Generated Code
The following is matlab code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
function [VOI, STATES, ALGEBRAIC, CONSTANTS] = mainFunction() % This is the "main function". In Matlab, things work best if you rename this function to match the filename. [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel(); end function [algebraicVariableCount] = getAlgebraicVariableCount() % Used later when setting a global variable with the number of algebraic variables. % Note: This is not the "main method". algebraicVariableCount =11; end % There are a total of 4 entries in each of the rate and state variable arrays. % There are a total of 23 entries in the constant variable array. % function [VOI, STATES, ALGEBRAIC, CONSTANTS] = solveModel() % Create ALGEBRAIC of correct size global algebraicVariableCount; algebraicVariableCount = getAlgebraicVariableCount(); % Initialise constants and state variables [INIT_STATES, CONSTANTS] = initConsts; % Set timespan to solve over tspan = [0, 10]; % Set numerical accuracy options for ODE solver options = odeset('RelTol', 1e-06, 'AbsTol', 1e-06, 'MaxStep', 1); % Solve model with ODE solver [VOI, STATES] = ode15s(@(VOI, STATES)computeRates(VOI, STATES, CONSTANTS), tspan, INIT_STATES, options); % Compute algebraic variables [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS); ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI); % Plot state variables against variable of integration [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends(); figure(); plot(VOI, STATES); xlabel(LEGEND_VOI); l = legend(LEGEND_STATES); set(l,'Interpreter','none'); end function [LEGEND_STATES, LEGEND_ALGEBRAIC, LEGEND_VOI, LEGEND_CONSTANTS] = createLegends() LEGEND_STATES = ''; LEGEND_ALGEBRAIC = ''; LEGEND_VOI = ''; LEGEND_CONSTANTS = ''; LEGEND_VOI = strpad('time in component environment (millisecond)'); LEGEND_STATES(:,1) = strpad('V in component membrane (millivolt)'); LEGEND_CONSTANTS(:,1) = strpad('C in component membrane (picofarad)'); LEGEND_ALGEBRAIC(:,6) = strpad('I_Ca in component I_Ca (picoampere)'); LEGEND_ALGEBRAIC(:,1) = strpad('I_K in component I_K (picoampere)'); LEGEND_ALGEBRAIC(:,8) = strpad('I_SK in component I_SK (picoampere)'); LEGEND_ALGEBRAIC(:,11) = strpad('I_DA in component I_DA (picoampere)'); LEGEND_CONSTANTS(:,2) = strpad('gK in component I_K (nanosiemens)'); LEGEND_CONSTANTS(:,3) = strpad('VK in component model_parameters (millivolt)'); LEGEND_STATES(:,2) = strpad('n in component n (dimensionless)'); LEGEND_ALGEBRAIC(:,2) = strpad('n_infinity in component n (dimensionless)'); LEGEND_CONSTANTS(:,4) = strpad('lambda in component n (dimensionless)'); LEGEND_CONSTANTS(:,5) = strpad('tau_n in component n (millisecond)'); LEGEND_CONSTANTS(:,6) = strpad('vn in component n (millivolt)'); LEGEND_CONSTANTS(:,7) = strpad('sn in component n (millivolt)'); LEGEND_CONSTANTS(:,8) = strpad('gCa in component I_Ca (nanosiemens)'); LEGEND_CONSTANTS(:,9) = strpad('VCa in component model_parameters (millivolt)'); LEGEND_ALGEBRAIC(:,5) = strpad('m_infinity in component m (dimensionless)'); LEGEND_CONSTANTS(:,10) = strpad('vm in component m (millivolt)'); LEGEND_CONSTANTS(:,11) = strpad('sm in component m (millivolt)'); LEGEND_CONSTANTS(:,12) = strpad('gSK in component I_SK (nanosiemens)'); LEGEND_ALGEBRAIC(:,7) = strpad('s_infinity in component I_SK (dimensionless)'); LEGEND_CONSTANTS(:,13) = strpad('ks in component I_SK (micromolar)'); LEGEND_STATES(:,3) = strpad('Ca in component Ca (micromolar)'); LEGEND_ALGEBRAIC(:,10) = strpad('I_A in component I_DA (picoampere)'); LEGEND_CONSTANTS(:,14) = strpad('gA in component I_DA (nanosiemens)'); LEGEND_ALGEBRAIC(:,9) = strpad('a_infinity in component a (dimensionless)'); LEGEND_STATES(:,4) = strpad('h in component h (dimensionless)'); LEGEND_CONSTANTS(:,15) = strpad('va in component a (millivolt)'); LEGEND_CONSTANTS(:,16) = strpad('sa in component a (millivolt)'); LEGEND_ALGEBRAIC(:,3) = strpad('h_infinity in component h (dimensionless)'); LEGEND_CONSTANTS(:,17) = strpad('tau_h in component h (millisecond)'); LEGEND_CONSTANTS(:,18) = strpad('vh in component h (millivolt)'); LEGEND_CONSTANTS(:,19) = strpad('sh in component h (millivolt)'); LEGEND_CONSTANTS(:,20) = strpad('fc in component Ca (dimensionless)'); LEGEND_CONSTANTS(:,21) = strpad('alpha in component Ca (micromolar_femtocoulomb)'); LEGEND_CONSTANTS(:,22) = strpad('kc in component Ca (first_order_rate_constant)'); LEGEND_ALGEBRAIC(:,4) = strpad('PRL in component PRL (dimensionless)'); LEGEND_CONSTANTS(:,23) = strpad('kPRL in component PRL (micromolar_4)'); LEGEND_RATES(:,1) = strpad('d/dt V in component membrane (millivolt)'); LEGEND_RATES(:,2) = strpad('d/dt n in component n (dimensionless)'); LEGEND_RATES(:,4) = strpad('d/dt h in component h (dimensionless)'); LEGEND_RATES(:,3) = strpad('d/dt Ca in component Ca (micromolar)'); LEGEND_STATES = LEGEND_STATES'; LEGEND_ALGEBRAIC = LEGEND_ALGEBRAIC'; LEGEND_RATES = LEGEND_RATES'; LEGEND_CONSTANTS = LEGEND_CONSTANTS'; end function [STATES, CONSTANTS] = initConsts() VOI = 0; CONSTANTS = []; STATES = []; ALGEBRAIC = []; STATES(:,1) = -60; CONSTANTS(:,1) = 10; CONSTANTS(:,2) = 4; CONSTANTS(:,3) = -75; STATES(:,2) = 0.1; CONSTANTS(:,4) = 0.7; CONSTANTS(:,5) = 30; CONSTANTS(:,6) = -5; CONSTANTS(:,7) = 10; CONSTANTS(:,8) = 2; CONSTANTS(:,9) = 50; CONSTANTS(:,10) = -20; CONSTANTS(:,11) = 12; CONSTANTS(:,12) = 1.7; CONSTANTS(:,13) = 0.5; STATES(:,3) = 0.1; CONSTANTS(:,14) = 25; STATES(:,4) = 0.1; CONSTANTS(:,15) = -20; CONSTANTS(:,16) = 10; CONSTANTS(:,17) = 20; CONSTANTS(:,18) = -60; CONSTANTS(:,19) = 5; CONSTANTS(:,20) = 0.01; CONSTANTS(:,21) = 0.0015; CONSTANTS(:,22) = 0.16; CONSTANTS(:,23) = 1; if (isempty(STATES)), warning('Initial values for states not set');, end end function [RATES, ALGEBRAIC] = computeRates(VOI, STATES, CONSTANTS) global algebraicVariableCount; statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; ALGEBRAIC = zeros(1, algebraicVariableCount); utilOnes = 1; else statesRowCount = statesSize(1); ALGEBRAIC = zeros(statesRowCount, algebraicVariableCount); RATES = zeros(statesRowCount, statesColumnCount); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = 1.00000./(1.00000+exp((CONSTANTS(:,6) - STATES(:,1))./CONSTANTS(:,7))); RATES(:,2) = ( CONSTANTS(:,4).*(ALGEBRAIC(:,2) - STATES(:,2)))./CONSTANTS(:,5); ALGEBRAIC(:,3) = 1.00000./(1.00000+exp((STATES(:,1) - CONSTANTS(:,18))./CONSTANTS(:,19))); RATES(:,4) = (ALGEBRAIC(:,3) - STATES(:,4))./CONSTANTS(:,17); ALGEBRAIC(:,5) = 1.00000./(1.00000+exp((CONSTANTS(:,10) - STATES(:,1))./CONSTANTS(:,11))); ALGEBRAIC(:,6) = CONSTANTS(:,8).*ALGEBRAIC(:,5).*(STATES(:,1) - CONSTANTS(:,9)); RATES(:,3) = - CONSTANTS(:,20).*( CONSTANTS(:,21).*ALGEBRAIC(:,6)+ CONSTANTS(:,22).*STATES(:,3)); ALGEBRAIC(:,1) = CONSTANTS(:,2).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,7) = power(STATES(:,3), 2.00000)./(power(STATES(:,3), 2.00000)+power(CONSTANTS(:,13), 2.00000)); ALGEBRAIC(:,8) = CONSTANTS(:,12).*ALGEBRAIC(:,7).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,9) = 1.00000./(1.00000+exp((CONSTANTS(:,15) - STATES(:,1))./CONSTANTS(:,16))); ALGEBRAIC(:,10) = CONSTANTS(:,14).*ALGEBRAIC(:,9).*STATES(:,4).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,11) = ALGEBRAIC(:,10); RATES(:,1) = - (ALGEBRAIC(:,6)+ALGEBRAIC(:,1)+ALGEBRAIC(:,8)+ALGEBRAIC(:,11))./CONSTANTS(:,1); RATES = RATES'; end % Calculate algebraic variables function ALGEBRAIC = computeAlgebraic(ALGEBRAIC, CONSTANTS, STATES, VOI) statesSize = size(STATES); statesColumnCount = statesSize(2); if ( statesColumnCount == 1) STATES = STATES'; utilOnes = 1; else statesRowCount = statesSize(1); utilOnes = ones(statesRowCount, 1); end ALGEBRAIC(:,2) = 1.00000./(1.00000+exp((CONSTANTS(:,6) - STATES(:,1))./CONSTANTS(:,7))); ALGEBRAIC(:,3) = 1.00000./(1.00000+exp((STATES(:,1) - CONSTANTS(:,18))./CONSTANTS(:,19))); ALGEBRAIC(:,5) = 1.00000./(1.00000+exp((CONSTANTS(:,10) - STATES(:,1))./CONSTANTS(:,11))); ALGEBRAIC(:,6) = CONSTANTS(:,8).*ALGEBRAIC(:,5).*(STATES(:,1) - CONSTANTS(:,9)); ALGEBRAIC(:,1) = CONSTANTS(:,2).*STATES(:,2).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,7) = power(STATES(:,3), 2.00000)./(power(STATES(:,3), 2.00000)+power(CONSTANTS(:,13), 2.00000)); ALGEBRAIC(:,8) = CONSTANTS(:,12).*ALGEBRAIC(:,7).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,9) = 1.00000./(1.00000+exp((CONSTANTS(:,15) - STATES(:,1))./CONSTANTS(:,16))); ALGEBRAIC(:,10) = CONSTANTS(:,14).*ALGEBRAIC(:,9).*STATES(:,4).*(STATES(:,1) - CONSTANTS(:,3)); ALGEBRAIC(:,11) = ALGEBRAIC(:,10); ALGEBRAIC(:,4) = CONSTANTS(:,23).*power(STATES(:,3), 4.00000); end % Pad out or shorten strings to a set length function strout = strpad(strin) req_length = 160; insize = size(strin,2); if insize > req_length strout = strin(1:req_length); else strout = [strin, blanks(req_length - insize)]; end end