Generated Code
The following is python code generated by the CellML API from this CellML file. (Back to language selection)
The raw code is available.
# Size of variable arrays: sizeAlgebraic = 9 sizeStates = 1 sizeConstants = 29 from math import * from numpy import * def createLegends(): legend_states = [""] * sizeStates legend_rates = [""] * sizeStates legend_algebraic = [""] * sizeAlgebraic legend_voi = "" legend_constants = [""] * sizeConstants legend_voi = "time in component environment (second)" legend_algebraic[8] = "F_CE in component F_CE (newton)" legend_algebraic[0] = "f_L_CE in component f_L_CE (newton)" legend_algebraic[5] = "g_V_CE in component g_V_CE (dimensionless)" legend_constants[0] = "a in component user_defined_constants (dimensionless)" legend_constants[1] = "F_min in component f_L_CE (newton)" legend_constants[2] = "F_max in component user_defined_constants (newton)" legend_states[0] = "L_CE in component L_CE (metre)" legend_constants[3] = "L_CE_opt in component user_defined_constants (metre)" legend_constants[4] = "W in component f_L_CE (dimensionless)" legend_constants[28] = "lambda_a in component lambda_a (second_per_metre)" legend_constants[5] = "V_max in component g_V_CE (metre_per_second)" legend_algebraic[6] = "V_CE in component V_CE (dimensionless)" legend_constants[6] = "A in component g_V_CE (dimensionless)" legend_constants[7] = "g_max in component g_V_CE (dimensionless)" legend_constants[24] = "d1 in component d1 (dimensionless)" legend_constants[26] = "d2 in component d2 (dimensionless)" legend_constants[27] = "d3 in component d3 (dimensionless)" legend_constants[8] = "gamma in component g_V_CE (dimensionless)" legend_constants[9] = "V_max in component d1 (metre_per_second)" legend_constants[10] = "A in component d1 (dimensionless)" legend_constants[11] = "g_max in component d1 (dimensionless)" legend_constants[12] = "S in component d1 (metre_per_second)" legend_constants[13] = "S in component d2 (metre_per_second)" legend_constants[14] = "A in component d2 (dimensionless)" legend_constants[15] = "V_max in component d2 (metre_per_second)" legend_constants[16] = "gamma in component d2 (dimensionless)" legend_constants[17] = "g_max in component d3 (dimensionless)" legend_constants[18] = "gamma in component d3 (dimensionless)" legend_algebraic[4] = "F_SEE in component F_SEE (newton)" legend_constants[19] = "k_SEE in component F_SEE (newton_per_metre2)" legend_algebraic[3] = "L_SEE in component L_SEE (metre)" legend_constants[20] = "L_slack in component F_SEE (metre)" legend_algebraic[1] = "F_PEE in component F_PEE (newton)" legend_constants[25] = "k_PEE in component k_PEE (newton_per_metre2)" legend_constants[21] = "L_slack in component F_PEE (metre)" legend_constants[22] = "W in component k_PEE (dimensionless)" legend_constants[23] = "L_CE_opt in component k_PEE (metre)" legend_algebraic[2] = "L_m in component L_m (metre)" legend_algebraic[7] = "F_m in component F_m (newton)" legend_rates[0] = "d/dt L_CE in component L_CE (metre)" return (legend_states, legend_algebraic, legend_voi, legend_constants) def initConsts(): constants = [0.0] * sizeConstants; states = [0.0] * sizeStates; constants[0] = 0.8 constants[1] = 10 constants[2] = 7000 states[0] = 0.038 constants[3] = 0.093 constants[4] = 0.63 constants[5] = 0.93 constants[6] = 0.25 constants[7] = 1.5 constants[8] = 5.67 constants[9] = 0.93 constants[10] = 0.25 constants[11] = 1.5 constants[12] = 2 constants[13] = 2 constants[14] = 0.25 constants[15] = 0.93 constants[16] = 5.67 constants[17] = 1.5 constants[18] = 5.67 constants[19] = 1000000 constants[20] = 0.0025 constants[21] = 0.0025 constants[22] = 0.63 constants[23] = 0.01 constants[24] = (constants[9]*constants[10]*(constants[11]-1.00000))/(constants[12]*(constants[10]+1.00000)) constants[25] = constants[2]/(power(constants[22]*constants[23], 2.00000)) constants[26] = (constants[13]*(constants[14]+1.00000))/(constants[15]*constants[14]*(power(constants[16]+1.00000, 2.00000))) constants[27] = ((constants[17]-1.00000)*(power(constants[18], 2.00000)))/(power(constants[18]+1.00000, 2.00000))+1.00000 constants[28] = 1.00000*((1.00000-exp(-3.82000*constants[0]))+constants[0]*exp(-3.82000)) return (states, constants) def computeRates(voi, states, constants): rates = [0.0] * sizeStates; algebraic = [0.0] * sizeAlgebraic algebraic[0] = (constants[2]*(1.00000*(1.00000-states[0])-power(constants[3], 2.00000)))/((power(constants[4], 2.00000))*(power(constants[3], 2.00000))) algebraic[2] = custom_piecewise([less_equal(voi , 1.00000), 0.0380000 , greater(voi , 1.00000) & less(voi , 2.00000), 0.0380000+0.00200000*(voi-1.00000) , True, 0.0400000]) algebraic[3] = algebraic[2]-states[0] algebraic[4] = custom_piecewise([less_equal(algebraic[3] , constants[20]), 0.00000 , True, constants[19]*(power(algebraic[3]-constants[20], 2.00000))]) algebraic[1] = custom_piecewise([less_equal(states[0] , constants[21]), 0.00000 , True, constants[25]*(power(states[0]-constants[21], 2.00000))]) rootfind_0(voi, constants, rates, states, algebraic) rates[0] = 1.00000*algebraic[6] return(rates) def computeAlgebraic(constants, states, voi): algebraic = array([[0.0] * len(voi)] * sizeAlgebraic) states = array(states) voi = array(voi) algebraic[0] = (constants[2]*(1.00000*(1.00000-states[0])-power(constants[3], 2.00000)))/((power(constants[4], 2.00000))*(power(constants[3], 2.00000))) algebraic[2] = custom_piecewise([less_equal(voi , 1.00000), 0.0380000 , greater(voi , 1.00000) & less(voi , 2.00000), 0.0380000+0.00200000*(voi-1.00000) , True, 0.0400000]) algebraic[3] = algebraic[2]-states[0] algebraic[4] = custom_piecewise([less_equal(algebraic[3] , constants[20]), 0.00000 , True, constants[19]*(power(algebraic[3]-constants[20], 2.00000))]) algebraic[1] = custom_piecewise([less_equal(states[0] , constants[21]), 0.00000 , True, constants[25]*(power(states[0]-constants[21], 2.00000))]) algebraic[7] = algebraic[4] algebraic[8] = algebraic[0]*algebraic[5]*constants[0] return algebraic initialGuess0 = None def rootfind_0(voi, constants, rates, states, algebraic): """Calculate values of algebraic variables for DAE""" from scipy.optimize import fsolve global initialGuess0 if initialGuess0 is None: initialGuess0 = ones(2)*0.1 if not iterable(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic, voi, constants, rates, states), xtol=1E-6) initialGuess0 = soln algebraic[5] = soln[0] algebraic[6] = soln[1] else: for (i,t) in enumerate(voi): soln = fsolve(residualSN_0, initialGuess0, args=(algebraic[:,i], voi[i], constants, rates[:i], states[:,i]), xtol=1E-6) initialGuess0 = soln algebraic[5][i] = soln[0] algebraic[6][i] = soln[1] def residualSN_0(algebraicCandidate, algebraic, voi, constants, rates, states): resid = array([0.0] * 2) algebraic[5] = algebraicCandidate[0] algebraic[6] = algebraicCandidate[1] resid[0] = (algebraic[5]-(custom_piecewise([less_equal(algebraic[6] , 0.00000), (constants[28]*constants[5]+algebraic[6])/(constants[28]*constants[5]-algebraic[6]/constants[6]) , less(0.00000 , algebraic[6]) & less_equal(algebraic[6] , constants[8]*constants[24]), (constants[7]*algebraic[6]+constants[24])/(algebraic[6]+constants[24]) , greater(algebraic[6] , constants[8]*constants[24]), constants[27]+constants[26]*algebraic[6] , True, float('nan')]))) resid[1] = (algebraic[6]-1.00000*(((1.00000/algebraic[5])*(algebraic[4]*(algebraic[2]-states[0])-algebraic[1]*states[0]))/(constants[0]*algebraic[0]))) return resid def custom_piecewise(cases): """Compute result of a piecewise function""" return select(cases[0::2],cases[1::2]) def solve_model(): """Solve model with ODE solver""" from scipy.integrate import ode # Initialise constants and state variables (init_states, constants) = initConsts() # Set timespan to solve over voi = linspace(0, 10, 500) # Construct ODE object to solve r = ode(computeRates) r.set_integrator('vode', method='bdf', atol=1e-06, rtol=1e-06, max_step=1) r.set_initial_value(init_states, voi[0]) r.set_f_params(constants) # Solve model states = array([[0.0] * len(voi)] * sizeStates) states[:,0] = init_states for (i,t) in enumerate(voi[1:]): if r.successful(): r.integrate(t) states[:,i+1] = r.y else: break # Compute algebraic variables algebraic = computeAlgebraic(constants, states, voi) return (voi, states, algebraic) def plot_model(voi, states, algebraic): """Plot variables against variable of integration""" import pylab (legend_states, legend_algebraic, legend_voi, legend_constants) = createLegends() pylab.figure(1) pylab.plot(voi,vstack((states,algebraic)).T) pylab.xlabel(legend_voi) pylab.legend(legend_states + legend_algebraic, loc='best') pylab.show() if __name__ == "__main__": (voi, states, algebraic) = solve_model() plot_model(voi, states, algebraic)