]*STATES[2])+ CONSTANTS[25]*(STATES[3] - STATES[2])) -  CONSTANTS[26]*STATES[2];
}
void
computeVariables(double VOI, double* CONSTANTS, double* RATES, double* STATES, double* ALGEBRAIC)
{
ALGEBRAIC[1] = 1.00000/(1.00000+exp((CONSTANTS[4] - STATES[0])/CONSTANTS[5]));
ALGEBRAIC[3] = CONSTANTS[8]/(exp((STATES[0] - CONSTANTS[9])/CONSTANTS[6])+exp((CONSTANTS[9] - STATES[0])/CONSTANTS[7]));
ALGEBRAIC[2] = 1.00000/(1.00000+exp((CONSTANTS[12] - STATES[0])/CONSTANTS[13]));
ALGEBRAIC[4] =  CONSTANTS[11]*ALGEBRAIC[2]*(STATES[0] - CONSTANTS[10]);
ALGEBRAIC[0] =  CONSTANTS[2]*STATES[1]*(STATES[0] - CONSTANTS[1]);
ALGEBRAIC[5] =  CONSTANTS[14]*(STATES[2]/(CONSTANTS[15]+STATES[2]))*(STATES[0] - CONSTANTS[1]);
ALGEBRAIC[6] =  CONSTANTS[18]*( 3.00000*log(CONSTANTS[22]/CONSTANTS[21] - log(CONSTANTS[20]/STATES[2])));
ALGEBRAIC[7] =  CONSTANTS[16]*(pow(STATES[2], CONSTANTS[19])/(pow(CONSTANTS[17], CONSTANTS[19])+pow(STATES[2], CONSTANTS[19])))*(STATES[0] - ALGEBRAIC[6]);
}